References

Index

additional dynamic element (ADE) 60, 65, 77
frequency domain version 66, 69, 72, 73, 75, 85, 138, 140, 153, 154, 202, 203, 205, 219, 221, 227
time domain version 78, 79, 167, 168, 185, 223, 233
all pass-like behaviour due to a premature retraction of the input signal 67, 205, 234
amplitude and rate saturation 197
approximate model 198
block diagram 198
ersatz model 199
model 197
modified ersatz model 212
amplitude restriction see amplitude saturation
amplitude saturation 3, 16, 27, 44, 162, 199
anti-windup see controller windup prevention or plant windup prevention
augmented system 44, 51, 267, 269, 276, 283, 290, 301
backlash 67, 73, 75–77, 189, 235
bumpless transfer 217
between two controllers which cause plant windup 221
in the scheme of Schneider and Teel and Kapoor 220
to an observer-based controller 219
cascaded control 92
stable systems 92, 94
unstable systems 96, 99
characteristic polynomial
closed loop 41, 75, 152, 247, 287, 288, 291
observer 34, 57, 248, 250, 271
overall observer 57, 286, 296
signal process 44, 56, 265, 281, 286, 300
state feedback 34, 51, 57, 61, 138, 163, 243, 250, 266, 271, 286
state-plus-disturbance observer 49, 271, 278
circle criterion 61, 167
classical control 4, 10, 23, 24, 41, 69, 72, 74
command input see reference input conditioning technique 81, 83, 86, 236
control input 27, 299
controlled output 27, 299
controller realization 256
controller windup 3, 4, 33, 229, 231
prevention 21, 83, 236
frequency domain approach 34–36, 39, 49, 75, 83, 85, 86, 152, 154
in classical controllers 23–26, 40, 42, 71, 75
in the presence of disturbance models 51, 52, 138, 140, 142, 169, 209, 223
in the presence of disturbance observers 43, 46
time domain approach 27, 30, 33, 38, 46, 54, 166, 171
coprime matrix fraction descriptions 305
coprime polynomials 252
d.c. motor 4
decoupling element 17
decoupling in steady state 162, 299
degrees of freedom
observer 254, 258, 259
observer-based controller 252, 255, 260, 274, 279, 290, 297
state feedback 163
describing function 62
design equation in the frequency domain
disturbance rejecting controller (Davison) 57, 289
disturbance rejecting controller (Johnson) 48, 272
observer-based controller 34, 251
Diophantine equation 250
directionality problem 16, 174, 177, 178, 229, 237
solution of Campo and Morari 175
systematic solution 181, 186, 192
disturbance model see signal process
disturbance observer see observer-based controllers with disturbance observer
disturbance process see signal process
disturbance rejection 15, 100, 106, 131, 189, 224, 258, 259, 263, 264, 277, 278, 294, 304
eigenvalue assignment 242, 252
feedback control 104, 105
feedforward control 104, 105
filtered set point 81
flat output 243
flexible structures 124
general controller 3, 4, 40, 83, 90, 151
generalized antireset windup 81, 83, 236
impulse response 107
incidence vector 56, 286, 292
independent parameter 253
input constraint see amplitude
saturation
integral action 4–6, 23–26, 39, 41, 53, 65, 70, 74, 91, 141, 142, 147, 154, 209
integral windup see controller windup
inverted pendulum 141, 148
Kalman-Yakubovich lemma 167
Laplace transform of a signal (notation) 3
L1-norm 107, 110, 135, 183, 193, 200, 210
manipulated input see control input
matrix fraction description 90
matrix transfer function 16, 89, 164, 166, 170, 176, 179, 183, 192, 194, 302
maximum
reference signal applied 28, 165
sustainable region 28, 163, 164
usable region 164
used region 28, 165
measurements 27, 299
MIMO system 16, 88, 90, 162, 164, 166, 168, 178, 181, 185, 191, 200, 299, 302
MIMO systems with constraints 162, 237
multiple input multiple output systems see MIMO systems
nonlinear cascaded control see cascaded control
observability index 245, 252
observation error 21, 29–31, 92, 137, 231, 239, 244, 247, 248
observer canonical form 256, 257
observer of a linear functional 245
observer structure
frequency domain version 36
of general compensators 40, 42, 75
time domain version 29
observer technique 237
Index 313

frequency domain version 36, 40, 75, 85, 140, 147, 152, 153
time domain version 29, 33, 39, 46, 53, 54, 138, 168, 171, 185, 214
observer-based controllers 29, 43, 50, 246, 266, 281, 300
frequency domain design for MIMO systems 305
frequency domain design for single input systems 34, 251, 255, 260, 263
with disturbance observer 48, 269–274, 279
with signal model 57, 286–290, 296–298
time domain design for MIMO systems 299, 300
with signal models 299–301, 302
time domain design for single input systems 28, 29, 32, 37, 241–246, 254, 257, 259, 262
with disturbance observer 43, 44, 266–268, 275–277
with signal model 50–52, 281–285
oscillatory plant windup see plant windup
overall observer 285
override control 24

