Acknowledgements

B.13 Uniform Design and Its Industrial Applications
by Kai-Tai Fang, Ling-Yau Chan
Kai-Tai Fang would like to express his gratitude for financial support from Hong Kong RGC grant RGC/HKBU 2044/02P and FRG grant FRG/03-04/II-711.

B.14 Cuscore Statistics: Directed Process Monitoring for Early Problem Detection
by Harriet B. Nembhard
This work was partially supported by NSF Grant #0451123.

C.19 Statistical Survival Analysis with Applications
by Chengjie Xiong, Kejun Zhu, Kai Yu
Dr. Xiong’s work was partly supported by National Institute on Aging (USA) grants AG 03991 and AG 05681. Dr. Xiong’s work and Prof. Zhu’s work were also partly supported by the National Natural Science Foundation grant no. 70273044 of the People’s Republic of China.

D.28 Measures of Influence and Sensitivity in Linear Regression
by Daniel Peña
This research has been supported by DGES projects SEJ 2004-03303, and CAM 06/HSE/0016/2004, Spain. I am very grateful to Juan Miguel Marín and Julia Villadomat for helpful comments.

D.29 Logistic Regression Tree Analysis
by Wei-Y. Loh
Research partially supported by grants from the National Science Foundation and the U.S. Army Research Office. The author thanks Dr. Kin-Yee Chan for codeveloping the LOTUS algorithm and for maintaining the software. The software may be obtained through a link on the author’s website www.stat.wisc.edu/~loh.

D.32 Statistical Genetics for Genomic Data Analysis
by Jae K. Lee
This study was supported by the American Cancer Society grant RSG-02-182-01-MGO.

D.34 Statistical Methods In Proteomics
by Weichuan Yu, Baolin Wu, Tao Huang, Xiaoye Li, Kenneth Williams, Hongyu Zhao
This work was supported in part from NHLBI N01–HV-28186, NIGMS R01-59507, and NSF DMS 0241160.

E.39 Cluster Randomized Trials: Design and Analysis
by Mirjam Moerbeek
The research described in this chapter is partially funded by the Netherlands’ Organization for Scientific Research (NWO), grant number 451-02-118.

E.40 A Two-Way Semilinear Model for Normalization and Analysis of Microarray Data
by Jian Huang, Cun-Hui Zhang
The research of Jian Huang is supported in part by the NIH grant HL72288-01 and an Iowa Informatics Initiative grant. The research of Cun-Hui Zhang is partially supported by the NSF grants DMS-0203086 and DMS-0405202. The authors thank Professor Terry Speed and his collaborators for making the Apo A1 data set available online.

E.41 Latent Variable Models for Longitudinal Data with Flexible Measurement Schedule
by Haiqun Lin
This chapter was written with partial support from NIMH grant R01 MH66187-01A2.

E.44 Condition-Based Failure Prediction
by Shang-K. Yang
This chapter quotes the contents of following papers with permission from Elsevier:
F.50 Six Sigma

by Fugee Tsung

The author thanks the HKUST Quality Lab student team for conducting an extensive review of Six Sigma for the input of this chapter. This work was supported by RGC Competitive Earmarked Research Grants HKUST6183/03E and HKUST6232/04E.
About the Authors

Susan L. Albin

Rutgers University
Department of Industrial and Systems Engineering
Piscataway, NJ, USA
salbin@rci.rutgers.edu

Susan L. Albin is professor and director of the Graduate Program of Industrial and Systems Engineering at Rutgers University. Dr. Albin’s area of research is quality engineering, multivariate statistics, process control, and data mining. Her work has been applied in semiconductor manufacturing, plastics recycling, food processing, and medical devices and has been supported by NSF, FAA, DOD, and industrial organizations. Dr. Albin is secretary of INFORMS and Focus Issue editor for IIE Transactions on Quality and Reliability Engineering.

Suprasad V. Amari

Senior Reliability Engineer Relex Software Corporation
Greensburg, PA, USA
suprasad.amari@relex.com

Dr. Amari is a senior reliability engineer at Relex Software Corporation. He received both his M.S. and Ph.D. in reliability engineering from the Indian Institute of Technology, Kharagpur, India. He is an editorial board member of the International Journal of Reliability, Quality and Safety Engineering and International Journal on Performability Engineering, and management committee member of RAMS. He is an ASQ-certified reliability engineer and is a senior member of IEEE, IIE and ASQ.

Y. Alp Aslandogan

The University of Texas at Arlington
Computer Science and Engineering
Arlington, TX, USA
alp@cse.uta.edu
http://ranger.uta.edu/~alp

Dr. Aslandogan’s main areas of research are biomedical informatics, data mining, multimedia information retrieval and visualization. He received his Ph.D. in computer science from the University of Illinois at Chicago in 2001. He has served and continues to serve on the technical program committees of IEEE International Conference on Information Technology and IEEE International Conference on Information Reuse and Integration. His recent research projects include a 3D change detection system for surface structures, a biomedical data mining web service and a concept-based multimedia search agent.

Jun Bai

JP Morgan Chase
Card Services
Wilmington, DE, USA
jun.bai@comcast.net
http://www.stat.rutgers.edu/~jbai

Dr. Jun Bai is a senior analyst at JP Morgan Chase Card Services. He obtained his Ph.D. in industrial and systems engineering from Rutgers – the State University of New Jersey in 2004. His research interests include warranty analysis, maintenance, reliability and applied statistics. Currently his research activities focus on risk management and statistical modelling in the financial industry.

Jaiwook Baik

Korea National Open University
Department of Information Statistics
Seoul, South Korea
baik@knou.ac.kr

Jaiwook Baik received the Ph.D. degree from the Department of Statistics, Virginia Polytechnic Institute and State University in 1991. Since 1992 he has been with the Department of Information Statistics, Korea National Open University, where he is currently a professor of the same department. His current research interests include warranty data analysis and applications of quality control techniques to solve industrial problems. He is a member of the Korean Reliability Society and the Korean Society for Quality Management.
Amit Kumar Bardhan is a senior lecturer in the Department of Operational Research, University of Delhi – South Campus. He obtained his Ph.D. in operational research from University of Delhi in 2003. His Ph.D. thesis was judged the best thesis in O.R. of the year by the Operational Research Society of India. His research interests are mathematical modelling, quality and reliability analysis and marketing models.

Dr. Bedford is a senior lecturer and researcher in statistics at Royal Melbourne Institute of Technology (RMIT) University. He completed his Ph.D. in 2003 on multi-priority finite buffer queueing models. His main areas of research are queueing theory in telecommunications systems, advances in medical statistics and sports statistics. He is also involved in postgraduate statistics research in occupation health and safety and the medical sciences.

James Broberg is currently a Ph.D. student working at Royal Melbourne Institute of Technology (RMIT) University, Melbourne (Australia). He is a member of the “Distributed Systems and Networking” discipline at RMIT, and has worked and published in the area of task assignment (e.g. scheduling policies) to enable effective load balancing and load sharing in distributed systems.

Dr. Bulmer is a senior lecturer in mathematics and statistics at the University of Queensland. He obtained his Ph.D. from the University of Tasmania in 1996 on the topic of automated algebraic reasoning. His current research interests include computational methods in statistics and operations research, stochastic modelling in astrophysics, and mathematics and statistics education.

Mr. Zhibin Cao received his M.S. degree from Computer Science & Engineering Department at Arizona State University. Currently he is a Ph.D. candidate in the department. He worked at Peiking University Research and Development Institute, China and at Bell-Labs China before joining Arizona State University. His research areas include software engineering, service-oriented computing, service-oriented modelling and model-based development.

Philippe Castagliola graduated (Ph.D. 1991) from the Université de Technologie de Compiègne, France (UTC). He is currently a professor at the IUT (Institut Universitaire de Technologie) de Nantes, France, and he is also a member of the IRCCyN (Institut de Recherche en Communications et Cybernétique de Nantes), UMR CNRS 6597. He is associate editor for the Journal of Quality Technology and Quantitative Management and for the International Journal of Reliability, Quality and Safety Engineering. His research activity includes developments of new SPC techniques (non-normal control charts, optimized EWMA type control charts, multivariate capability indices, and monitoring of batch processes).
About the Authors

Giovanni Celano
University of Catania
Dipartimento di Ingegneria Industriale e Meccanica
Catania, Italy
gcelano@diim.unict.it
http://www.diim.unict.it/users/gcelano/

Giovanni Celano

Giovanni Celano received his Ph.D. in 2003 from the University of Palermo for work on the sequencing of mixed model assembly lines. He is currently assistant professor of technology and manufacturing systems at the University of Catania, Italy. His research is focused on statistical quality control and production scheduling. He is a member of the AIITEM and of the ENBIS.

Ling-Yau Chan
The University of Hong Kong
Department of Industrial and Manufacturing Systems Engineering
Hong Kong
plychan@hku.hk
http://www.hku.hk/imse

Ling-Yau Chan

Dr. Chan’s research areas include design of industrial experiments, optimal design, uniform design, statistical quality control, reliability, maintenance, quality management, and supply chain management. He has published over 80 papers in these areas, and is collaborating with scholars worldwide on various research topics. He is the head of the Department of Industrial and Manufacturing Systems Engineering, University of Hong Kong.

Ted Chang
University of Virginia
Department of Statistics
Charlottesville, VA, USA
tcc8v@virginia.edu
http://www.stat.virginia.edu/chang.html

Ted Chang

Ted Chang received his Ph.D. in mathematics from the University of California (Berkeley) in 1972. After about a decade of working in algebraic topology, he switched his research concentration to statistical problems in which geometry and symmetries play an important role. The primary applications of his work are in the estimation of the statistical errors in tectonic plate reconstructions, image reconstruction, and human motion data.

Victoria Chen
University of Texas at Arlington
Industrial and Manufacturing Systems Engineering
Arlington, TX, USA
vchen@uta.edu
http://ie.uta.edu/index.cfm?FuseAction=ProfessorDescription&UserID=1945

Victoria Chen

Dr. Victoria Chen joined the University of Texas at Arlington in 2001. From 1993–2001 she was on the Industrial and Systems Engineering faculty at the Georgia Institute of Technology. She earned her Ph.D. in operations research and industrial engineering from Cornell University. Dr. Chen is co-founder of the Informs Section on Data Mining and is currently serving as chair.

Yinong Chen
Arizona State University
Computer Science and Engineering
Department
Tempe, AZ, USA
yinong.chen@asu.edu
http://www.public.asu.edu/~ychen10/

Yinong Chen

Dr. Yinong Chen received his Ph.D. from the University of Karlsruhe, Germany. He worked at LAAS-CNRS, France, and at Wits University, South Africa, before joining Arizona State University. His research areas include dependable computing, software engineering, and service-oriented computing. He has coauthored five books and over 80 research papers in these areas.

Peter Dimopoulos
Royal Melbourne Institute of Technology
Computer Science and IT
Melbourne, Australia
dimpet@cs.rmit.edu.au

Peter Dimopoulos

Peter is currently completing his Ph.D. in computer science at RMIT University (Royal Melbourne Institute of Technology) in the area of Internet congestion control. Prior to his Ph.D. he worked at Agilent Technologies and completed a double degree in computer science and computer systems engineering at RMIT University.
Fenghai Duan was born in Heilongjiang, China. After completing his bachelor’s degree in biochemistry at Fudan University in 1995, he received his master’s degree in molecular biology from Institute of Biophysics, Academia Sinica in 1998. In the year 2000, Duan joined the Ph.D. program in biostatistics at Yale University and worked on his thesis in the lab of Professor Heping Zhang. Duan’s doctoral dissertation was about the analysis of microarray experiments and was awarded the Ph.D. degree in May 2005. Currently, he is an assistant professor of the Department of Preventive and Societal Medicine at University of Nebraska Medical Center. His research interests are in the development of statistical methods for the analysis of high-dimensional biological data.

Miss Esaulova has submitted her Ph.D. dissertation devoted to hazard rate modeling in heterogeneous populations and about to defend it in June 2006. She has publications in the fields of survival analysis and nonparametric statistics and is interested in the development of statistical methodology and its applications.

Luis A. Escobar is a professor at Louisiana State University. His research interests include analysis of reliability data and accelerated testing. Luis is an associate editor for LIDA and past associate editor for Technometrics. He is a Fellow of the ASA and elected member of the ISI. Luis was awarded the 1999 Jack Youden Prize.

Mr. Chun Fan is a Ph.D. student in the Department of Computer Science and Engineering at Arizona State University. He received his B.E. degree from the University of Science and Technology of China, China. His research areas include software engineering, software architecture, and computer-based simulation.

Professor Fang is an elected fellow of the Institute of Mathematical Statistics and of the American Statistical Association. He was chair professor at the Hong Kong Baptist University from 1993 to 2006. His research interest: involve multivariate analysis, experimental design, data mining and statistical inference. He has been associate editor for Statistics & Probability Letters, Statistica Sinica and Journal of Multivariate Analysis. He has published more than 220 research papers and 18 books.

Dr. Qianmei Feng is an assistant professor in the Department of Industrial Engineering at the University of Houston, TX. Her research interests are quality and reliability engineering, especially inspection strategies, tolerance design and optimization, experimental design, and Six Sigma. She is a member of IIE, INFORMS and Alpha Pi Mu.
Emilio Ferrari
University of Bologna
Department of Industrial and Mechanical Engineering (D.I.E.M.)
Bologna, Italy
emilio.ferrari@unibo.it

Emilio Ferrari is full professor of industrial logistics at the Department of Mechanical Constructions (DIEM) at the University of Bologna, director of the master degree in “integrated logistics” at the Faculty of Engineering in Bologna and of the Summer School “Francesco Turco” on industrial plants. He is author of more than 70 publications, most of them about industrial logistics and industrial plant design and management.

Sergio Fichera
University of Catania
Department of Industrial and Mechanical Engineering
Catania, Italy
sfichera@diim.unict.it

Sergio Fichera is an associate professor of Technology and Manufacturing System at the Dipartimento di Ingegneria Industriale eMeccanica of the University of Catania, Italy. He holds an M.B.A. degree from the Schools of Management at the University of Turin. His research interests are in production scheduling and statistical quality control. He is a member of the AITEM (Italian association for manufacturing).

Maxim Finkelstein
University of the Free State
Department of Mathematical Statistics
Bloemfontein, South Africa
finkelms@ufs.ac.za
www.ufs.ac.za/departments/mathstats/
finkelsteinms

Professor Maxim Finkelstein is a specialist in reliability theory and other applications of stochastic modeling. He has published about 140 papers and 4 books on various aspects of reliability and survival analysis. His current major interest is in stochastic modeling of heterogeneity for engineering and biological applications. He is a member of editorial boards of a number of reliability oriented journals.

Mitsuo Gen
Waseda University
Graduate School of Information, Production & Systems
Kitakyushu, Japan
gen@waseda.jp

Mitsuo Gen received his Ph.D. degree from Kogakuin University, Japan, in 1974. He is a professor at the Graduate School of Information, Production and Systems, Waseda University. He was a visiting professor at the University of California, Berkeley in 1999–2000. His research interests include genetic algorithms, neural networks, fuzzy logic, and the applications to network design, scheduling, system reliability design, and the like.

Amrit L. Goel
Syracuse University
Department of Electrical Engineering and Computer Science
Syracuse, NY, USA
goel@ecs.syr.edu

Amrit L. Goel is a professor of EECS at Syracuse University. His Ph.D. was in mechanical engineering from the University of Wisconsin, Madison. His academic activities have included quality control and reliability, software engineering, databases, and data mining using radial basis functions (RBF) and support vector machines. He has advised fifteen Ph.D. dissertations on these and related topics. He is a co-author of a book on object-oriented software testing with Dr. Bashir, of the Goel–Okumoto software reliability model and, most recently, of the Shin–Goel algorithm for RBF design. He was elected a fellow of IEEE for contributions to software reliability.

Thong N. Goh
National University of Singapore
Industrial and Systems Engineering Dept.
Singapore, Republic of Singapore
gohntn@nus.edu.sg
http://www.ise.nus.edu.sg/staff/gohtn

Professor Thong N. Goh (Ph.D. University of Wisconsin – Madison, USA) is academician of the International Academy for Quality, fellow of the American Society for Quality, and IEEE Engineering Management Society Educator of the Year 2004. Specializing in statistical methodologies for engineering applications, he now serves on the editorial boards of several leading international research journals on quality management and quality engineering.
Raj K. Govindaraju
Massey University
Institute of Information Sciences and Technology
Palmerston North, New Zealand
k.govindaraju@massey.ac.nz
Dr. Govindaraju holds a Ph.D. degree from Madras University and has been engaged in statistics teaching and consulting for the last 20 years. His research interest is in the statistical aspects of quality and data analysis. He is an associate editor of the International Journal for Economic Quality.

Xuming He
University of Illinois at Urbana-Champaign
Department of Statistics
Champaign, IL, USA
x-he@uiuc.edu
http://www.stat.uiuc.edu/~x-he
Professor He’s research focuses on statistical inference for regression models. He is an elected fellow of the Institute of Mathematical Statistics, and currently serves on the editorial boards of The Annals of Statistics and Journal of the American Statistical Association. His research has been supported by the NSF, NSA and NIH.

Chengcheng Hu
Harvard School of Public Health
Department of Biostatistics
Boston, MA, USA
chu@hsph.harvard.edu
http://www.hsph.harvard.edu/faculty/ChengchengHu.html
Dr. Chengcheng Hu is an assistant professor of biostatistics at the Harvard School of Public Health and a senior statistician at the Statistical and Data Analysis Center of the Pediatric AIDS Clinical Trials Group. He earned his Ph.D. in biostatistics from the University of Washington in 2001. His research interests are in the areas of failure time data analysis, measurement error, missing data, longitudinal data analysis, and design of clinical trials.

Feifang Hu
University of Virginia
Department of Statistics
Charlottesville, VA, USA
fh6e@virginia.edu
http://www.stat.virginia.edu/hu.html
Dr. Hu is an associate professor of Statistics at the University of Virginia. He has a Ph.D. from the University of British Columbia and has worked at the National University of Singapore and Cornell University. His main research areas are: bootstrap methods; biostatistics; likelihood inference and data mining.

Hai Huang
Intel Corp CH3-20
Component Automation Systems
Chandler, AZ, USA
hai.huang2@intel.com
Dr. Hai Huang received his Ph.D. from the Arizona State University, USA. Currently he works in the Component Automation Systems (CAS) Group at Intel Corp. His research areas include software verification and validation, test automation, Web services, service-oriented architecture, and compiler technology.

Jian Huang
University of Iowa
Department of Statistics and Actuarial Science
Iowa City, IA, USA
jian-huang@uiowa.edu
http://www.stat.uiowa.edu/~jian/
Dr. Jian Huang obtained his Ph.D. in statistics from The University of Washington in Seattle. His current research interests include statistical analysis of high-dimensional data with applications to biomedical research, statistical genetics, survival analysis, and semiparametric models.
Tao Huang
Yale University, School of Medicine
Department of Epidemiology and Public Health
New Haven, CT, USA
t.huang@yale.edu
Chapter D.34
Dr. Tao Huang is a postdoctoral associate in Department of Epidemiology and Public Health at Yale University School of Medicine. He obtained his Ph.D. degree in statistics from the University of North Carolina at Chapel Hill. His current research interests include nonparametric and semiparametric modeling, functional and longitudinal data analysis, model selection and computational biology and statistical genetics.

Wei Jiang
Stevens Institute of Technology
Department of Systems Engineering and Engineering Management
Hoboken, NJ, USA
wijang@stevens.edu
http://www.stevens.edu/engineering/seem/People/jiang.html
Chapters B.10, D.36
Dr. Wei Jiang is an assistant professor of systems engineering and engineering management at Stevens Institute of Technology. He obtained his Ph.D. degree in industrial engineering and engineering management from Hong Kong University of Science and Technology in 2000. Prior to joining Stevens, he worked as a statistical consultant at AT&T Labs, Morristown. His current research activities include statistical methods for quality control, data mining and enterprise intelligence.

Richard Johnson
University of Wisconsin – Madison
Department of Statistics
Madison, WI, USA
rich@stat.wisc.edu
Chapter B.18
Richard A. Johnson is a professor of statistics at the University of Wisconsin. His research and consulting interests include reliability and life length analysis, applied multivariate analysis, and applications to engineering. He is a fellow of the American Statistical Association, fellow of the Institute of Mathematical Statistics, and elected member of the International Statistical Institute. He has been editor of Statistics and Probability Letters since it began 25 years ago, and is co-author of six books and several book chapters, and over 100 papers in the statistical and engineering literature.

Kailash C. Kapur
University of Washington
Industrial Engineering
Seattle, WA, USA
kkapur@u.washington.edu
http://faculty.washington.edu/kkapur/
Chapter B.11
Dr. Kailash C. Kapur is a professor of industrial engineering at the University of Washington. He received Ph.D. degree (1969) in industrial engineering from the University of California at Berkeley. He received the Allan Chop Technical Advancement Award and the Craig Award from ASQ. He is a Fellow of ASQ and IIE, and a registered professional engineer. In his present position at the University of Washington, Dr. Kapur is responsible for teaching and research in the areas of quality engineering, design reliability, industrial experimental design, system optimization and control, and productivity improvement.

P. K. Kapur
University of Delhi
Department of Operational Research
Delhi, India
pkkapur@or.du.ac.in
Chapter C.25
P.K. Kapur is professor and head in the Department of Operational Research, University of Delhi. He obtained his Ph.D. degree from the University of Delhi in 1977. He has published extensively in Indian journals and abroad in the areas of hardware reliability, optimization, queueing theory, and maintenance and software reliability. He is currently the president of the Operational Research Society of India.

Kyungmee O. Kim
Konkuk University
Department of Industrial Engineering
Seoul, S. Korea
kyungmee@konkuk.ac.kr
http://mail.konkuk.ac.kr/~kyungmee
Chapter A.9
Dr. Kim is an assistant professor of industrial engineering at Konkuk University in Seoul, Korea. She obtained her Ph.D. degree in the Department of Industrial Engineering from Texas A&M in 1999. Her research interests include statistical quality control, burn-in, yield and reliability optimization, fault diagnosis and condition-based maintenance.
Taeho Kim

Korea Telecom
Strategic Planning Office
Sungnam, Kyonggi-do, S. Korea

Taeho Kim received his Ph.D. from Texas A&M University in 1998. He is assistant vice-president of Korea Telecom. Since he joined KT in 1986 he has been doing many projects related with service quality, facility reliability, and network performance. His current fields of interest include six sigma for continuous growth and quality innovation in the telecom industry.

Way Kuo

University of Tennessee
Department of Electrical and Computer Engineering
Knoxville, TN, USA

Dr. Way Kuo is university distinguished professor and dean of engineering at the University of Tennessee. He is an elected member of the US National Academy of Engineering, Academia Sinica, Taiwan, R.O.C., and the International Academy for Quality. He has co-authored five textbooks and currently serves as the editor of IEEE Transactions on Reliability. He is recognized as one of the principal scholars responsible for developing cost-effective methodologies for reducing infant mortality in the fast-evolving microelectronics industry. His contributions to industry include advancing the development of the fundamentals of reliability design as well as introducing new industrial applications of parametric and nonparametric analysis.

Paul Kvam

Georgia Institute of Technology
School of Industrial and Systems Engineering
Atlanta, GA, USA

Paul Kvam is an associate professor in the School of Industrial and Systems Engineering (ISyE). He joined ISyE in 1995 after working for four years as scientific staff at the Los Alamos National Laboratory. Dr. Kvam received his B.S. in mathematics from Iowa State University in 1984, an M.S. in statistics from the University of Florida in 1986, and his Ph.D. in statistics from the University of California, Davis in 1991. His research interests focus on statistical reliability with applications to engineering, nonparametric estimation, and analysis of complex and dependent systems. He is a member of the American Statistical Association, Institute of Mathematical Statistics, Institute for Operations Research and Management Science, and IEEE.

Chin-Diew Lai

Massey University
Institute of Information Sciences and Technology
Palmerston North, New Zealand

Chin-Diew Lai received his Ph.D. in statistics from Victoria University of Wellington, New Zealand in 1975. His main research interests are in quality and reliability engineering. He is a co-author of three books and has published over 90 journal articles and book chapters.

Jae K. Lee

University of Virginia
Public Health Sciences
Charlottesville, VA, USA

Professor Lee received his Ph.D. in statistical genetics from the University of Wisconsin – Madison in 1995. He has worked on statistical research in molecular genetics and bioinformatics, including genetic population inference, DNA structure analysis, linkage association study, and high-throughput gene chip data analysis on various biomedical studies. In particular, he has pioneered the statistical development of small-sample microarray data analysis techniques such as LPE (local pooled error) and HEM (heterogeneous error model) for practical, genomic biomedical investigations.
Kit-Nam F. Leung
City University of Hong Kong
Department of Management Sciences
Kowloon Tong, Hong Kong
msknleun@cityu.edu.hk

Dr. Kit-Nam Francis Leung received a B.Sc. degree in mathematics in 1984 and M.Sc. degree in operational research in 1985, both from London University, and his Ph.D. in 2003 from Curtin University, Australia. Since 1988 he has been a lecturer in the Management Sciences Department at the City University of Hong Kong and has been responsible for teaching management science and Statistics. His research interests are maintenance, reliability and warranty.

Ruojia Li
Global Statistical Sciences
Lilly Corporate Center
Indianapolis, IN, USA
liru@lilly.com

Dr. Ruojia Li is a research scientist at Eli Lilly and Company. She received her Ph.D. degree in statistics from the University of Wisconsin – Madison in 2004. Her research interests include multivariate quality monitoring schemes and statistical applications in pharmaceutical research.

Wenjian Li
Javelin Direct, Inc.
Marketing Science
Irving, TX, USA
wenjian.li@javelindirect.com

Dr. Wenjian Li is a marketing research scientist with Javelin Direct, Inc., whose current work focuses on econometrics, forecasting, and survival analysis. Dr. Li earned his Ph.D. from Rutgers University where his primary research interests included reliability, maintenance theory, applied statistics and manufacturing automation.

Xiaoye Li
Yale University
Department of Applied Mathematics
New Heaven, CT, USA
xiaoye.li@yale.edu

Xiaoye Li is currently a Ph.D. candidate in the Applied Mathematics Department of Yale University. He is interested in machine learning and statistical learning theory and the application of machine learning techniques to various data mining problems, especially those arising from genomics and proteomics studies. His dissertation takes an initiative step to analyze the popular classification algorithm Random Forest and to improve the random subspace method.

Yi Li
Harvard University
Department of Biostatistics
Boston, MA, USA
yili@jimmy.harvard.edu
http://www.hsph.harvard.edu/faculty/YiLi.html

Dr. Li is an associate professor of biostatistics at the University of Cincinnati. He obtained his Ph.D. degree in biostatistics from the University of Michigan in 1999. He has been working on survival analysis, longitudinal/spatial data analysis and observational studies. He is the recipient of several prestigious awards, including the David P. Byar Young Investigator Award, John van Ryzin Award and Roger L. Nichols Excellence in Teaching Award. He is a member of the review panel of Mathematical Reviews and is an associate editor of Biometrics.

Hojung Lim
Korea Electronics Technology Institute (KETI)
Ubiquitous Computing Research Center
Seongnam-Si, Gyeonggi-Do, Korea
hlim@keti.re.kr

Hojung Lim received her Ph.D. in computer and information science from Syracuse University, New York. Her research interests are in support vector machines and software modelling. Currently she is involved in ubiquitous sensor networks and radio frequency identification (RFID).
Haiqun Lin

Yale University School of Medicine
Department of Epidemiology and Public Health
New Haven, CT, USA
haiqun.lin@yale.edu
http://publichealth.yale.edu/faculty/lin.htm

Haiqun Lin received her Ph.D. in biometry from Cornell University. She also holds a medical degree from Beijing Medical University, China. Haiqun Lin’s current research focuses on latent variable modelling and missing data issues in longitudinal data. In the last a few years, Haiqun Lin has been collaborating with scientific researchers in the fields of cancer research, psychiatry, and geriatric medicine.

Nan Lin

Washington University in Saint Louis
Department of Mathematics
St. Louis, MO, USA
nlin@math.wustl.edu
http://www.math.wustl.edu/~nlin

Dr. Lin received his Ph.D. degree in statistics from the University of Illinois at Urbana-Champaign in 2003. He is an assistant professor in the Department of Mathematics, Washington University in Saint Louis. His research interest includes robust statistics, Bayesian modeling, and applications of statistical methodologies in bioinformatics studies such as protein–protein interaction prediction and topological structure inference in yeast.

Wei-Yin Loh

University of Wisconsin – Madison
Department of Statistics
Madison, WI, USA
loh@stat.wisc.edu
http://www.stat.wisc.edu/~loh

Wei-Yin Loh has a Ph.D. from Berkeley. He is a fellow of the American Statistical Association and the Institute of Mathematical Statistics. He invented the GUIDE regression tree algorithm and co-authored the CRUISE, LOTUS, and QUEST algorithms. He currently serves on the editorial boards of the ACM Transactions on Knowledge Discovery from Data and the Journal of Machine Learning Research.

Jye-Chyi Lu

The School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, GA, USA
jclu@isye.gatech.edu
http://www.isye.gatech.edu/~jclu;
http://www.isye.gatech.edu/faculty-staff/profile.php?entry=jl234

Jye-Chyi (JC) Lu is a professor in the School of Industrial and Systems Engineering (ISyE). He received a Ph.D. in statistics from University of Wisconsin at Madison in 1988, and joined the faculty of North Carolina State University (NCSU) where he remained until 1999 when he joined ISyE. Dr. Jye-Chyi Lu’s research areas cover industrial statistics, signal processing, semiconductor and electronic manufacturing, data mining, bioinformatics, supply-chain management, logistics planning and nanotechnology. He has about 58 disciplinary and interdisciplinary publications, which have appeared in both engineering and statistics journals. Currently, he is an associate editor for Technometrics, IEEE Transactions on Reliability and Journal of Quality Technology.

William Q. Meeker, Jr.

Iowa State University
Department of Statistics
Ames, IA, USA
wqmeeker@iastate.edu
http://www.public.iastate.edu/~wqmeeker

Dr. Meeker is distinguished professor of statistics at Iowa State University. He is a fellow of the American Statistical Association and a past editor of Technometrics. He is co-author of the books Statistical Methods for Reliability Data, and Statistical Intervals, and of numerous publications in the engineering and statistical literature. He has consulted extensively on problems in reliability and accelerated testing.

Mirjam Moerbeek

Utrecht University
Department of Methodology and Statistics
Utrecht, Netherlands
m.moerbeek@fss.uu.nl
http://www.fss.uu.nl/ms/moerbeek

Dr. Mirjam Moerbeek studied biometrics at Wageningen Agricultural University, the Netherlands. She obtained her Ph.D. from Maastricht University, the Netherlands. She is currently employed at Utrecht University, the Netherlands. In 2003 she received a prestigious research grant from the Dutch government for young researchers. Her research topic is on the design and analysis of experiments with nested data.
Terrence E. Murphy

Yale University School of Medicine
Department of Internal Medicine
New Haven, CT, USA
terrence.murphy@yale.edu

Terrence E. Murphy earned his Ph.D. in industrial and systems engineering from the Georgia Institute of Technology in 2004. Prior to his graduate work in engineering statistics, he worked for the Eastman Kodak and Johnson & Johnson companies in the manufacture and development of clinical instrumentation. His interests include multivariate statistics, experimental design and medical decision making.

D.N. Pra Murthy

The University of Queensland
Division of Mechanical Engineering
Brisbane, QLD, Australia
p.murthy@uq.edu.au

Pra Murthy obtained his Ph.D. degree from Harvard University. He has authored or co-authored 5 books, 20 book chapters and 150 journal papers and co-edited 2 books. His current areas of research deal with various topics in product reliability and product warranty. He has held visiting appointments at several universities in the USA, Europe and Asia and is on the editorial boards of nine international journals.

H. N. Nagaraja

Ohio State University
Department of Statistics
Columbus, OH, USA
hnn@stat.ohio-state.edu
http://www.stat.ohio-state.edu/~hnn

H.N. Nagaraja, Ph.D., is a professor in the Departments of Statistics and Internal Medicine and serves as a General Clinical Research Centre Biostatistician at Ohio State University. He is interested in order and record statistics, general distribution theory, stochastic modelling, and biostatistical applications. He is a fellow of the American Statistical Association, and an elected member of the International Statistical Institute.

Toshio Nakagawa

Aichi Institute of Technology
Department of Marketing and Information Systems
Toyota, Japan
toshi-nakagawa@aitech.ac.jp
http://www.aitech.ac.jp/

Toshio Nakagawa received his Ph.D. from Kyoto University in 1977. He is now a professor of marketing and information systems at Aichi Institute of Technology in Toyota. His research interests are optimization problems, and computer and information systems in reliability and maintenance theory.

Joseph Naus

Rutgers University
Department of Statistics
Piscataway, NJ, USA
naus@stat.rutgers.edu
http://www.stat.rutgers.edu/people/faculty/naus.html

Joseph Naus is a professor of statistics at Rutgers University. He received his Ph.D in statistics from Harvard University. He was elected a Fellow of The American Statistical Association based on his research into scan statistics, a continuing research area for more than 40 years.

Harriet B. Nembhard

Pennsylvania State University
Harold and Inge Marcus Department of Industrial and Manufacturing Engineering
University Park, PA, USA
hbn2@psu.edu
http://www.ie.psu.edu/People/IEFaculty/facultypage.cfm?FacID=18

Dr. Nembhard’s research mission is to investigate the design and implementation of concepts and methods of quality, economics, productivity, and improvement for manufacturing systems. She is also an ASQ certified Six Sigma Black Belt and has served as an expert consultant for several major companies. She is on the editorial boards of Quality Engineering and Quality and Reliability Engineering International.
Douglas Noe is a Ph.D. candidate in the Department of Statistics at the University of Illinois at Urbana-Champaign. He earned an M.S. from this department in 2003 and received his M.A. in economics from the University of Michigan in 2000. His research explores statistical aspects of data mining.

Arrigo Pareschi is is full professor of industrial logistics at the Department of Mechanical Constructions (D.I.E.M.) of the University of Bologna. He has been dean of Faculty of Engineering of Bologna from 1955 to 2001 and president of the Commission for Scientific Research and of the “Spin-Off” Committee of the University of Bologna. He is author of over 90 scientific papers (both experimental and theoretical) on industrial mechanical plants.

Dr. Francis Pascual received his Ph.D. in statistics from Iowa State University. He has a joint appointment in the Department of Statistics and the Department of Mathematics at Washington State University. His research interests include statistical analysis of reliability data, accelerated life test planning, statistical process control, and analysis of spatial correlations.

Ray Paul has been a professional electronics engineer, software architect, developer, tester and evaluator for the past 24 years, holding numerous positions in the field of software engineering. Currently, he serves as the deputy for C2 Metrics and Performance Measures for Software for the Department of Defense (DoD) Chief Information Officer (CIO). In this position, he supervises development of objective, quantitative data on the status of software resources in DoD information technology (IT) to support major investment decisions. These metric data are required to meet various congressional mandates, most notably the Clinger-Cohen Act. He holds a doctorate in software engineering and is an active member of the IEEE Computer Society. He has published more than 50 articles on software engineering in various technical journals and symposia proceedings, primarily under IEEE sponsorship.

Alessandro Persona is a full professor of industrial plants and logistics in the Department of Management and Technology at Padua University. The scientific activity has been carried out in many areas of research in industrial plants, logistic and maintenance topics. He is author of more than 90 publications. In 2005 he received the award for the best paper printed in the Int. Journal of Manufacturing Technology Management. He is member of the editorial board of the International Journal on Operational Research. Currently he manages the Ph.D. on Mechatronics and Industrial Systems and he is the president of mechanical engineering degree at Padua University.
Daniel Peña
Universidad Carlos III de Madrid
Departamento de Estadística
Getafe (Madrid), Spain
daniel.pena@uc3m.es
http://halweb.uc3m.es/daniel_pena

Daniel Peña is professor of statistics at the Universidad Carlos III of Madrid. He was full professor of statistics at Universidad Politécnica de Madrid and visiting full professor at the Universities of Wisconsin – Madison and Chicago. He has published 13 books and more than 150 research papers on time series, linear models, robust and diagnostic methods, bayesian statistics, econometrics, multivariate analysis and quality methods. He is a member of ISI and IMS fellow.