phase design aid 63, 64, 68, 71–73, 75, 86, 89, 91, 112, 121, 154, 157, 203, 205, 223, 227, 234
MIMO version 167, 171, 172
PI controller 4, 5, 21, 23, 24, 26, 40, 41, 70, 72, 74, 151
PID controller 21, 23, 40, 151
plant windup 229
in stable systems 6, 9, 11, 221, 232
in unstable systems 14, 55, 234
prevention in MIMO systems
stable systems 88, 90, 167, 185
unstable systems 182, 186
prevention in single input systems
Bühler’s approach 92
criteria 61, 62
stable systems 59, 66, 69, 72, 78, 79, 123, 128, 133, 138, 140, 153, 214
pole assignment see eigenvalue assignment
pole placement see eigenvalue assignment
polynomial matrix fraction description 305
Popov criterion 62
pre-filter 5, 41, 67, 69, 72
premature retraction of input signal see backlash
rate saturation see amplitude and rate saturation
reference input
frequency domain 35, 39, 41, 57, 83, 248, 249, 253, 269, 291
time domain 28, 30, 44, 50, 51, 53, 92, 93, 96, 242, 246, 266, 282, 283, 285, 299
reference shaping filter 105, 109, 116, 123, 128, 133, 152, 153, 182, 185, 186
for stable systems 123, 128, 132, 133, 155
with proven stability 123, 133
with proven stability 108–110, 145
MIMO version 182, 186, 192, 194, 195
with proven stability 182, 195
robustness
to changing input locations of the disturbances 267, 291
to inaccurate controller realization 256
to plant parameter variations 267, 281
saturating actuator see amplitude saturation or rate saturation
saturation nonlinearity 3, 16, 27, 44, 162
scaling of variables 3
set point see reference input
signal model see signal process
signal process 43, 50, 52, 56, 137, 142, 166, 169, 185, 209, 221, 223, 265, 266, 268, 272, 275, 278, 281–283, 285, 286, 292, 300, 303
sinusoidal disturbance 45, 53, 168, 189, 222, 274, 292, 296
slew rate limitation 201
state
 estimate 29, 30, 53, 137, 138, 168, 185, 202, 208, 219–221, 245, 246, 285, 300
 feedback
 frequency domain approach 37, 243, 305
 time domain approach 28, 162, 242, 299
 observer 29, 136, 244, 300
 frequency domain design 305
 full-order 257, 259
 minimal order 32, 46, 54, 142, 170, 204, 210, 223, 254, 276, 293, 303
 of a linear functional 245, 252
 reduced-order 29, 244, 262
static gain 28, 97, 103, 113, 164, 169, 178
steady state gain see static gain
switching between two controllers 221
Sylvester equation 51, 138, 166, 284, 301
Sylvester resultant 252
system of linear equations 251, 272, 289
three-tank system 6, 7
time constant of ersatz model 199, 212
trajectory generator see reference shaping filter
two degrees of freedom structure 3, 4, 35, 40, 83, 249
windup see controller or plant windup
windup due to rate saturation
 prevention in stable systems 200, 204
 prevention in unstable systems 206, 208
windup prevention
 method of Schneider and Teel and Kapoor 88, 90
 unified framework 86, 236
Other titles published in this Series (continued):

Soft Sensors for Monitoring and Control of Industrial Processes
Luigi Fortuna, Salvatore Graziani, Alessandro Rizzo and Maria Gabriella Xibilia
Publication due July 2006

Analysis and Control Techniques for Distribution Shaping in Stochastic Processes
Michael G. Forbes, J. Fraser Forbes, Martin Guay and Thomas J. Harris
Publication due August 2006

Adaptive Voltage Control in Power Systems
Giuseppe Fusco and Mario Russo
Publication due August 2006

Distributed Embedded Control Systems
Matjaž Colnarič, Domen Verber and Wolfgang A. Halang
Publication due October 2006

Practical PID Control
Antonio Visioli
Publication due November 2006

Modelling and Analysis of Hybrid Supervisory Systems
Emilia Villani, Paulo E. Miyagi and Robert Valette
Publication due November 2006

Model-based Process Supervision
Belkacem Ould Bouamama and Arun K. Samantaray
Publication due February 2007

Magnetic Control of Tokamak Plasmas
Marco Ariola and Alfredo Pironti
Publication due May 2007

Process Control
Jie Bao, and Peter L. Lee
Publication due June 2007

Optimal Control of Wind Energy Systems
Iulian Munteanu, Antoneta Iuliana Bratcu, Nicolas-Antonio Cutululis and Emil Ceanga
Publication due November 2007