Hoang Pham
Rutgers University
Department of Industrial and Systems Engineering
Piscataway, NJ, USA
hopham@rci.rutgers.edu

Dr. Hoang Pham is professor in the Department of Industrial and Systems Engineering at Rutgers University. Before joining Rutgers, he was a senior engineering specialist at the Boeing Company, Seattle, and the Idaho National Engineering Laboratory, Idaho Falls. His research interests include software reliability, system reliability modeling, maintenance, fault-tolerant computing, and biological systemability-risk assessment. He is the author/editor of more than 15 books and is currently the editor of the Springer Series in Reliability Engineering. He has published more than 90 journal articles and 30 book chapters. Dr. Hoang Pham is a fellow of the IEEE.

John Quigley
University of Strathclyde
Department of Management Science
Glasgow, Scotland
j.quigley@strath.ac.uk
http://www.managementscience.org/staff/john.asp

Dr. John Quigley earned a BMath in actuarial science from the University of Waterloo, Canada and a Ph.D. from the Department of Management Science, University of Strathclyde, Scotland. His research interests include applied probability modelling, statistical inference and reliability growth modelling. He is a member of the Safety and Reliability Society, a chartered statistician and an associate of the Society of Actuaries.

Alberto Regattieri
Bologna University
Department of Industrial and Mechanical Engineering
Bologna, Italy
alberto.regattieri@mail.ing.unibo.it

Alberto Regattieri is a professor in the Department of Industrial and Mechanical Engineering at the University of Bologna. He received his Ph.D. degree from Parma University in 1999. His current research interests include the optimal design of manufacturing systems, production planning and control, and the maintenance of industrial plants. In 2005 he received the Williamson Award [Emerald Literati Club (UK)] for his studies. He has authored or co-authored several books and over 50 technical publications.

Miyoung Shin
Kyungpook National University
School of Electrical Engineering and Computer Science
Daegu, Republic of Korea
shinmy@knu.ac.kr

Dr. Miyoung Shin is an assistant professor in the School of Electrical Engineering and Computer Science at Kyungpook National University. She earned her Ph. D. degree in computer and information science from Syracuse University in 1998 and was awarded the All-University Doctoral Prize for her outstanding Ph.D. thesis. Prior to joining to Kyungpook National University in 2005, she had worked as a senior member of research staff in the Electronics and Communications Research Institute. Her current research interests include data mining algorithms, bioinformatics and context-awareness computing.
About the Authors

Karl Sigman
Chapter A.8

Columbia University in the City of New York,
School of Engineering and Applied Science
Center for Applied Probability (CAP)
New York, NY, USA
karl.sigman@columbia.edu
http://www.columbia.edu/~ks20

Professor Sigman’s areas of research include stochastic modeling, stochastic networks and queueing theory, point process theory, and insurance risk. He was a recipient of the Presidential Young Investigator Award from the National Science Foundation, and continues to be co-director of Columbia’s Center for Applied Probability.

Loon C. Tang
Chapter C.23

National University of Singapore
Department of Industrial and Systems Engineering
Singapore, Singapore
isetlc@nus.edu.sg
http://www.ise.nus.edu.sg/staff/tanglc/index.html

Dr. Loon Ching Tang, a faculty member of National University of Singapore, obtained a Ph.D. degree in 1992 from Cornell University in the field of operations research. He has published more than 50 papers in international journals in the field of quality, reliability and operations research. In particular, his research interest lies in the application of probability, statistics and optimization techniques in solving real world problems. He is currently the area editor of the International Journal of Performability Engineering.

Charles S. Tapiero
Chapter F.47

Polytechnic University
Technology Management and Financial Engineering
Brooklyn, NY, USA
ctapiero@poly.edu

Charles S. Tapiero is the Topfer Chair Professor of Financial Engineering and Technology Management at the Polytechnic University of New York. He has a worldwide reputation as an active researcher and consultant in risk and computational finance and risk management. He is currently the area editor for finance in the Journal of Applied Stochastic Models for Business and Industry as well as a member of the editorial board of several other journals. Professor Tapiero has published 12 books and over 250 papers on a broad range of issues spanning risk management, stochastic modeling and applied stochastic control in operations, insurance and finance.

Zahir Tari
Chapter F.52

Royal Melbourne Institute of Technology
School of Computer Science and Information Technology
Melbourne, Victoria, Australia
zahirt@cs.rmit.edu.au

Dr. Zahir Tari is a full professor at RMIT University and the director of Distributed Systems and Networking at the School of Computer Science and Information Technology. He has extensively published in the area of middlewares and Web services, especially in the area of performance (caching and load balancing), security (i.e. access control and information flow control) and service discovery.

Xiaolin Teng
Chapter C.27

Time Warner Inc.
Research Department
New York, NY, USA
xiaolin_teng@timeinc.com

Xiaolin Teng received his Ph.D. in industrial engineering from Rutgers University in 2001. He also holds master degrees in statistics, computer science, and automation. He is a member of ASA, INFORMS, IEEE and IIE. Currently Dr. Teng works at Time Warner Inc. as a research manager. His research interests include reliability, quality control, inventory optimization and data mining.
Wei-Tek Tsai

Arizona State University
Computer Science & Engineering Department
Tempe, AZ, USA
wtsoi@asu.edu
http://cse.asu.edu/directory/faculty/tsai.php

Professor Tsai received his Ph.D. from University of California at Berkeley 1985 and is professor of Computer Science and Science at Arizona State University. His research areas include service-oriented computing, software engineering, dependable computing, software engineering, software testing, and embedded systems. He has coauthored more than 300 research papers in these areas.

Kwok-Leung Tsui

Georgia Institute of Technology
School of Industrial and Systems Engineering
Atlanta, GA, USA
ktsui@isye.gatech.edu
http://www.isye.gatech.edu/~ktsui

Kwok-Leung Tsui is professor at Georgia Institute of Technology. He has a Ph.D. in statistics from the University of Wisconsin. Dr. Tsui is a (elected) fellow of American Statistical Association and was a recipient of the NSF Young Investigator Award. He is currently the departmental editor of the IIE Transactions.

Fugee Tsung

Hong Kong University of Science and Technology
Department of Industrial Engineering and Logistics Management
Kowloon, Hong Kong
season@ust.hk

Dr. Fugee Tsung is an associate professor in the Department of Industrial Engineering and Logistics Management at the Hong Kong University of Science and Technology. He received both his M.S. and Ph.D. in industrial and operations engineering from the University of Michigan, Ann Arbor. He is an associate editor of Technometrics, a department editor of the IIE Transactions, and on the editorial boards for the International Journal of Reliability, Quality and Safety Engineering (IJRQSE) and the International Journal of Six Sigma and Competitive Advantage (IJSSCA). He is an ASQ Certified Six Sigma Black Belt, ASQ authorized Six Sigma Master Black Belt Trainer, and former chair of the Quality, Statistics, and Reliability (QSR) Section at INFORMS. He is also the winner of the Best Paper Award for the IIE Transactions focus issue on Quality and Reliability in 2003. His research interests include quality engineering and management, statistical process control, monitoring and diagnosis.

Lesley Walls

University of Strathclyde
Department of Management Science
Glasgow, Scotland
lesley.walls@strath.ac.uk
http://www.managementscience.org/staff/lesley.asp

Lesley Walls has a Ph.D. (applied statistics). She is an IEC/TC56/WG2 expert and editorial board member of several reliability journals. Her research includes reliability modelling, business processes and risk assessment. She is a fellow of the UK Safety and Reliability Society, chartered statistician and was awarded the 2002 Simms prize by the Royal Aeronautical Society for REMM modelling research.

Wei Wang

Dana-Farber Cancer Institute
Department of Biostatistics
and Computational Biology
Boston, MA, USA
wwang@jimmy.harvard.edu

Dr. Wang is assistant professor of biostatistics at Harvard School of Public Health and Dana-Farber Cancer Institute. She obtained her Ph.D. degree in statistics from the University of California at Davis. Dr. Wang’s current research interests are mainly in developing semi-parametric and non-parametric methods in areas of survival analysis, longitudinal data analysis and functional data analysis. Dr. Wang also works at the statistical center of the Eastern Cooperative Oncology Group (ECOG) on collaborative research in cancer clinical trials.
About the Authors

Kenneth Williams

Yale University
Molecular Biophysics and Biochemistry
New Haven, CT, USA
kenneth.williams@yale.edu
http://info.med.yale.edu/wmkeck/

Dr. Williams received the Ph.D. degree in biochemistry from the University of Vermont in 1976. In 1980 he founded the Keck Laboratory (http://info.med.yale.edu/wmkeck/) and in 1986 he was one of the six founding members of the Association of Biomolecular Resource Facilities (http://www.abrf.org/). He has 155 publications and directs the Yale/NHLBI Proteomics Center, NIDA Neuroproteomics Center, and the Proteomics Core of the Northeast Biodefense Center.

Richard J. Wilson

The University of Queensland
Department of Mathematics
Brisbane, Australia
rjw@maths.uq.edu.au
http://www.maths.uq.edu.au/~rjw

Dr. Wilson is a senior lecturer in statistics at The University of Queensland. His main research interests are in random processes, extremes and reliability, from both theoretical and applied statistics perspectives. Accordingly, he has worked on such diverse topics as modelling mineral phases in ores at the micro level, investigating warranty policies in manufacturing, exploring the relationship between the location of nerves to wisdom teeth and various factors, modelling wind downbursts, fitting models to significant wave height data and investigating aspects of the combustion of metal rods.

Baolin Wu

University of Minnesota, School of Public Health
Division of Biostatistics
Minneapolis, MN, USA
baolin@biostat.umn.edu
http://www.biostat.umn.edu/~baolin

Baolin Wu received the B.Sc. degree in probability and statistics from Beijing University in 1999 and the Ph.D. degree in biostatistics from Yale University in 2004. In 2004 he joined the Division of Biostatistics at the University of Minnesota as an assistant professor. His current research areas focus on computational biology and statistical learning.

Min Xie

National University of Singapore
Dept. of Industrial & Systems Engineering
Singapore, Singapore
mxie@nus.edu.sg
http://www.ise.nus.edu.sg/staff/xiemin/

Dr. Min Xie is a professor at National University of Singapore. He received his Ph.D. from Linköping University, Sweden in 1987 and has published over 100 articles in refereed journals and six books. He is an editor of International Journal of Reliability, Quality and Safety Engineering, a regional editor of Economic Quality Control, a department editor of IIE Transactions and associate editor IEEE Trans on Reliability. He is a fellow of IEEE.

Chengjie Xiong

Washington University in St. Louis
Division of Biostatistics
St. Louis, MO, USA
chengjie@wubios.wustl.edu
http://www.biostat.wustl.edu/faculty_staff/xiongc.shtml

Dr. Chengjie Xiong is a research assistant professor of biostatistics at Washington University School of Medicine. He received a B.S. in Mathematics from Xiangtan University (P.R. China), an M.S. in Applied Mathematics from Peking University (P. R. China), and a Ph.D. in statistics from Kansas State University in 1997. Dr. Xiong’s research interests include statistical design of experiments, linear and nonlinear mixed models, longitudinal data analysis, survival analysis and reliability, categorical data analysis, order restricted statistical inferences, and their applications in medicine, biology, education, and engineering. Dr. Xiong has provided statistical consulting for researchers across the US in the areas of biology, medicine, agriculture, marketing and education and is the principal investigator of a NIH-funded project to study the statistical application in medical research. He is a member of the American Statistical Society.
Di Xu

American Express
Dept. of Risk Management and Decision Science
New York, NY, USA
di.w.xu@aexp.com

Di Xu is a director in risk management and decision science in the consumer card services group at American Express. His research interests are multivariate statistical modelling, data mining, mathematical optimization, and their application in process control, product design, risk management and direct marketing acquisition. He graduated from Rutgers University with a Ph.D. in Industrial Engineering in 2001.

Shigeru Yamada

Tottori University
Department of Social Systems Engineering
Tottori-shi, Japan
yamada@sse.tottori-u.ac.jp

Dr. Yamada has been working as a professor in the Department of Social Systems Engineering at Tottori University, Japan, since 1993. He received his Ph.D. degree from Hiroshima University, Japan, in 1985. He has published numerous technical papers and books in the area of software-reliability engineering, reliability engineering, and statistical quality. Dr. Yamada received the Best Author Award (1992) from the Information Processing Society of Japan, the TELECOM System Technology Award (1993) from the Telecommunications Advancement Foundation, the Best Paper Award (1999) from the Reliability Engineering Association of Japan, and the International Leadership Award in Reliability Engineering Research (2003) from the ICQRIT/SREQOM.

Jun Yan

University of Iowa
Department of Statistics and Actuarial Science
Iowa City, IA, USA
jyan@stat.uiowa.edu
http://www.stat.uiowa.edu/~jyan/

Dr. Jun Yan earned a Ph.D. in statistics from the University of Wisconsin – Madison in 2003. His research interests are functional data analysis, survival analysis, spatial statistics, statistical computing, and cross-disciplinary statistical applications.

Shang-Kuo Yang

Department of Mechanical Engineering
National Chiang Yi Institute of Technology
Taiping City, Taiwan, R.O.C.
skyang@ncit.edu.tw
http://irw.ncit.edu.tw/mechanical/skyang/skyang.htm

Professor Yang received his B.S. in 1982 and the M.S. in 1985 in automatic control engineering from Feng Chia University, Taiwan. From 1985 to 1991 he was an assistant researcher and instrumentation system engineer of Flight Test Group, Aeronautic Research Laboratory, Chung Shan Institute of Science and Technology, Taiwan. Since 1991, he has been with the Department of Mechanical Engineering at National Chiao Tung University, Taiwan. His research interests are in reliability, data acquisition, and automatic control.

Kai Yu

Washington University in St. Louis, School of Medicine
Division of Biostatistics
St. Louis, MO, USA
yuka@mail.nih.gov

Dr. Yu is a research assistant professor at the Division of Biostatistics at Washington University, St. Louis. He obtained his Ph.D. in biostatistics from University of Pittsburgh in 2000. He completed a one-year postdoctoral training in statistical genetics in 2001 at Stanford University. His current research interests include biostatistics and genetic epidemiology.
About the Authors

Weichuan Yu

Weichuan Yu received his Ph.D. degree in computer vision and image analysis from the University of Kiel, Germany in 2001. He was a postdoctoral associate at Yale University from 2001 to 2004. Currently he is a research faculty member in the Center for Statistical Genomics and Proteomics at Yale University. He is interested in computational analysis problems with biological and medical applications.

Panlop Zeephongsekul

Dr. Zeephongsekul received his B.Sc. degree with honors from Melbourne University and a Ph.D. degree in statistics from the University of Western Australia. He is currently an associate professor in the School of Mathematical and Geospatial Sciences at RMIT University, Melbourne, Australia. His research interests are broad, being in stochastic point processes, fuzzy sets, game theory, queuing theory and software reliability analysis. He has published in all those areas and his papers have appeared in many well-known international journals. He is also involved in many consulting projects with diverse clients, especially in applied statistics and the design and analysis of experiments.

Cun-Hui Zhang

Cun-Hui Zhang received his Ph.D. in statistics from Columbia University in 1984. He is currently a professor in the Department of Statistics at Rutgers University. His research interests include empirical Bayes, nonparametric and semiparametric methods, functional MRI, biased and incomplete data, networks, multivariate data, biometrics, and probability theory.

Heping Zhang

Heping Zhang is professor of biostatistics, child study, and statistics. He is interested in development of statistical methods and software and their applications in biomedical studies, particularly in behavioural science, epidemiology, genetics, psychiatry, and pregnancy outcomes. He publishes extensively on tree- and spline-based methods as well as latent variable models for genetic studies of ordinal traits. He is a fellow of the American Statistical Association.

Hongyu Zhao

Hongyu Zhao received a Ph.D. degree from the University of California at Berkeley in 1995. He is the Ira V. Hiscock Associate Professor at Yale University. He is interested in addressing statistical and computational problems in molecular biology and genetics. He has published more than 120 articles and is an associate editor for multiple journals including Biometrics and Statistica Sinica.

Kejun Zhu

Dr. Zhu’s main area of research is soft computing where he has been working in the fields of system engineering and information systems. He is an associate editor of the Forecasting Journal. His current research activities include fuzzy systems, neural networks and genetic algorithms. He has presided over two programs of the National Natural Science Foundation of China.
Detailed Contents

List of Tables ... XXXI
List of Abbreviations .. 1

Part A Fundamental Statistics and Its Applications

1 Basic Statistical Concepts
 Hoang Pham ... 3
 1.1 Basic Probability Measures ... 3
 1.1.1 Probability Axioms ... 4
 1.1.2 Basic Statistics .. 4
 1.1.3 Reliability Measures ... 5
 1.2 Common Probability Distribution Functions ... 7
 1.2.1 Discrete Random Variable Distributions 7
 1.2.2 Continuous Distributions ... 9
 1.3 Statistical Inference and Estimation .. 17
 1.3.1 Parameter Estimation ... 18
 1.3.2 Maximum Likelihood Estimation with Censored Data 20
 1.3.3 Statistical Change-Point Estimation Methods 23
 1.3.4 Goodness of Fit Techniques ... 25
 1.3.5 Least Squared Estimation ... 26
 1.3.6 Interval Estimation .. 27
 1.3.7 Nonparametric Tolerance Limits ... 30
 1.3.8 Sequential Sampling ... 30
 1.3.9 Bayesian Methods ... 31
 1.4 Stochastic Processes ... 32
 1.4.1 Markov Processes ... 32
 1.4.2 Counting Processes .. 37
 1.5 Further Reading .. 42

References .. 42
1.A Appendix: Distribution Tables ... 43
1.B Appendix: Laplace Transform ... 47

2 Statistical Reliability with Applications
 Paul Kvam, Jye-Chyi Lu .. 49
 2.1 Introduction and Literature Review .. 49
 2.2 Lifetime Distributions in Reliability .. 50
 2.2.1 Alternative Properties to Describe Reliability 51
 2.2.2 Conventional Reliability Lifetime Distributions 51
 2.2.3 From Physics to Failure Distributions ... 51
 2.2.4 Lifetime Distributions from Degradation Modeling 52
 2.2.5 Censoring ... 53
 2.2.6 Probability Plotting .. 53
2.3 Analysis of Reliability Data ... 54
 2.3.1 Maximum Likelihood ... 54
 2.3.2 Likelihood Ratio ... 54
 2.3.3 Degradation Data ... 55

2.4 System Reliability ...
 2.4.1 Estimating System and Component Reliability 57
 2.4.2 Stochastic Dependence Between System Components 58
 2.4.3 Logistics Systems ... 59
 2.4.4 Robust Reliability Design in the Supply Chain 59

References ... 60

3 Weibull Distributions and Their Applications
Chin-Diew Lai, D.N. Pra Murthy, Min Xie 63
 3.1 Three-Parameter Weibull Distribution 64
 3.1.1 Historical Development .. 64
 3.1.2 Relations to Other Distributions .. 64
 3.2 Properties ... 64
 3.2.1 Basic Properties .. 64
 3.2.2 Properties Related to Reliability 65
 3.2.3 Simulation .. 66
 3.3 Modeling Failure Data ... 67
 3.3.1 Probability Plots .. 67
 3.3.2 Estimation and Hypothesis Testing 68
 3.3.3 Hypothesis Testing .. 69
 3.4 Weibull-Derived Models ... 70
 3.4.1 Taxonomy for Weibull Models .. 70
 3.4.2 Univariate Models .. 70
 3.4.3 Type VI Models (Stochastic Point Process Models) 73
 3.5 Empirical Modeling of Data ... 73
 3.6 Applications ... 74
 3.6.1 Applications in Reliability ... 74
 3.6.2 Applications in Other Areas .. 75
 3.6.3 Weibull Analysis Software .. 75

References ... 76

4 Characterizations of Probability Distributions
H.N. Nagaraja ... 79
 4.1 Characterizing Functions ... 80
 4.1.1 Cumulative Distribution Function (CDF) 80
 4.1.2 Probability Density Function (PDF) 80
 4.1.3 Quantile Function ... 80
 4.1.4 Characteristic Function (CF) and Other Generating Functions 80
 4.1.5 Reliability Considerations ... 81
 4.2 Data Types and Characterizing Conditions 81
 4.2.1 Data Models ... 81
 4.2.2 Characterizing Conditions .. 82
 4.2.3 General Techniques ... 82
4.3 A Classification of Characterizations ... 83
 4.3.1 Uniqueness Conditions .. 83
 4.3.2 Characterizations of Families of Distributions 84
 4.3.3 Characterizations of Specific Parametric Families 84
4.4 Exponential Distribution .. 84
4.5 Normal Distribution .. 85
4.6 Other Continuous Distributions .. 87
 4.6.1 Uniform .. 87
 4.6.2 Gamma .. 87
 4.6.3 Weibull .. 87
 4.6.4 Gumbel and Other Extreme-Value Distributions 87
 4.6.5 Pareto ... 88
 4.6.6 Inverse Gaussian (IG) .. 88
4.7 Poisson Distribution and Process .. 88
4.8 Other Discrete Distributions .. 90
 4.8.1 Geometric .. 90
 4.8.2 Binomial and Negative Binomial ... 90
4.9 Multivariate Distributions and Conditional Specification 90
 4.9.1 Bivariate and Multivariate Exponential Distributions 91
 4.9.2 Multivariate Normal ... 91
 4.9.3 Other Distributions ... 91
4.10 Stability of Characterizations .. 92
4.11 Applications .. 92
4.12 General Resources .. 93
References ... 94

5 Two-Dimensional Failure Modeling
 D.N. Pram Murthy, Jaiwook Baik, Richard J. Wilson, Michael Bulmer 97
5.1 Modeling Failures ... 98
 5.1.1 Product Failures ... 98
 5.1.2 Approaches to Modeling ... 98
 5.1.3 First and Subsequent Failures .. 98
5.2 Black-Box Modeling Process ... 98
 5.2.1 Data Types ... 98
 5.2.2 Modeling Process ... 99
5.3 One-Dimensional Black-Box Failure Modeling 99
 5.3.1 Modeling First Failure .. 99
 5.3.2 Modeling Subsequent Failures .. 99
 5.3.3 Exploratory Data Analysis .. 100
 5.3.4 Model Selection .. 101
 5.3.5 Parameter Estimation ... 102
 5.3.6 Model Validation .. 102
5.4 Two-Dimensional Black-Box Failure Modeling 103
 5.4.1 One-Dimensional Approach ... 103
 5.4.2 Two-Dimensional Approach .. 103
 5.4.3 Exploratory Data Analysis .. 106
5.4.4 Model Selection .. 107
5.4.5 Parameter Estimation and Validation 107
5.5 A New Approach to Two-Dimensional Modeling 107
 5.5.1 Model Description ... 107
 5.5.2 An Application .. 108
5.6 Conclusions .. 110

References .. 110

6 Prediction Intervals for Reliability Growth Models with Small Sample Sizes

John Quigley, Lesley Walls ... 113

6.1 Modified IBM Model – A Brief History 114
6.2 Derivation of Prediction Intervals for the Time to Detection of Next Fault .. 115
6.3 Evaluation of Prediction Intervals for the Time to Detect Next Fault .. 117
6.4 Illustrative Example .. 119
 6.4.1 Construction of Predictions .. 119
 6.4.2 Diagnostic Analysis .. 121
 6.4.3 Sensitivity with Respect to the Expected Number of Faults ... 121
 6.4.4 Predicting In-Service Failure Times 122
6.5 Conclusions and Reflections ... 122

References .. 122

7 Promotional Warranty Policies: Analysis and Perspectives

Jun Bai, Hoang Pham ... 125

7.1 Classification of Warranty Policies 126
 7.1.1 Renewable and Nonrenewable Warranties 126
 7.1.2 FRW, FRPW, PRW, CMW, and FSW Policies 127
 7.1.3 Repair-Limit Warranty ... 128
 7.1.4 One-Attribute Warranty and Two-Attribute Warranty 129
7.2 Evaluation of Warranty Policies 129
 7.2.1 Warranty Cost Factors ... 129
 7.2.2 Criteria for Comparison of Warranties 131
 7.2.3 Warranty Cost Evaluation for Complex Systems 131
 7.2.4 Assessing Warranty Benefits 132
 7.2.5 On the Optimal Warranty Policy 133
7.3 Concluding Remarks .. 134

References .. 134

8 Stationary Marked Point Processes

Karl Sigman .. 137

8.1 Basic Notation and Terminology 138
 8.1.1 The Sample Space as a Sequence Space 138
 8.1.2 Two-sided MPPs .. 138
 8.1.3 Counting Processes .. 138
 8.1.4 Forward and Backward Recurrence Times 138
 8.1.5 MPPs as Random Measures: Campbell’s Theorem 139
 8.1.6 Stationary Versions .. 139
8.1.7 The Relationship Between Ψ, Ψ^0 and Ψ^* 141
8.1.8 Examples ... 142
8.2 Inversion Formulas ... 144
 8.2.1 Examples ... 144
 8.2.2 The Canonical Framework 145
8.3 Campbell's Theorem for Stationary MPPs 145
 8.3.1 Little's Law .. 145
 8.3.2 The Palm–Khintchine Formula 145
8.4 The Palm Distribution: Conditioning in a Point at the Origin 146
8.5 The Theorems of Khintchine, Korolyuk, and Dobrushin 146
8.6 An MPP Jointly with a Stochastic Process 147
 8.6.1 Rate Conservation Law .. 147
8.7 The Conditional Intensity Approach 148
 8.7.1 Time Changing to a Poisson Process 149
 8.7.2 Papangelou's Formula ... 149
8.8 The Non–Ergodic Case ... 150
8.9 MPPs in \mathbb{R}^d .. 150
 8.9.1 Spatial Stationarity in \mathbb{R}^d 151
 8.9.2 Point Stationarity in \mathbb{R}^d 151
 8.9.3 Inversion and Voronoi Sets 151
References .. 152

9 Modeling and Analyzing Yield, Burn–In and Reliability for Semiconductor Manufacturing: Overview
 Way Kuo, Kyungmee O. Kim, Taeho Kim 153
9.1 Semiconductor Yield ... 154
 9.1.1 Components of Semiconductor Yield 155
 9.1.2 Components of Wafer Probe Yield 155
 9.1.3 Modeling Random Defect Yield 155
 9.1.4 Issues for Yield Improvement .. 158
9.2 Semiconductor Reliability .. 159
 9.2.1 Bathtub Failure Rate .. 159
 9.2.2 Occurrence of Failure Mechanisms in the Bathtub Failure Rate .. 159
 9.2.3 Issues for Reliability Improvement 160
9.3 Burn–In .. 160
 9.3.1 The Need for Burn–In .. 160
 9.3.2 Levels of Burn–In ... 161
 9.3.3 Types of Burn–In .. 161
 9.3.4 Review of Optimal Burn–In Literature 162
9.4 Relationships Between Yield, Burn–In and Reliability 163
 9.4.1 Background .. 163
 9.4.2 Time–Independent Reliability without Yield Information 164
 9.4.3 Time–Independent Reliability with Yield Information 164
 9.4.4 Time–Dependent Reliability .. 165
9.5 Conclusions and Future Research 166
References .. 166
Part B Process Monitoring and Improvement

10 Statistical Methods for Quality and Productivity Improvement

 Wei Jiang, Terrence E. Murphy, Kwok-Leung Tsui ... 173

 10.1 Statistical Process Control for Single Characteristics ... 174
 10.1.1 SPC for i.i.d. Processes .. 175
 10.1.2 SPC for Autocorrelated Processes ... 175
 10.1.3 SPC versus APC .. 177
 10.1.4 SPC for Automatically Controlled Processes .. 178
 10.1.5 Design of SPC Methods: Efficiency versus Robustness 179
 10.1.6 SPC for Multivariate Characteristics .. 180

 10.2 Robust Design for Single Responses ... 181
 10.2.1 Experimental Designs for Parameter Design ... 181
 10.2.2 Performance Measures in RD .. 182
 10.2.3 Modeling the Performance Measure ... 184

 10.3 Robust Design for Multiple Responses ... 185
 10.3.1 Additive Combination of Univariate Loss, Utility and SNR 185
 10.3.2 Multivariate Utility Functions from Multiplicative Combination 186
 10.3.3 Alternative Performance Measures for Multiple Responses 186

 10.4 Dynamic Robust Design .. 186
 10.4.1 Taguchi's Dynamic Robust Design ... 186
 10.4.2 References on Dynamic Robust Design .. 187

 10.5 Applications of Robust Design .. 187
 10.5.1 Manufacturing Case Studies ... 187
 10.5.2 Reliability ... 187
 10.5.3 Tolerance Design .. 187

 References ... 188

11 Statistical Methods for Product and Process Improvement

 Kailash C. Kapur, Qianmei Feng ... 193

 11.1 Six Sigma Methodology and the (D)MAIC(T) Process 195
 11.1.1 Define: What Problem Needs to Be Solved? ... 195
 11.1.4 Improve: Improving the Process Capability ... 195
 11.1.5 Control: What Controls Can Be Put in Place to Sustain the Improvement? ... 196
 11.1.6 Technology Transfer: Where Else Can These Improvements Be Applied? 196

 11.2 Product Specification Optimization .. 196
 11.2.1 Quality Loss Function ... 196
 11.2.2 General Product Specification Optimization Model 199
 11.2.3 Optimization Model with Symmetric Loss Function 200
 11.2.4 Optimization Model with Asymmetric Loss Function 201
11.3 Process Optimization .. 204
 11.3.1 Design of Experiments ... 204
 11.3.2 Orthogonal Polynomials .. 206
 11.3.3 Response Surface Methodology 207
 11.3.4 Integrated Optimization Models 208
11.4 Summary .. 211
References ... 212

12 Robust Optimization in Quality Engineering
Susan L. Albin, Di Xu ... 213
 12.1 An Introduction to Response Surface Methodology 216
 12.2 Minimax Deviation Method to Derive Robust Optimal Solution .. 218
 12.2.1 Motivation of the Minimax Deviation Method 218
 12.2.2 Minimax Deviation Method when the Response Model Is Estimated from Data 219
 12.2.3 Construction of the Confidence Region 220
 12.2.4 Monte Carlo Simulation to Compare Robust and Canonical Optimization .. 221
 12.3 Weighted Robust Optimization 222
 12.4 The Application of Robust Optimization in Parameter Design .. 224
 12.4.1 Response Model Approach to Parameter Design Problems .. 224
 12.4.2 Identification of Control Factors in Parameter Design by Robust Optimization 224
 12.4.3 Identification of Control Factors when the Response Model Contains Alias Terms 225
References ... 227

13 Uniform Design and Its Industrial Applications
Kai-Tai Fang, Ling-Yau Chan .. 229
 13.1 Performing Industrial Experiments with a UD 231
 13.2 Application of UD in Accelerated Stress Testing 233
 13.3 Application of UDs in Computer Experiments 234
 13.4 Uniform Designs and Discrepancies 236
 13.5 Construction of Uniform Designs in the Cube 237
 13.5.1 Lower Bounds of Categorical, Centered and Wrap-Around Discrepancies 238
 13.5.2 Some Methods for Construction 239
 13.6 Construction of UDs for Experiments with Mixtures 240
 13.7 Relationships Between Uniform Design and Other Designs .. 243
 13.7.1 Uniformity and Aberration 243
 13.7.2 Uniformity and Orthogonality 244
 13.7.3 Uniformity of Supersaturated Designs 244
 13.7.4 Isomorphic Designs, and Equivalent Hadamard Matrices .. 245
 13.8 Conclusion ... 245
References ... 245
14 Cuscore Statistics: Directed Process Monitoring for Early Problem Detection

Harriet B. Nembhard ... 249
14.1 Background and Evolution of the Cuscore in Control Chart Monitoring .. 250
14.2 Theoretical Development of the Cuscore Chart 251
14.3 Cuscores to Monitor for Signals in White Noise 252
14.4 Cuscores to Monitor for Signals in Autocorrelated Data 254
14.5 Cuscores to Monitor for Signals in a Seasonal Process 255
14.6 Cuscores in Process Monitoring and Control 256
14.7 Discussion and Future Work ... 258
References .. 260

15 Chain Sampling

Raj K. Govindaraju ... 263
15.1 ChSP-1 Chain Sampling Plan ... 264
15.2 Extended Chain Sampling Plans .. 265
15.3 Two-Stage Chain Sampling .. 266
15.4 Modified ChSP-1 Plan ... 268
15.5 Chain Sampling and Deferred Sentencing 269
15.6 Comparison of Chain Sampling with Switching Sampling Systems ... 272
15.7 Chain Sampling for Variables Inspection 273
15.8 Chain Sampling and CUSUM .. 274
15.9 Other Interesting Extensions .. 276
15.10 Concluding Remarks ... 276
References .. 276

16 Some Statistical Models for the Monitoring of High-Quality Processes

Min Xie, Thong N. Goh .. 281
16.1 Use of Exact Probability Limits .. 282
16.2 Control Charts Based on Cumulative Count of Conforming Items 283
 16.2.1 CCC Chart Based on Geometric Distribution 283
 16.2.2 CCC-\(r \) Chart Based on Negative Binomial Distribution 283
16.3 Generalization of the \(c \)-Chart .. 284
 16.3.1 Charts Based on the Zero-Inflated Poisson Distribution 284
 16.3.2 Chart Based on the Generalized Poisson Distribution 286
16.4 Control Charts for the Monitoring of Time-Between-Events 286
 16.4.1 CQC Chart Based on the Exponential Distribution 287
 16.4.2 Chart Based on the Weibull Distribution 287
 16.4.3 General \(t \)-Chart .. 288
16.5 Discussion ... 288
References .. 289
17 Monitoring Process Variability Using EWMA

Philippe Castagliola, Giovanni Celano, Sergio Fichera

17.1 Definition and Properties of EWMA Sequences
17.1.1 Definition
17.1.2 Expectation and Variance of EWMA Sequences
17.1.3 The ARL for an EWMA Sequence

17.2 EWMA Control Charts for Process Position
17.2.1 EWMA-\bar{X} Control Chart
17.2.2 EWMA-\bar{X} Control Chart
17.2.3 ARL Optimization for the EWMA-\bar{X} and EWMA-\bar{X} Control Charts

17.3 EWMA Control Charts for Process Dispersion
17.3.1 EWMA-\bar{S}² Control Chart
17.3.2 EWMA-\bar{S} Control Chart
17.3.3 EWMA-\bar{R} Control Chart

17.4 Variable Sampling Interval EWMA Control Charts for Process Dispersion
17.4.1 Introduction
17.4.2 VSI Strategy
17.4.3 Average Time to Signal for a VSI Control Chart
17.4.4 Performance of the VSI EWMA-\bar{S}² Control Chart
17.4.5 Performance of the VSI EWMA-\bar{R} Control Chart

17.5 Conclusions

References

18 Multivariate Statistical Process Control Schemes for Controlling a Mean

Richard A. Johnson, Ruojia Li

18.1 Univariate Quality Monitoring Schemes
18.1.1 Shewhart X-Bar Chart
18.1.2 Page's Two-Sided CUSUM Scheme
18.1.3 Crosier's Two-Sided CUSUM Scheme
18.1.4 EWMA Scheme
18.1.5 Summary Comments

18.2 Multivariate Quality Monitoring Schemes
18.2.1 Multivariate T² Chart
18.2.2 CUSUM of T_n (COT) Scheme
18.2.3 Crosier's Multivariate CUSUM Scheme
18.2.4 Multivariate EWMA Scheme [MEWMA(r)]

18.3 An Application of the Multivariate Procedures

18.4 Comparison of Multivariate Quality Monitoring Methods

18.5 Control Charts Based on Principal Components
18.5.1 An Application Using Principal Components

18.6 Difficulties of Time Dependence in the Sequence of Observations

References
Part C Reliability Models and Survival Analysis

19 Statistical Survival Analysis with Applications

Chengjie Xiong, Kejun Zhu, Kai Yu

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1 Sample Size Determination to Compare Mean or Percentile of Two Lifetime Distributions</td>
<td>349</td>
</tr>
<tr>
<td>19.1.1 The Model and Sample Size</td>
<td>350</td>
</tr>
<tr>
<td>19.1.2 Examples</td>
<td>351</td>
</tr>
<tr>
<td>19.1.3 Effect of Guarantee Time on Sample Size Determination</td>
<td>351</td>
</tr>
<tr>
<td>19.1.4 Application to NIA Aging Intervention Testing Program</td>
<td>354</td>
</tr>
<tr>
<td>19.2 Analysis of Survival Data from Special Cases of Step-Stress Life Tests</td>
<td>355</td>
</tr>
<tr>
<td>19.2.1 Analysis of Grouped and Censored Data from Step-Stress Life Tests</td>
<td>356</td>
</tr>
<tr>
<td>19.2.2 Analysis of a Very Simple Step-Stress Life Test with a Random Stress-Change Time</td>
<td>361</td>
</tr>
</tbody>
</table>

References

20 Failure Rates in Heterogeneous Populations

Maxim Finkelstein, Veronica Esaulova

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1 Mixture Failure Rates and Mixing Distributions</td>
<td>371</td>
</tr>
<tr>
<td>20.1.1 Definitions</td>
<td>371</td>
</tr>
<tr>
<td>20.1.2 Multiplicative Model</td>
<td>372</td>
</tr>
<tr>
<td>20.1.3 Comparison with Unconditional Characteristics</td>
<td>372</td>
</tr>
<tr>
<td>20.1.4 Likelihood Ordering of Mixing Distributions</td>
<td>374</td>
</tr>
<tr>
<td>20.1.5 Ordering Variances of Mixing Distributions</td>
<td>375</td>
</tr>
<tr>
<td>20.2 Modeling the Impact of the Environment</td>
<td>377</td>
</tr>
<tr>
<td>20.2.1 Bounds in the Proportional Hazards Model</td>
<td>377</td>
</tr>
<tr>
<td>20.2.2 Change Point in the Environment</td>
<td>379</td>
</tr>
<tr>
<td>20.2.3 Shocks in Heterogeneous Populations</td>
<td>380</td>
</tr>
<tr>
<td>20.3 Asymptotic Behaviors of Mixture Failure Rates</td>
<td>380</td>
</tr>
<tr>
<td>20.3.1 Survival Model</td>
<td>380</td>
</tr>
<tr>
<td>20.3.2 Main Result</td>
<td>381</td>
</tr>
<tr>
<td>20.3.3 Specific Models</td>
<td>383</td>
</tr>
</tbody>
</table>

References

21 Proportional Hazards Regression Models

Wei Wang, Chengcheng Hu

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1 Estimating the Regression Coefficients β</td>
<td>388</td>
</tr>
<tr>
<td>21.1.1 Partial Likelihood for Data with Distinct Failure Times</td>
<td>388</td>
</tr>
<tr>
<td>21.1.2 Partial Likelihood for Data with Tied Failure Times</td>
<td>389</td>
</tr>
<tr>
<td>21.2 Estimating the Hazard and Survival Functions</td>
<td>389</td>
</tr>
<tr>
<td>21.3 Hypothesis Testing</td>
<td>390</td>
</tr>
<tr>
<td>21.3.1 Likelihood Ratio Test</td>
<td>390</td>
</tr>
<tr>
<td>21.3.2 Wald Test</td>
<td>390</td>
</tr>
<tr>
<td>21.3.3 Score Test</td>
<td>390</td>
</tr>
<tr>
<td>21.4 Stratified Cox Model</td>
<td>390</td>
</tr>
</tbody>
</table>

References

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.5</td>
<td>Time-Dependent Covariates</td>
<td>390</td>
</tr>
<tr>
<td>21.6</td>
<td>Goodness-of-Fit and Model Checking</td>
<td>391</td>
</tr>
<tr>
<td>21.6.1</td>
<td>Tests of Proportionality</td>
<td>391</td>
</tr>
<tr>
<td>21.6.2</td>
<td>Test of the Functional Form of a Continuous Covariate</td>
<td>392</td>
</tr>
<tr>
<td>21.6.3</td>
<td>Test for the Influence of Individual Observation</td>
<td>392</td>
</tr>
<tr>
<td>21.6.4</td>
<td>Test for the Overall Fit</td>
<td>392</td>
</tr>
<tr>
<td>21.6.5</td>
<td>Test of Time-Varying Coefficients</td>
<td>392</td>
</tr>
<tr>
<td>21.6.6</td>
<td>Test for a Common Coefficient Across Different Groups</td>
<td>393</td>
</tr>
<tr>
<td>21.7</td>
<td>Extension of the Cox Model</td>
<td>393</td>
</tr>
<tr>
<td>21.7.1</td>
<td>Cox Model with Random Effects</td>
<td>393</td>
</tr>
<tr>
<td>21.7.2</td>
<td>Nonproportional Models</td>
<td>393</td>
</tr>
<tr>
<td>21.7.3</td>
<td>Multivariate Failure Time Data</td>
<td>394</td>
</tr>
<tr>
<td>21.8</td>
<td>Example</td>
<td>394</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>395</td>
</tr>
</tbody>
</table>

22 Accelerated Life Test Models and Data Analysis

Francis Pascual, William Q. Meeker, Jr., Luis A. Escobar

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1</td>
<td>Accelerated Tests</td>
<td>398</td>
</tr>
<tr>
<td>22.1.1</td>
<td>Types of Accelerated Tests</td>
<td>398</td>
</tr>
<tr>
<td>22.1.2</td>
<td>Methods of Acceleration</td>
<td>399</td>
</tr>
<tr>
<td>22.1.3</td>
<td>Choosing an Accelerated Life Test Model</td>
<td>399</td>
</tr>
<tr>
<td>22.2</td>
<td>Life Distributions</td>
<td>400</td>
</tr>
<tr>
<td>22.2.1</td>
<td>The Lognormal Distribution</td>
<td>400</td>
</tr>
<tr>
<td>22.2.2</td>
<td>The Weibull Distribution</td>
<td>400</td>
</tr>
<tr>
<td>22.3</td>
<td>Acceleration Models</td>
<td>400</td>
</tr>
<tr>
<td>22.3.1</td>
<td>Scale-Accelerated Lifetime Model</td>
<td>401</td>
</tr>
<tr>
<td>22.3.2</td>
<td>Accelerating Product Use Rate</td>
<td>401</td>
</tr>
<tr>
<td>22.3.3</td>
<td>Models for Temperature Acceleration</td>
<td>401</td>
</tr>
<tr>
<td>22.3.4</td>
<td>Models for Voltage and Voltage–Stress Acceleration</td>
<td>403</td>
</tr>
<tr>
<td>22.3.5</td>
<td>Models for Two-or-More-Variable Acceleriation</td>
<td>405</td>
</tr>
<tr>
<td>22.3.6</td>
<td>Guidelines and Issues for Using Acceleration Models</td>
<td>407</td>
</tr>
<tr>
<td>22.4</td>
<td>Analysis of Accelerated Life Test Data</td>
<td>407</td>
</tr>
<tr>
<td>22.4.1</td>
<td>Strategy for ALT Data Analysis</td>
<td>407</td>
</tr>
<tr>
<td>22.4.2</td>
<td>Data Analysis with One Accelerating Variable</td>
<td>408</td>
</tr>
<tr>
<td>22.5</td>
<td>Further Examples</td>
<td>412</td>
</tr>
<tr>
<td>22.5.1</td>
<td>Analysis of Interval Censored ALT Data</td>
<td>413</td>
</tr>
<tr>
<td>22.5.2</td>
<td>Analysis of Data From a Laminate Panel ALT</td>
<td>414</td>
</tr>
<tr>
<td>22.5.3</td>
<td>Analysis of ALT Data with Two or More Explanatory Variables</td>
<td>416</td>
</tr>
<tr>
<td>22.6</td>
<td>Practical Considerations for Interpreting the Analysis of ALT Data</td>
<td>421</td>
</tr>
<tr>
<td>22.7</td>
<td>Other Kinds of ATs</td>
<td>421</td>
</tr>
<tr>
<td>22.7.1</td>
<td>Continuous Product Operation Accelerated Tests</td>
<td>422</td>
</tr>
<tr>
<td>22.7.2</td>
<td>Highly Accelerated Life Tests</td>
<td>422</td>
</tr>
<tr>
<td>22.7.3</td>
<td>Environmental Stress Tests</td>
<td>422</td>
</tr>
<tr>
<td>22.7.4</td>
<td>Burn-In</td>
<td>422</td>
</tr>
<tr>
<td>22.7.5</td>
<td>Environmental Stress Screening</td>
<td>422</td>
</tr>
</tbody>
</table>
22.8 Some Pitfalls of Accelerated Testing ... 423
 22.8.1 Failure Behavior Changes at High Levels of Accelerating
 Variables .. 423
 22.8.2 Assessing Estimation Variability 423
 22.8.3 Degradation and Failure Measured in Different Time
 Scales .. 424
 22.8.4 Masked Failure Modes ... 424
 22.8.5 Differences Between Product and Environmental
 Conditions in Laboratory and Field Conditions 424
22.9 Computer Software for Analyzing ALT Data 424
References .. 425

23 Statistical Approaches to Planning of Accelerated Reliability
 Testing
 Loon C. Tang ... 427
 23.1 Planning Constant–Stress Accelerated Life Tests 428
 23.1.1 The Common Framework ... 429
 23.1.2 Yang’s Approach .. 430
 23.1.3 Flexible Near–Optimal Plans 430
 23.1.4 Numerical Example .. 432
 23.2 Planning Step–Stress ALT (SSALT) .. 432
 23.2.1 Planning a Simple SSALT 433
 23.2.2 Planning Multiple–Step SSALT 435
 23.2.3 Numerical Example .. 436
 23.3 Planning Accelerated Degradation Tests (ADT) 436
 23.3.1 Experimental Set Up and Model Assumptions 436
 23.3.2 Formulation of Optimal SSADT Plans 437
 23.3.3 Numerical Example .. 439
 23.4 Conclusions .. 439
References .. 440

24 End–to–End (E2E) Testing and Evaluation of High–Assurance
 Systems
 Raymond A. Paul, Wei–Tek Tsai, Yinong Chen, Chun Fan, Zhibin Cao,
 Hai Huang ... 443
 24.1 History and Evolution of E2E Testing and Evaluation 444
 24.1.1 Thin–Thread Specification and Analysis – the First
 Generation .. 444
 24.1.2 Scenario Specification and Analysis – the Second
 Generation .. 445
 24.1.3 Scenario–Driven System Engineering – the Third
 Generation .. 449
 24.1.4 E2E on Service–Oriented Architecture – the Fourth
 Generation .. 449
 24.2 Overview of the Third and Fourth Generations of the E2E T&E 449
24.3 Static Analyses
- 24.3.1 Model Checking 451
- 24.3.2 Completeness and Consistency Analysis 451
- 24.3.3 Test-Case Generation 453

24.4 E2E Distributed Simulation Framework
- 24.4.1 Simulation Framework Architecture 453
- 24.4.2 Simulation Agents’ Architecture 454
- 24.4.3 Simulation Framework and Its Runtime Infrastructure (RTI) Services ... 455

24.5 Policy-Based System Development 459
- 24.5.1 Overview of E2E Policy Specification and Enforcement 460
- 24.5.2 Policy Specification 460
- 24.5.3 Policy Enforcement 463

24.6 Dynamic Reliability Evaluation 465
- 24.6.1 Data Collection and Fault Model 465
- 24.6.2 The Architecture-Based Reliability Model 467
- 24.6.3 Applications of the Reliability Model 469
- 24.6.4 Design-of-Experiment Analysis 469

24.7 The Fourth Generation of E2E T&E on Service-Oriented Architecture .. 470
- 24.7.1 Cooperative WS Construction 471
- 24.7.2 Cooperative WS Publishing and Ontology 471
- 24.7.3 Collaborative Testing and Evaluation 472

24.8 Conclusion and Summary 473

References ... 474

25 Statistical Models in Software Reliability and Operations Research

P.K. Kapur, Amit K. Bardhan .. 477

25.1 Interdisciplinary Software Reliability Modeling 479
- 25.1.1 Framework for Modeling 481
- 25.1.2 Modeling Testing Effort 482
- 25.1.3 Software Reliability Growth Modeling 482
- 25.1.4 Modeling the Number of Users in the Operational Phase .. 483
- 25.1.5 Modeling the User Growth 484
- 25.1.6 Estimation Methods 484
- 25.1.7 Numerical Illustrations 485

25.2 Release Time of Software 486
- 25.2.1 Release-Time Problem Formulations 488

25.3 Control Problem ... 489
- 25.3.1 Reliability Model for the Control Problem 489
- 25.3.2 Solution Methods for the Control Problem 490

25.4 Allocation of Resources in Modular Software 491
- 25.4.1 Resource-Allocation Problem 492
- 25.4.2 Modeling the Marginal Function 493
25.4.3 Optimization ... 494
References ... 495

26 An Experimental Study of Human Factors in Software Reliability
Based on a Quality Engineering Approach
Shigeru Yamada .. 497
26.1 Design Review and Human Factors .. 498
 26.1.1 Design Review ... 498
 26.1.2 Human Factors ... 498
26.2 Design-Review Experiment .. 499
 26.2.1 Human Factors in the Experiment ... 499
 26.2.2 Summary of Experiment .. 499
26.3 Analysis of Experimental Results ... 500
 26.3.1 Definition of SNR ... 500
 26.3.2 Orthogonal Array \(L_{18}(2^1 \times 3^7) \) .. 501
26.4 Investigation of the Analysis Results .. 501
 26.4.1 Experimental Results .. 501
 26.4.2 Analysis of Variance ... 501
 26.4.3 Discussion ... 501
26.5 Confirmation of Experimental Results ... 502
 26.5.1 Additional Experiment ... 502
 26.5.2 Comparison of Factorial Effects Under Optimal Inducer
 Conditions ... 502
26.6 Data Analysis with Classification of Detected Faults 504
 26.6.1 Classification of Detected Faults ... 504
 26.6.2 Data Analysis .. 504
 26.6.3 Data Analysis with Correlation Among Inside and Outside
 Factors ... 505
References ... 506

27 Statistical Models for Predicting Reliability of Software Systems
in Random Environments
Hoang Pham, Xiaolin Teng ... 507
27.1 A Generalized NHPP Software Reliability Model 509
27.2 Generalized Random Field Environment (RFE) Model 510
27.3 RFE Software Reliability Models ... 511
 27.3.1 \(\gamma \)-RFE Model ... 511
 27.3.2 \(\beta \)-RFE Model ... 512
27.4 Parameter Estimation ... 513
 27.4.1 Maximum Likelihood Estimation (MLE) 513
 27.4.2 Mean-Value Function Fits .. 514
 27.4.3 Software Reliability ... 515
 27.4.4 Confidence Interval .. 516
 27.4.5 Concluding and Remarks .. 518
References ... 519
Part D Regression Methods and Data Mining

28 Measures of Influence and Sensitivity in Linear Regression

Daniel Peña ... 523
28.1 The Leverage and Residuals in the Regression Model 524
28.2 Diagnosis for a Single Outlier 525
 28.2.1 Outliers .. 525
 28.2.2 Influential Observations 526
 28.2.3 The Relationship Between Outliers and Influential
 Observations ... 527
28.3 Diagnosis for Groups of Outliers 528
 28.3.1 Methods Based on an Initial Clean Set 528
 28.3.2 Analysis of the Influence Matrix 529
 28.3.3 The Sensitivity Matrix 532
28.4 A Statistic for Sensitivity for Large Data Sets 532
28.5 An Example: The Boston Housing Data 533
28.6 Final Remarks ... 535
References ... 535

29 Logistic Regression Tree Analysis

Wei-Yin Loh ... 537
29.1 Approaches to Model Fitting .. 538
29.2 Logistic Regression Trees ... 540
29.3 LOTUS Algorithm .. 542
 29.3.1 Recursive Partitioning .. 542
 29.3.2 Tree Selection .. 543
29.4 Example with Missing Values 543
29.5 Conclusion ... 549
References ... 549

30 Tree-Based Methods and Their Applications

Nan Lin, Douglas Noe, Xuming He .. 551
30.1 Overview ... 552
 30.1.1 Classification Example: Spam Filtering 552
 30.1.2 Regression Example: Seismic Rehabilitation Cost
 Estimator .. 553
 30.1.3 Outline .. 553
30.2 Classification and Regression Tree (CART) 555
 30.2.1 Introduction .. 555
 30.2.2 Growing the Tree ... 556
 30.2.3 Pruning the Tree .. 557
 30.2.4 Regression Tree ... 558
 30.2.5 Some Algorithmic Issues 559
 30.2.6 Summary ... 560
30.3 Other Single-Tree-Based Methods 561
 30.3.1 Loh's Methods .. 561
 30.3.2 Quinlan's C4.5 .. 562
30.3.3 CHAID ... 563
30.3.4 Comparisons of Single-Tree-Based Methods 564

30.4 Ensemble Trees 565
30.4.1 Boosting Decision Trees 565
30.4.2 Random Forest 567

30.5 Conclusion 568

References .. 569

31 Image Registration and Unknown Coordinate Systems

Ted Chang .. 571
31.1 Unknown Coordinate Systems and Their Estimation 572
31.1.1 Problems of Unknown Coordinate Systems 572
31.1.2 Image Registration 572
31.1.3 The Orthogonal and Special Orthogonal Matrices 573
31.1.4 The Procrustes and Spherical Regression Models ... 574
31.1.5 Least Squares, L_1, and M Estimation 574

31.2 Least Squares Estimation 575
31.2.1 Group Properties of $O(p)$ and $SO(p)$ 575
31.2.2 Singular Value Decomposition 575
31.2.3 Least Squares Estimation in the Procrustes Model ... 576
31.2.4 Example: Least Squares Estimates for the Hands Data ... 577
31.2.5 Least Squares Estimation in the Spherical Regression Model 577

31.3 Geometry of $O(p)$ and $SO(p)$ 578
31.3.1 $SO(p)$ for $p = 2$ 578
31.3.2 $SO(p)$ for $p = 3$ 578
31.3.3 $SO(p)$ and $O(p)$, for General p, and the Matrix Exponential Map .. 578
31.3.4 Geometry and the Distribution of M–Estimates 579
31.3.5 Numerical Calculation of M–Estimates for the Procrustes Model .. 579

31.4 Statistical Properties of M–Estimates 580
31.4.1 The Σ Matrix and the Geometry of the u_j 580
31.4.2 Example: Σ for the Hands Data 581
31.4.3 Statistical Assumptions for the Procrustes Model 581
31.4.4 Theorem (Distribution of $\hat{A}, \hat{\gamma}, \hat{b}$ for the Procrustes Model) 581
31.4.5 Example: A Test of $\gamma = 1$ 582
31.4.6 Example: A Test on A 582
31.4.7 Asymptotic Relative Efficiency of Least Squares and L_1 Estimates .. 583
31.4.8 The Geometry of the Landmarks and the Errors in \hat{A} 583
31.4.9 Statistical Properties of M–Estimates for Spherical Regressions .. 585

31.5 Diagnostics 587
31.5.1 Influence Diagnostics in Simple Linear Regression .. 587
31.5.2 Influence Diagnostics for the Procrustes Model 587
31.5.3 Example: Influence for the Hands Data 588

References .. 590
32 **Statistical Genetics for Genomic Data Analysis**
Jae K. Lee .. 591
32.1 False Discovery Rate ... 592
32.2 Statistical Tests for Genomic Data 593
 32.2.1 Significance Analysis of Microarrays 594
 32.2.2 The Local-Pooled-Error Test 594
32.3 Statistical Modeling for Genomic Data 596
 32.3.1 ANOVA Modeling 596
 32.3.2 The Heterogeneous Error Model 596
32.4 Unsupervised Learning: Clustering 598
32.5 Supervised Learning: Classification 599
 32.5.1 Measures for Classification Model Performance 600
 32.5.2 Classification Modeling 600
 32.5.3 Stepwise Cross-Validated Discriminant Analysis 601
References .. 603

33 **Statistical Methodologies for Analyzing Genomic Data**
Fenghai Duan, Heping Zhang 607
33.1 Second-Level Analysis of Microarray Data 609
 33.1.1 Notation .. 609
 33.1.2 Fold Change ... 609
 33.1.3 t-Statistic ... 609
 33.1.4 The Multiple Comparison Issue 609
 33.1.5 Empirical Bayesian Approach 610
 33.1.6 Significance Analysis of Microarray (SAM) 610
33.2 Third-Level Analysis of Microarray Data 611
 33.2.1 Clustering .. 611
 33.2.2 Classification ... 614
 33.2.3 Tree- and Forest-Based Classification 616
33.3 Fourth-Level Analysis of Microarray Data 618
33.4 Final Remarks ... 618
References .. 619

34 **Statistical Methods in Proteomics**
Weichuan Yu, Baolin Wu, Tao Huang, Xiaoye Li, Kenneth Williams, Hongyu Zhao .. 623
34.1 Overview .. 623
34.2 MS Data Preprocessing 625
 34.2.1 Peak Detection/Finding 626
 34.2.2 Peak Alignment 627
 34.2.3 Remaining Problems and Proposed Solutions 627
34.3 Feature Selection ... 628
 34.3.1 A Simple Example of the Effect of Large Numbers of Features 628
 34.3.2 Interaction ... 629
 34.3.3 Reducing the Influence of Noise 630
 34.3.4 Feature Selection with Machine Learning Methods 630
34.4 Sample Classification 630
34.5 Random Forest: Joint Modelling of Feature Selection and Classification ... 630
34.5.1 Remaining Problems in Feature Selection and Sample Classification ... 632
34.6 Protein/Peptide Identification ... 633
34.6.1 Database Searching .. 633
34.6.2 De Novo Sequencing .. 633
34.6.3 Statistical and Computational Methods .. 633
34.7 Conclusion and Perspective ... 635
References .. 636

35 Radial Basis Functions for Data Mining
Miyoung Shin, Amrit L. Goel ... 639
35.1 Problem Statement ... 640
35.2 RBF Model and Parameters .. 641
35.3 Design Algorithms .. 642
35.3.1 Common Algorithms .. 642
35.3.2 SG Algorithm .. 643
35.4 Illustrative Example ... 643
35.5 Diabetes Disease Classification ... 645
35.6 Analysis of Gene Expression Data ... 647
35.7 Concluding Remarks .. 648
References .. 648

36 Data Mining Methods and Applications
Kwok-Leung Tsui, Victoria Chen, Wei Jiang, Y. Alp Aslandogan 651
36.1 The KDD Process .. 653
36.2 Handling Data .. 654
36.2.1 Databases and Data Warehousing ... 654
36.2.2 Data Preparation ... 654
36.3 Data Mining (DM) Models and Algorithms 655
36.3.1 Supervised Learning .. 655
36.3.2 Unsupervised Learning .. 661
36.3.3 Software .. 663
36.4 DM Research and Applications ... 664
36.4.1 Activity Monitoring .. 664
36.4.2 Mahalanobis–Taguchi System ... 665
36.4.3 Manufacturing Process Modeling ... 665
36.5 Concluding Remarks .. 667
References .. 667

Part E Modeling and Simulation Methods

37 Bootstrap, Markov Chain and Estimating Function
Feifang Hu ... 673
37.1 Overview .. 673
37.1.1 Invariance under Reparameterization .. 673
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.1.2</td>
<td>Automatic Computation</td>
<td>674</td>
</tr>
<tr>
<td>37.1.3</td>
<td>First and Higher Order Accuracy</td>
<td>674</td>
</tr>
<tr>
<td>37.2</td>
<td>Classical Bootstrap</td>
<td>675</td>
</tr>
<tr>
<td>37.2.1</td>
<td>Efron's Bootstrap</td>
<td>675</td>
</tr>
<tr>
<td>37.2.2</td>
<td>Second-Order-Accurate Confidence Intervals</td>
<td>676</td>
</tr>
<tr>
<td>37.2.3</td>
<td>Linear Regression</td>
<td>677</td>
</tr>
<tr>
<td>37.2.4</td>
<td>Some Remarks</td>
<td>678</td>
</tr>
<tr>
<td>37.3</td>
<td>Bootstrap Based on Estimating Equations</td>
<td>678</td>
</tr>
<tr>
<td>37.3.1</td>
<td>EF Bootstrap and Studentized EF Bootstrap</td>
<td>678</td>
</tr>
<tr>
<td>37.3.2</td>
<td>The Case of a Single Parameter</td>
<td>679</td>
</tr>
<tr>
<td>37.3.3</td>
<td>The Multiparameter Case</td>
<td>679</td>
</tr>
<tr>
<td>37.3.4</td>
<td>Some Examples</td>
<td>680</td>
</tr>
<tr>
<td>37.4</td>
<td>Markov Chain Marginal Bootstrap</td>
<td>681</td>
</tr>
<tr>
<td>37.5</td>
<td>Applications</td>
<td>682</td>
</tr>
<tr>
<td>37.6</td>
<td>Discussion</td>
<td>684</td>
</tr>
<tr>
<td>References</td>
<td>684</td>
<td></td>
</tr>
</tbody>
</table>

38 Random Effects

Yi Li

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.1</td>
<td>Overview</td>
<td>687</td>
</tr>
<tr>
<td>38.2</td>
<td>Linear Mixed Models</td>
<td>688</td>
</tr>
<tr>
<td>38.2.1</td>
<td>Estimation</td>
<td>689</td>
</tr>
<tr>
<td>38.2.2</td>
<td>Prediction of Random Effects</td>
<td>690</td>
</tr>
<tr>
<td>38.3</td>
<td>Generalized Linear Mixed Models</td>
<td>690</td>
</tr>
<tr>
<td>38.4</td>
<td>Computing MLEs for GLMMs</td>
<td>692</td>
</tr>
<tr>
<td>38.4.1</td>
<td>The EM Approach</td>
<td>692</td>
</tr>
<tr>
<td>38.4.2</td>
<td>Simulated Maximum Likelihood Estimation</td>
<td>693</td>
</tr>
<tr>
<td>38.4.3</td>
<td>Monte Carlo Newton-Raphson (MCNR)/Stochastic Approximation (SA)</td>
<td>694</td>
</tr>
<tr>
<td>38.4.4</td>
<td>S–U Algorithm</td>
<td>694</td>
</tr>
<tr>
<td>38.4.5</td>
<td>Some Approximate Methods</td>
<td>696</td>
</tr>
<tr>
<td>38.5</td>
<td>Special Topics: Testing Random Effects for Clustered Categorical Data</td>
<td>697</td>
</tr>
<tr>
<td>38.5.1</td>
<td>The Variance Component Score Test in Random Effects–Generalized Logistic Models</td>
<td>697</td>
</tr>
<tr>
<td>38.5.2</td>
<td>The Variance Component Score Test in Random Effects Cumulative Probability Models</td>
<td>698</td>
</tr>
<tr>
<td>38.5.3</td>
<td>Variance Component Tests in the Presence of Measurement Errors in Covariates</td>
<td>699</td>
</tr>
<tr>
<td>38.5.4</td>
<td>Data Examples</td>
<td>700</td>
</tr>
<tr>
<td>38.6</td>
<td>Discussion</td>
<td>701</td>
</tr>
<tr>
<td>References</td>
<td>701</td>
<td></td>
</tr>
</tbody>
</table>

39 Cluster Randomized Trials: Design and Analysis

Mirjam Moerbeek

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.1</td>
<td>Cluster Randomized Trials</td>
<td>706</td>
</tr>
<tr>
<td>39.2</td>
<td>Multilevel Regression Model and Mixed Effects ANOVA Model</td>
<td>707</td>
</tr>
</tbody>
</table>
39.3 Optimal Allocation of Units
- 39.3.1 Minimizing Costs to Achieve a Fixed Power Level
- 39.3.2 Maximizing Power Given a Fixed Budget

39.4 The Effect of Adding Covariates

39.5 Robustness Issues
- 39.5.1 Bayesian Optimal Designs
- 39.5.2 Designs with Sample-Size Re-Estimation

39.6 Optimal Designs for the Intra-Class Correlation Coefficient

39.7 Conclusions and Discussion

References

40 A Two-Way Semilinear Model for Normalization and Analysis of Microarray Data

Jian Huang, Cun-Hui Zhang

- 40.1 The Two-Way Semilinear Model
- 40.2 Semiparametric M-Estimation in TW-SLM
 - 40.2.1 Basis-Based Method
 - 40.2.2 Local Regression (Lowess) Method
 - 40.2.3 Back-Fitting Algorithm in TW-SLM
 - 40.2.4 Semiparametric Least Squares Estimation in TW-SLM
- 40.3 Extensions of the TW-SLM
 - 40.3.1 Multi-Way Semilinear Models
 - 40.3.2 Spiked Genes and Incorporation of Prior Knowledge in the MW-SLM
 - 40.3.3 Location and Scale Normalization
- 40.4 Variance Estimation and Inference for β
- 40.5 An Example and Simulation Studies
 - 40.5.1 Apo A1 Data
 - 40.5.2 Simulation Studies
- 40.6 Theoretical Results
 - 40.6.1 Distribution of $\hat{\beta}$
 - 40.6.2 Convergence Rates of Estimated Normalization Curves \hat{f}_i
- 40.7 Concluding Remarks

References

41 Latent Variable Models for Longitudinal Data with Flexible Measurement Schedule

Haiqun Lin

- 41.1 Hierarchical Latent Variable Models for Longitudinal Data
 - 41.1.1 Linear Mixed Model with a Single-Level Latent Variable
 - 41.1.2 Generalized Linear Model with Latent Variables
 - 41.1.3 Model with Hierarchical Latent Variables
- 41.2 Latent Variable Models for Multidimensional Longitudinal Data
 - 41.2.1 Extended Linear Mixed Model for Multivariate Longitudinal Responses
 - 41.2.2 Measurement Error Model
- 41.3 Latent Class Mixed Model for Longitudinal Data
41.4 Structural Equation Model with Latent Variables for Longitudinal Data .. 744
41.5 Concluding Remark: A Unified Multilevel Latent Variable Model 746
References .. 747

42 Genetic Algorithms and Their Applications
Mitsuo Gen ... 749
42.1 Foundations of Genetic Algorithms 750
42.1.1 General Structure of Genetic Algorithms 750
42.1.2 Hybrid Genetic Algorithms .. 751
42.1.3 Adaptive Genetic Algorithms 751
42.1.4 Fuzzy Logic Controller .. 751
42.1.5 Multiobjective Optimization Problems 752
42.2 Combinatorial Optimization Problems 753
42.2.1 Knapsack Problem .. 753
42.2.2 Minimum Spanning Tree Problem 754
42.2.3 Set-Covering Problem ... 755
42.2.4 Bin–Packing Problem .. 755
42.2.5 Traveling–Salesman Problem 756
42.3 Network Design Problems ... 757
42.3.1 Shortest–Path Problem .. 757
42.3.2 Maximum–Flow Problem .. 758
42.3.3 Minimum–Cost–Flow Problem 759
42.3.4 Centralized Network Design 760
42.3.5 Multistage Process Planning 760
42.4 Scheduling Problems ... 761
42.4.1 Flow–Shop Sequencing Problem 761
42.4.2 Job–Shop Scheduling ... 761
42.4.3 Resource–Constrained Projected Scheduling Problem 762
42.4.4 Multiprocessor Scheduling ... 763
42.5 Reliability Design Problem .. 763
42.5.1 Simple Genetic Algorithm for Reliability Optimization 764
42.5.2 Reliability Design with Redundant Unit and Alternatives ... 764
42.5.3 Network Reliability Design .. 765
42.5.4 Tree–Based Network Topology Design 765
42.6 Logistic Network Problems .. 766
42.6.1 Linear Transportation Problem 766
42.6.2 Multiobjective Transportation Problem 767
42.6.3 Bicriteria Transportation Problem with Fuzzy Coefficients .. 767
42.6.4 Supply–Chain Management (SCM) Network Design 768
42.7 Location and Allocation Problems 769
42.7.1 Location–Allocation Problem 769
42.7.2 Capacitated Plant Location Problem 770
42.7.3 Obstacle Location–Allocation Problem 771
References .. 772
43 Scan Statistics

Joseph Naus .. 775

43.1 Overview .. 775

43.2 Temporal Scenarios ... 776
 43.2.1 The Continuous Retrospective Case 777
 43.2.2 Prospective Continuous Case 779
 43.2.3 Discrete Binary Trials: The Prospective Case 781
 43.2.4 Discrete Binary Trials: The Retrospective Case ... 783
 43.2.5 Ratchet-Scan: The Retrospective Case 783
 43.2.6 Ratchet-Scan: The Prospective Case 784
 43.2.7 Events Distributed on the Circle 784

43.3 Higher Dimensional Scans 784
 43.3.1 Retrospective Continuous Two-Dimensional Scan 784
 43.3.2 Prospective Continuous Two-Dimensional Scan 785
 43.3.3 Clustering on the Lattice 786

43.4 Other Scan Statistics 786
 43.4.1 Unusually Small Scans 786
 43.4.2 The Number of Scan Clusters 787
 43.4.3 The Double-Scan Statistic 787
 43.4.4 Scanning Trees and Upper Level Scan Statistics ... 788

References .. 788

44 Condition-Based Failure Prediction

Shang-Kuo Yang ... 791

44.1 Overview .. 792

44.2 Kalman Filtering ... 794
 44.2.1 System Model .. 794
 44.2.2 State Estimation 794
 44.2.3 Prediction .. 795

44.3 Armature-Controlled DC Motor 796
 44.3.1 Transfer Function 796
 44.3.2 Continuous State Space Model 796
 44.3.3 Discrete State Space Model 797

44.4 Simulation System ... 797
 44.4.1 Parameters ... 797
 44.4.2 Monte Carlo Simulation and ARMA Model 798
 44.4.3 Exponential Attenuator 798
 44.4.4 Simulation Results 798
 44.4.5 Notes About the Simulation 800

44.5 Armature-Controlled DC Motor Experiment 801
 44.5.1 Experiment Design 801
 44.5.2 Experimental Results 802
 44.5.3 Notes About the Experiment 803

44.6 Conclusions .. 804

References .. 804
47.2.2 Risk-Neutral Pricing in Continuous Time 859
47.2.3 Trading in a Risk-Neutral World 860

47.3 Consumption Capital Asset Price Model and Stochastic Discount
Factor .. 862
47.3.1 A Simple Two-Period Model 863
47.3.2 Euler’s Equation and the SDF 864

47.4 Bonds and Fixed-Income Pricing 865
47.4.1 Calculating the Yield of a Bond 868
47.4.2 Bonds and Risk-Neutral Pricing in Continuous Time 869
47.4.3 Term Structure and Interest Rates 870
47.4.4 Default Bonds .. 871

47.5 Options .. 872
47.5.1 Options Valuation and Martingales 872
47.5.2 The Black–Scholes Option Formula 873
47.5.3 Put–Call Parity ... 874
47.5.4 American Options – A Put Option 875
47.5.5 Departures from the Black–Scholes Equation 876

47.6 Incomplete Markets and Implied Risk-Neutral Distributions 880
47.6.1 Risk and the Valuation of a Rated Bond 882
47.6.2 Valuation of Default–Prone Rated Bonds 884
47.6.3 “Engineered” Risk-Neutral Distributions and Risk-Neutral Pricing .. 886
47.6.4 The Maximum–Entropy Approach 892

References .. 898

48 Statistical Management and Modeling for Demand of Spare Parts
Emilio Ferrari, Arrigo Pareschi, Alberto Regattieri, Alessandro Persona 1
48.1 The Forecast Problem for Spare Parts 1
48.1.1 Exponential Smoothing 4
48.1.2 Croston’s Method .. 4
48.1.3 Holt–Winter Models 5

?? Forecasting Methods .. 8
?? Characterizing Forecasting Methods 8
?? The Applicability of Forecasting Methods to Spare–Parts Demands ... 9
?? Prediction of Aircraft Spare Parts: A Case Study 12
?? Poisson Models .. 15
?? Stock Level Conditioned to Minimal Availability 16
?? Stock Level Conditioned to Minimum Total Cost 17
?? Models Based on the Binomial Distribution 18
?? An Industrial Application 19
?? Extension of the Binomial Model Based on the Total Cost Function 21
?? Service–Level Optimization: Minimum Total Cost Method 21
?? Simulation and Results 23
?? An Industrial Application 24
?? Weibull Extension .. 25
?? The Extension of the Modified Model Using the Weibull Distribution 25
49 Arithmetic and Geometric Processes

Kit-Nam F. Leung ... 931

49.1 Two Special Monotone Processes ... 934
49.1.1 Arithmetic Processes ... 934
49.1.2 Geometric Processes ... 935

49.2 Testing for Trends ... 936
49.2.1 Laplace Test ... 936
49.2.2 Graphical Techniques ... 937

49.3 Estimating the Parameters ... 938
49.3.1 Estimate Parameters d, α_A and σ^2_A of K APs (or r, α_G and σ^2_G of K GPs) ... 938
49.3.2 Estimating the Parameters of a Single AP (or GP) ... 938

49.4 Distinguishing a Renewal Process from an AP (or a GP) ... 939

49.5 Estimating the Means and Variances ... 939
49.5.1 Estimating $\mu_{\bar{A}_n}$ and $\sigma^2_{\bar{A}_n}$ of \bar{A}_ns ... 939
49.5.2 Estimating $\mu_{\bar{G}_n}$ and $\sigma^2_{\bar{G}_n}$ of \bar{G}_ns ... 941
49.5.3 Estimating the Means and Variances of a Single AP or GP ... 944

49.6 Comparison of Estimators Using Simulation ... 945
49.6.1 A Single AP or GP ... 945
49.6.2 K Independent, Homogeneous APs or GPs ... 945
49.6.3 Comparison Between Averages of Estimates and Pooled Estimates ... 946

49.7 Real Data Analysis ... 946

49.8 Optimal Replacement Policies Determined Using Arithmetic–Geometric Processes ... 947
49.8.1 Arithmetic–Geometric Processes ... 947
49.8.2 Model ... 947
49.8.3 The Long–Run Expected Loss Rate ... 948

49.9 Some Conclusions on the Applicability of an AP and/or a GP ... 950

49.10 Concluding Remarks ... 951

49.A Appendix ... 953

References ... 954

50 Six Sigma

Fugee Tsung ... 957

50.0.1 What is Six Sigma? ... 957
50.0.2 Why Six Sigma? ... 958
50.0.3 Six Sigma Implementation ... 959

50.1 The DMAIC Methodology ... 960
50.1.1 Introduction ... 960
50.1.2 The DMAIC Process ... 960
50.1.3 Key Tools to Support the DMAIC Process ... 962

References ... 954
52.1.3 The Poisson Process and the Exponential Distribution 996
52.1.4 Continuous-Time Markov Chain (CTMC) 997
52.2 Multiple-Priority Dual Queue (MPDQ) 1000
 52.2.1 Simulating the MPDQ 1000
 52.2.2 Solving the MPDQ Analytically 1002
 52.2.3 The Waiting-Time Distribution 1004
52.3 Distributed Systems and Load Balancing 1005
 52.3.1 Classical Load-Distribution Policies 1006
 52.3.2 Size-Based Load Distribution Policies 1008
52.4 Active Queue Management for TCP Traffic 1012
 52.4.1 TCP Algorithms 1012
 52.4.2 Modeling Changes in TCP Window Sizes 1014
 52.4.3 Modeling Queues of TCP Connections 1015
 52.4.4 Differentiated Services 1016
52.5 Conclusion .. 1020
References ... 1020

53 Support Vector Machines for Data Modeling with Software
Engineering Applications

 Hojung Lim, Amrit L. Goel 1023
53.1 Overview ... 1023
53.2 Classification and Prediction in Software Engineering 1024
 53.2.1 Classification .. 1024
 53.2.2 Prediction .. 1025
53.3 Support Vector Machines 1025
53.4 Linearly Separable Patterns 1026
 53.4.1 Optimal Hyperplane 1026
 53.4.2 Relationship to the SRM Principle 1027
 53.4.3 Illustrative Example 1027
53.5 Linear Classifier for Nonseparable Classes 1029
53.6 Nonlinear Classifiers 1029
 53.6.1 Optimal Hyperplane 1030
 53.6.2 Illustrative Example 1030
53.7 SVM Nonlinear Regression 1032
53.8 SVM Hyperparameters 1033
53.9 SVM Flow Chart ... 1033
53.10 Module Classification 1034
53.11 Effort Prediction .. 1035
53.12 Concluding Remarks 1036
References ... 1036

54 Optimal System Design

 Suprasad V. Amari .. 1039
54.1 Optimal System Design 1039
 54.1.1 System Design .. 1040
 54.1.2 System Design Objectives 1041
 54.1.3 Notation ... 1041
Subject Index

T^2 chart 331
epsilon-loss function 1033
3SCSALT, three-stress-level accelerated life testing 431
– contour plots 431
– step-by-step description 431
accelerated degradation test (ADT) 427, 436
– constant-stress 427
– step-stress 427
accelerated destructive degradation tests (ADDT) 399
accelerated failure time model 348
accelerated life model (ALM) 380
accelerated life test (ALT) 355, 398, 405, 427
accelerated reliability testing (ART) 427
accelerated repeated measures degradation tests (ARMDT) 399
accelerated tests 397–399
– burn-in 422
– continuous product operation 422
– ESS 423
– highly accelerated 422
– other kinds of 421
– practical considerations 421
– STRIFE 422
– types of 398, 422, 423
acceleration
– temperature–voltage 405
acceleration factor 434
– for inverse power model 405
– with temperature–voltage 405
acceleration methods 400
– aging 400
– stress 400
– use rate 400, 401
acceleration models 400
– current-temperature 416
– guidelines for using 407
– issues 407
– temperature 401
– temperature–current density 406
– temperature–humidity 406
– voltage 403
– voltage–stress 403
acceptable quality level 264
accuracy 567
ACDATE (actor, condition, data, action, timing, and event) 446
acknowledgement (ACK) 993
active queue management (AQM) 1015
AdaBoost 566–568
adaptive-response-rate single-exponential smoothing (ARRSES) 907
adjusted Rand index (ARI) 614
age 97
age and periodic replacement 836, 837, 839
aging period 159
AIC criterion 539
algebraic algorithm 640
ALT model
– choosing 400
– ALT model and analysis
– assessing fit 410
– Box–Cox transformation 421
– data analysis strategy 407
– diagnostics 410
– given activation energy 414
– interval-censored data 413
– ML fit 409
– one accelerating variable 407
– potential pitfalls 423
– quantile estimates 411
– residuals analysis 411
– software for 424
– statistical uncertainty 410
– use conditions, estimation at 411
– use conditions, sensitivity to assumption 411, 420
– with interaction 417
– with three variables 419
– with two or more explanatory variables 416
ALT model and analysis potential pitfalls 424
American Society for Quality (ASQ) 959
analysis of variance (ANOVA) 232, 234, 236, 245, 469, 501, 505, 596, 706, 969
ANTLR (another tool for language recognition) 464
approximated bootstrap confidence (ABC) 676, 677
arithmetic moving average 254
arithmetic process (AP) 931, 933
arithmetic–geometric process (AGP) 931
Arrhenius
– acceleration factor 402, 405
– application 403, 406, 413, 415, 417
– extended 405
– relationship 402
artificial neural networks (ANN) 608, 615
assembly yield 155
association rule 651, 661–663
assurance-based testing (ABT) 445
asymptotic relative efficiency 583
autocorrelated data 254
automatic computation 673–677
automatic process control 173
autoregressive and moving average (ARMA) 795, 798
autoregressive process AR(1) 341
availability 836–838, 845, 847
average run length (ARL) 175, 267, 291, 328, 337
average sample number 265
average total inspection 265
backpropagation 659
backward recurrence time 139
bagging 560, 565, 567
bathtub failure rate 159
Bayesian 113–115, 122
Bell–LaPadula (BLP) model 461
best linear unbiased predictor (BLUP) 690
beta distribution 14, 511
bias-variance dilemma 641
binomial distribution 7
binomial model (BM) 907
bin-packing number 760
bivariate distribution 104
bivariate exponential (BVE) 91
bivariate hazard rates 104
bivariate Weibull models 104
black-box modeling 98
Boltzmann constant 402
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>boosting 560, 565–567, 569</td>
</tr>
<tr>
<td>boosting tree 563, 565, 567</td>
</tr>
<tr>
<td>built-in reliability (BIR) 160</td>
</tr>
<tr>
<td>burn-in board (BIB) 161</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4.5 553, 562–565</td>
</tr>
<tr>
<td>cancer classification 647</td>
</tr>
<tr>
<td>canonical maximum likelihood (CML) 982</td>
</tr>
<tr>
<td>capacitated plant location problem (cPLP) 770</td>
</tr>
<tr>
<td>case-based reasoning (CBR) 1034</td>
</tr>
<tr>
<td>catastrophic failure 812</td>
</tr>
<tr>
<td>Cauchy distribution 17</td>
</tr>
<tr>
<td>Cauchy functional equation (CFE) 82</td>
</tr>
<tr>
<td>CCC chart 283, 285</td>
</tr>
<tr>
<td>censored data 20</td>
</tr>
<tr>
<td>censored observations 348, 349, 351</td>
</tr>
<tr>
<td>censoring 99, 109</td>
</tr>
<tr>
<td>– interval 398, 413</td>
</tr>
<tr>
<td>– interval-censored 412</td>
</tr>
<tr>
<td>– right 398</td>
</tr>
<tr>
<td>central composite design (CCD) 217</td>
</tr>
<tr>
<td>central limit theorem (CLT) 10, 799</td>
</tr>
<tr>
<td>Cesáro total variation convergence 140</td>
</tr>
<tr>
<td>CHAID, chi-square automatic interaction detection 553, 564, 565, 657</td>
</tr>
<tr>
<td>characteristic function (CF) 80</td>
</tr>
<tr>
<td>characterizing function 79</td>
</tr>
<tr>
<td>charts</td>
</tr>
<tr>
<td>– Cusum 250</td>
</tr>
<tr>
<td>– EWMA 250</td>
</tr>
<tr>
<td>– Shewhart 250</td>
</tr>
<tr>
<td>chi-squared test 25</td>
</tr>
<tr>
<td>chromosome 750</td>
</tr>
<tr>
<td>class-based queues (CBQ) 1016</td>
</tr>
<tr>
<td>classical multivariate normal (MVN) 91</td>
</tr>
<tr>
<td>classification 552, 553, 555–560, 564–569, 608, 651, 654–661, 665</td>
</tr>
<tr>
<td>classification accuracy 567</td>
</tr>
<tr>
<td>classification and regression tree (CART) 543, 553, 555–562, 564, 565, 567, 629, 1034</td>
</tr>
<tr>
<td>classification error (CE) 640, 1024</td>
</tr>
<tr>
<td>classifiers 1024</td>
</tr>
<tr>
<td>cluster 775</td>
</tr>
<tr>
<td>cluster analysis 662</td>
</tr>
<tr>
<td>clustered data 688</td>
</tr>
<tr>
<td>cluster-image map (CIM) 592</td>
</tr>
<tr>
<td>clustering 608, 651, 654, 661–663</td>
</tr>
<tr>
<td>coefficient of variation (CV) 186, 906</td>
</tr>
<tr>
<td>collaborative verification and validation 472</td>
</tr>
<tr>
<td>collision-induced dissociation (CID) 625</td>
</tr>
<tr>
<td>combination warranty (CMW) 127</td>
</tr>
<tr>
<td>combinatorial optimization 753</td>
</tr>
<tr>
<td>competing processes 810</td>
</tr>
<tr>
<td>completeness and consistency (C&C) analysis 444</td>
</tr>
<tr>
<td>compound Poisson process 809</td>
</tr>
<tr>
<td>computer experiment 229, 231, 234, 235, 245</td>
</tr>
<tr>
<td>concordance measures 975</td>
</tr>
<tr>
<td>– concordance function 976</td>
</tr>
<tr>
<td>– Kendall’s tau 976</td>
</tr>
<tr>
<td>– Spearman’s rho 976</td>
</tr>
<tr>
<td>condition and event 452</td>
</tr>
<tr>
<td>conditional distribution 108</td>
</tr>
<tr>
<td>conditional intensity 148</td>
</tr>
<tr>
<td>conditional models 103</td>
</tr>
<tr>
<td>conditional single sampling 271</td>
</tr>
<tr>
<td>conditional specification 90</td>
</tr>
<tr>
<td>condition-based maintenance 793, 804</td>
</tr>
<tr>
<td>maintenance 808</td>
</tr>
<tr>
<td>confidence limits 28</td>
</tr>
<tr>
<td>constant-stress accelerated life test (CSALT) 428</td>
</tr>
<tr>
<td>consumption capital asset pricing model (CCAPM) 862</td>
</tr>
<tr>
<td>continuous-time Markov chain (CTMC) 997</td>
</tr>
<tr>
<td>control 489</td>
</tr>
<tr>
<td>Cook’s statistic 526</td>
</tr>
<tr>
<td>copula 974</td>
</tr>
<tr>
<td>– Archimedean 979</td>
</tr>
<tr>
<td>– Clayton 980</td>
</tr>
<tr>
<td>– elliptical 977</td>
</tr>
<tr>
<td>– Frank 980</td>
</tr>
<tr>
<td>– generator 981</td>
</tr>
<tr>
<td>– Gumbel 980</td>
</tr>
<tr>
<td>– normal copula 978</td>
</tr>
<tr>
<td>– t copula 978</td>
</tr>
<tr>
<td>corner analysis 155</td>
</tr>
<tr>
<td>corrective maintenance (CM) 792</td>
</tr>
<tr>
<td>cost of poor quality (COPQ) 958</td>
</tr>
<tr>
<td>cost-complexity pruning 557</td>
</tr>
<tr>
<td>counting processes 37</td>
</tr>
<tr>
<td>Cox model 390, 392, 393</td>
</tr>
<tr>
<td>Cramér-Rao inequality 17</td>
</tr>
<tr>
<td>credit-based fair queueing (CBFQ) 992</td>
</tr>
<tr>
<td>critical area 157</td>
</tr>
<tr>
<td>critical value pruning (CVP) 558</td>
</tr>
<tr>
<td>critical-to-quality (CTQ) 960</td>
</tr>
<tr>
<td>Crosier’s CUSUM 329</td>
</tr>
<tr>
<td>Crosier’s multivariate statistic 333</td>
</tr>
<tr>
<td>CRUISE, classification rule with unbiased interaction selection and estimation 553, 561, 562, 564, 565</td>
</tr>
<tr>
<td>cumulative damage model 836, 842</td>
</tr>
<tr>
<td>cumulative distribution function (CDF) 4, 79, 114, 293, 371, 400, 974, 1000</td>
</tr>
<tr>
<td>cumulative exposure model 355, 356</td>
</tr>
<tr>
<td>cumulative hazard function 99</td>
</tr>
<tr>
<td>cumulative quantity control chart (CQC chart) 286</td>
</tr>
<tr>
<td>cumulative results criterion 263, 266</td>
</tr>
<tr>
<td>cumulative score (CUSCORE) chart 249</td>
</tr>
<tr>
<td>cumulative shock damage 826</td>
</tr>
<tr>
<td>cumulative sum chart 250</td>
</tr>
<tr>
<td>CUSCORE</td>
</tr>
<tr>
<td>– chart 249</td>
</tr>
<tr>
<td>– statistics 249</td>
</tr>
<tr>
<td>customer needs mapping (CNM) 961</td>
</tr>
<tr>
<td>CUSUM of T_n 333</td>
</tr>
<tr>
<td>cycle crossover (CX) 762</td>
</tr>
<tr>
<td>cycle stealing immediate dispatch (CS-ID) 1007</td>
</tr>
<tr>
<td>cycle stealing with central queue (CS-CQ) 1007</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>data analysis 100</td>
</tr>
<tr>
<td>data cube 654</td>
</tr>
<tr>
<td>data mining (DM) 640, 651–653, 655, 657, 660, 661, 663–665, 667</td>
</tr>
<tr>
<td>data modeling 1023</td>
</tr>
<tr>
<td>data types 99</td>
</tr>
<tr>
<td>data warehouse 654</td>
</tr>
<tr>
<td>database 651, 652, 654, 655, 662–664</td>
</tr>
<tr>
<td>DC motor 793, 794, 796, 797, 801–804</td>
</tr>
<tr>
<td>dChip programs 612</td>
</tr>
<tr>
<td>decoding 751</td>
</tr>
<tr>
<td>decreasing failure rate (DFR) 370</td>
</tr>
<tr>
<td>defect density distribution 156, 157</td>
</tr>
</tbody>
</table>
Subject Index

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>functional requirements (FRs)</td>
<td>966</td>
</tr>
<tr>
<td>functional yield</td>
<td>155</td>
</tr>
<tr>
<td>fuzzy logic controller</td>
<td>752</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>gamma distribution</td>
<td>13</td>
</tr>
<tr>
<td>Gaussian kernel</td>
<td>1030</td>
</tr>
<tr>
<td>general linear model</td>
<td>184</td>
</tr>
<tr>
<td>generalized additive model</td>
<td>657</td>
</tr>
<tr>
<td>generalized estimating equation</td>
<td>(GEE)</td>
</tr>
<tr>
<td>generalized event-count method</td>
<td>667</td>
</tr>
<tr>
<td>generalized likelihood ratio test</td>
<td>176</td>
</tr>
<tr>
<td>generalized mixed model</td>
<td>(GLMM)</td>
</tr>
<tr>
<td>generalized linear model (GLM)</td>
<td>657, 687, 738</td>
</tr>
<tr>
<td>generalized Poisson distribution</td>
<td>286</td>
</tr>
<tr>
<td>generalized random field environment</td>
<td>507</td>
</tr>
<tr>
<td>generation</td>
<td>750</td>
</tr>
<tr>
<td>generator armature bar (GAB)</td>
<td>403</td>
</tr>
<tr>
<td>genetic algorithm (GA)</td>
<td>1052</td>
</tr>
<tr>
<td>genetic algorithm optimization</td>
<td>toolbox (GAOT)</td>
</tr>
<tr>
<td>genomic data</td>
<td>592, 618</td>
</tr>
<tr>
<td>geometric distribution</td>
<td>9, 90, 283</td>
</tr>
<tr>
<td>geometric process (GP)</td>
<td>931, 933</td>
</tr>
<tr>
<td>Gini index</td>
<td>556</td>
</tr>
<tr>
<td>goodness of fit</td>
<td>25</td>
</tr>
<tr>
<td>goodness-of-fit test</td>
<td>79, 359</td>
</tr>
<tr>
<td>graphical</td>
<td>63</td>
</tr>
<tr>
<td>graphical estimation methods</td>
<td>102</td>
</tr>
<tr>
<td>graphical evaluation and review</td>
<td>technique</td>
</tr>
<tr>
<td>guarantee time</td>
<td>351</td>
</tr>
<tr>
<td>GUIDE, generalized, unbiased</td>
<td>interaction detection and estimation</td>
</tr>
<tr>
<td>Gumbel distribution</td>
<td>87</td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>hazard function</td>
<td>7, 99, 388–393</td>
</tr>
<tr>
<td>hazard plot</td>
<td>63</td>
</tr>
<tr>
<td>hazard rate plots</td>
<td>106, 107</td>
</tr>
<tr>
<td>head injury criterion (hic)</td>
<td>545</td>
</tr>
<tr>
<td>heterogeneous error model (HEM)</td>
<td>591, 596</td>
</tr>
<tr>
<td>hierarchical clustering</td>
<td>599</td>
</tr>
<tr>
<td>high dimensional</td>
<td>674, 678, 681, 682</td>
</tr>
<tr>
<td>high-assurance systems</td>
<td>470</td>
</tr>
<tr>
<td>highest class first (HCF)</td>
<td>1000</td>
</tr>
<tr>
<td>highly accelerated life test (HALT)</td>
<td>355, 422</td>
</tr>
<tr>
<td>highly accelerated stress screens (HASS)</td>
<td>355</td>
</tr>
<tr>
<td>historical</td>
<td>63</td>
</tr>
<tr>
<td>homogeneous Poisson process (HPP)</td>
<td>932</td>
</tr>
<tr>
<td>Hotelling’s T^2</td>
<td>983</td>
</tr>
<tr>
<td>hotspot</td>
<td>775</td>
</tr>
<tr>
<td>human error</td>
<td>836, 843, 844</td>
</tr>
<tr>
<td>human factor</td>
<td>497–499</td>
</tr>
<tr>
<td>human resource (HR)</td>
<td>960</td>
</tr>
<tr>
<td>hybrid evolutionary method (HEM)</td>
<td>770</td>
</tr>
<tr>
<td>hybrid genetic algorithm</td>
<td>751</td>
</tr>
<tr>
<td>hypergeometric distribution</td>
<td>9</td>
</tr>
<tr>
<td>hypothesis testing</td>
<td>63</td>
</tr>
<tr>
<td>ID3, iterative dichotomizer 3rd</td>
<td>562</td>
</tr>
<tr>
<td>identify, characterize, optimize, verify (ICOV)</td>
<td>965</td>
</tr>
<tr>
<td>identify, design, optimize, validate (IDOV)</td>
<td>965</td>
</tr>
<tr>
<td>imperfect repair</td>
<td>98, 100, 105, 106</td>
</tr>
<tr>
<td>improvement maintenance (IM)</td>
<td>792</td>
</tr>
<tr>
<td>incompatibility</td>
<td>162</td>
</tr>
<tr>
<td>increasing failure rate (IFR)</td>
<td>370, 837</td>
</tr>
<tr>
<td>independent and identically</td>
<td>distributed (i.i.d.)</td>
</tr>
<tr>
<td>induced</td>
<td>498</td>
</tr>
<tr>
<td>industrial</td>
<td>651, 664, 667</td>
</tr>
<tr>
<td>infant mortality</td>
<td>159</td>
</tr>
<tr>
<td>inference functions for margins (IFM)</td>
<td>982</td>
</tr>
<tr>
<td>influence diagnostics</td>
<td>– high leverage point</td>
</tr>
<tr>
<td>– influence function</td>
<td>587</td>
</tr>
<tr>
<td>– outlier</td>
<td>587</td>
</tr>
<tr>
<td>– standardized influence function</td>
<td>587</td>
</tr>
<tr>
<td>information technology (IT)</td>
<td>960</td>
</tr>
<tr>
<td>innovation diffusion</td>
<td>480</td>
</tr>
<tr>
<td>insertion mutation</td>
<td>762</td>
</tr>
<tr>
<td>inspection</td>
<td>844</td>
</tr>
<tr>
<td>– maintenance</td>
<td>807, 819</td>
</tr>
<tr>
<td>– maintenance policy</td>
<td>826</td>
</tr>
<tr>
<td>– model</td>
<td>836</td>
</tr>
<tr>
<td>– paradox</td>
<td>142</td>
</tr>
<tr>
<td>– policy</td>
<td>844</td>
</tr>
<tr>
<td>inspection cost per unit (IC)</td>
<td>199</td>
</tr>
<tr>
<td>insulation</td>
<td>411</td>
</tr>
<tr>
<td>integrated optimization model</td>
<td>194</td>
</tr>
<tr>
<td>inter-demand interval (ADI)</td>
<td>906</td>
</tr>
<tr>
<td>internal rate of return (IRR)</td>
<td>865</td>
</tr>
<tr>
<td>internet engineering task force</td>
<td>(IETF)</td>
</tr>
<tr>
<td>interval parameter</td>
<td>27</td>
</tr>
<tr>
<td>intra-class correlation coefficient</td>
<td>707</td>
</tr>
<tr>
<td>intrinsic failure</td>
<td>159</td>
</tr>
<tr>
<td>invariance</td>
<td>673–677, 679, 680</td>
</tr>
<tr>
<td>inverse Gaussian distribution</td>
<td>88</td>
</tr>
<tr>
<td>inverse power</td>
<td>– acceleration factor</td>
</tr>
<tr>
<td>– motivation</td>
<td>404</td>
</tr>
<tr>
<td>– relationship</td>
<td>404</td>
</tr>
<tr>
<td>inversion</td>
<td></td>
</tr>
<tr>
<td>– formula</td>
<td>137, 144</td>
</tr>
<tr>
<td>– mutation</td>
<td>762</td>
</tr>
<tr>
<td>iterative generalized least squares (IGLS)</td>
<td>709</td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>Kalman filter</td>
<td>793, 794, 798, 799, 801, 804</td>
</tr>
<tr>
<td>Kalman prediction</td>
<td>799, 800</td>
</tr>
<tr>
<td>Kelvin scale</td>
<td>402</td>
</tr>
<tr>
<td>kernel function</td>
<td>660</td>
</tr>
<tr>
<td>k-fold cross validation (KCV)</td>
<td>1025</td>
</tr>
<tr>
<td>– error</td>
<td>1025</td>
</tr>
<tr>
<td>Khintchine–Korolyuk theorem</td>
<td>147</td>
</tr>
<tr>
<td>K-medoids</td>
<td>662</td>
</tr>
<tr>
<td>k-nearest neighbors (KNN)</td>
<td>608</td>
</tr>
<tr>
<td>knowledge discovery</td>
<td>651, 652, 665</td>
</tr>
<tr>
<td>knowledge discovery in databases</td>
<td>(KDD)</td>
</tr>
<tr>
<td>known good dies (KGD)</td>
<td>161</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov test</td>
<td>26</td>
</tr>
<tr>
<td>k-within-consecutive-m-out-of-N</td>
<td>systems</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>lack of anticipation condition (LAC)</td>
<td>149</td>
</tr>
<tr>
<td>lack-of-fit criterion (LOF)</td>
<td>656</td>
</tr>
<tr>
<td>lack-of-memory property (LMP)</td>
<td>82</td>
</tr>
<tr>
<td>Laplace transform</td>
<td>511</td>
</tr>
<tr>
<td>least median of squares (LMS)</td>
<td>528</td>
</tr>
<tr>
<td>least squared estimation</td>
<td>26</td>
</tr>
<tr>
<td>least-squares estimate (LSE)</td>
<td>524, 528, 721</td>
</tr>
<tr>
<td>leave one out (LOO)</td>
<td>1025</td>
</tr>
<tr>
<td>leverage of the observation</td>
<td>525</td>
</tr>
<tr>
<td>LIFO (last in first out)</td>
<td>995</td>
</tr>
<tr>
<td>likelihood function</td>
<td>22, 513</td>
</tr>
</tbody>
</table>
likelihood ratio (LR) 54
limiting quality level 264
linear
– method 656, 660
– mixed model 688, 689
– model 651, 674, 681, 682
– regression 26
linear cumulative exposure model (LCEM) 433
linear discriminant analysis (LDA) 562, 601, 602, 608, 615, 656
linear transportation problem (LTP) 766
LLF (least loaded first) 1006
local pooled error (LPE) 591, 594
location–allocation problem 769
location-scale family 352
logistic regression (LR) 537, 602
log-linear process (LLP) 933
lognormal distribution 11, 351, 400
– CDF 400
– PDF 400
– quantiles 400
logrank test 348
LOTUS model 540, 541
low turnaround index (LTI) 905
lower control limit (LCL) 969
lower specification limit (LSL) 195
lowest class first (LCF) 1000
LR discriminant analysis 601
lymphoblastic leukemia (ALL) 601

M

Mahalanobis–Taguchi system (MTS) 665
maintenance 807
– action 826
– cost 826
– model 831
– threshold 807
manufacturing process modeling 665
marginal testing effort function (MTEF) 492
Mark space 138
marked point process (MPP) 137
Markov chain marginal bootstrap (MCMB) 674, 680, 681
Markov processes 32
MART, multiple additive regression tree 567
matching word 782
mathematical maintenance cost 808
Matlab 663
maximal margin 1024
maximum likelihood (ML) 484, 527, 538, 709, 981
– estimates 350, 355, 361, 513, 538
– exact 981
– for ALT 399
– procedure 674
– software for ATs 424
maximum likelihood estimation (MLE) 3, 18, 49, 54, 84, 357, 513, 689
maximum window size (MWS) 1013
mean absolute deviation (MAD) 122, 913
mean absolute percentage error (MAPE) 913
mean logistic delay time (MLDT) 1051
mean magnitude of relative error (MMRE) 1025
mean residual life (MRL) 66, 81
mean square error (MSE) 221, 559, 640, 730, 945
mean time before failure (MTBF) 915
mean time between failures 35
mean time between replacement (MTBR) 907
mean time to failure (MTTF) 6, 792, 836, 837, 1045, 1051
mean time to repair (MTTR) 916, 1051
mean time to system failure 841
mean value function 510, 517
means squares (MS) 708
measurement system analysis (MSA) 961, 963
median of the absolute deviation (MAD) 533, 593
memoryless property 9
method of moment 19, 362
microarray 719
microarray and GeneChip™ gene expression 591
minimal maintenance 807
minimal repair 98, 99, 101, 105, 838, 840, 842, 843
minimum
– cardinality (MinCard) 662
– cost flow (MCF) 759
– cut sets (MCS) 57
– error pruning (MEP) 558
– mean squared error 176
– path sets (MPS) 57
– spanning tree (MST) 754
misclassification penalized posterior (MiPP) 600
mixed integer linear programming model (MILP) 768
Miyazawa’s rate conservation law (RCL) 148
model checking 444
model selection 101
model validation 102
modeling 98
modeling process 99
modeling usage rates 108
moment generating function (MGF) 80
moments 63
Monte Carlo analysis 155
Monte Carlo Newton-Raphson (MCNR) 694
Monte Carlo simulation (MCS) 793
MTTF 837
multi-collinearity 540, 549
multidimensional mixed sampling plans 276
multidimensional OLAP (MOLAP) 654
multi-objective optimization problems 752
multi-objective transportation problem (mTP) 767
multiple-dependent state plan 270
multiple-priority dual queues (MPDQ) 993
multistage process planning (MPP) 760
multi-state degraded system 807
multivariate adaptive regression splines (MARS) 568
multivariate cumulative sum (MCUSUM) 983
multivariate EWMA 333
multivariate exponentially weighted moving average (MEWMA) 983
multi-way semilinear models (MW-SLM) 724
MUMCUT 453
mutation 750
myeloid leukemia (AML) 601

N

Nelder–Mead downhill simplex method 807
neural network 651, 658, 659, 661, 663, 666
new, unique, and difficult (NUD) 966, 967
non-homogeneous Poisson process (NHPP) 41, 478, 481–483, 488, 490, 493, 507, 932
nonlinear programming (NLP) 427
nonoverlapping batch means 177
nonparametric regression 657
nonparametric tolerance limits 30
normal distribution 10, 79, 85
normal parameters 27
nutritional prevention cancer (NPC) 743

offspring 750
one-dimensional models 99
online analytical processing (OLAP) 654
operating characteristic 264
operator 750
opportunistic scheme 831
optimal burn-in 162
optimal hyperplane 1026
optimal specification 194
optimization 214, 479, 488, 493, 494, 828
optimum test plan 359
order crossover (OX) 762
order statistics 82, 361
orderly point process 146
orthogonal array 574
orthogonal polynomials 194
outlier 525
out-of-bag (oob) observation 568
overlapping batch means 177

P
package-level burn-in (PLBI) 161
Page’s CUSUM 329
Palm distribution 137, 146
Palm transformation 146
PAR 845
parallel redundant system 836, 839, 841
parallel system 841
parameter estimation 18
parameter optimization 213
parametric yield 155
Pareto distribution 15, 88
Pareto solution 752
partial likelihood 388–391
partial one-dimensional (POD) 540
partial-mapped crossover (PMX) 762
penalized quasi-likelihood (PQL) method 696
perfect repair 98, 100, 105, 106
periodic replacement 836, 838–840
pessimistic error pruning (PEP) 558
Pham distribution 16
phased array radar 836, 843, 845
physics-of-failure (POF) 160
pivotal vector 363
planning multiple-step SSALT 435
point estimation 18
point-stationary 137
Poisson arrivals see time averages (PASTA) 1004
Poisson distribution 8, 79, 88, 282, 284
Poisson process 37, 89
policy specification and enforcement language (PSEL) 460
population 750
positive FDR (pFDR) 610
prediction interval 113–116
prediction method 553
predictive data modeling 1023
predisposition 498
preventive maintenance (PM) 792, 793, 830, 836–840, 842, 844, 953
principal components 338
principle-component analysis (PCA) 608
printed circuit board (PCB) 653, 970
proactive technique 154
probabilistic model-based clustering (PMC) 613
probabilistic processes 809
probabilistic rational model (PRM) 608
probability density function (PDF) 4, 80, 197, 293, 361, 371, 400, 510, 975
probability limit 282, 284, 288, 289
probability plot 49, 399
– application 406, 408, 410, 411, 413–415, 417, 419, 420
probe yield 155
process
– capability indices (PCI) 961
– improvement 194
– variables (PV) 967
– yield 155
Procrustes model 574
proportional hazard model 348
proportional-integral-derivative 176
pro-rata warranty (PRW) 127

Q
QoS (quality of service) 992
quadratic discriminant analysis (QDA) 602
quadratic programming (QP) 1028
Quadratically constrained quadratic programming (QCQP) 223
qualified manufacturing line (QML) 160
quality engineering 214
– approach 498
quality function deployment (QFD) 961, 962, 967
quality loss function 194
quantile function 53
quasi-renewal process 39
QUEST, quick, unbiased and efficient statistical tree 553, 561, 564, 565, 663
quick-switching sampling 272
quota 781

R
radial basis function (RBF) 639, 660
random
– effect 688–691
– forest 565, 567–569
– shocks 809
– variable (RV) 79, 138
– yield 155
random early-detection queue (RED) 1015
random-coefficient degradation path 809
randomized logistic degradation path 809
rate conservation law 137
Rayleigh distribution 15
reactive technique 154
reciprocity 401
recursive partitioning 543
RED in/out (RIO) 1016
reduced error pruning (REP) 558
regression tree 553
relational OLAP 654
release time 478, 488
reliability 63, 97, 792, 793, 804, 810
– defect 156
– for systems 49
second-order-accurate 674, 676, 679
selection bias 543, 561, 562, 564
self-clocked fair queueing (SCFQ) 992
self-organization maps (SOM) 608, 613, 663
semidefinite program (SDP) 223
semilinear in-slide model (SLIM) 720
semiparametric least squares estimator (SLSE) 722
semiparametric regression model (SRM) 721
sequential sampling 30
service 451
service-oriented architecture (SOA) 444, 451
set-to-zero constraint 539
Shewhart X-bar chart 328
significance analysis of microarray (SAM) 591, 593, 610
simple step-stress ALT (SSALT) 355
Simpson’s paradox 545
simulated annealing (SA) 1052
simulated maximum likelihood estimation 693, 701
simulation
- Archimedean copula 981
- copula 977
- elliptical copula 979
- extrapolation (SIMEX) 699
- framework 454
- single-exponential smoothing (SES) 907
singular value decomposition 576
SIRO (service in random order) 995
Six Sigma black belts (SSBB) 959
Six Sigma process 194, 195
size interval task assignment
- with equal load (SITA-E) 1008
- with unbalanced load (SITA-U) 1008
- with variable load (SITA-V) 1008
Sklar’s theorem 975
sliding window 775
smallest extreme value (SEV) 400, 429
SNR, signal-to-noise ratio 498, 501, 502, 504
software 651–653, 663, 664, 667
- development life cycle (SDLC) 477, 478
- engineering 1023
- engineering applications 1023
- failure data 507
- model 24
- reliability 477, 498
- reliability growth models (SRGMs) 478
- reliability model 509
- testing 452, 510
- spatial stationarity 151
- special cause 249
- special-cause charts 176
- spherical regression model 574
- SQL 654
- squared error 102
- SRGM 478, 479, 481–483, 485, 486, 488–493
- standard deviation (s.d.) 945
- standard error rate 501
- standard normal distribution 10
- standardized time series 177
- STATA module 739, 740
- state estimation 793, 794, 801, 804
- static analysis 451
- static burn-in (SBI) 161
- stationary process 137, 140
- stationary sequence 140
- Statistica 663
- statistical inference 673
- statistical learning theory (SLT) 1025
- statistical process control (SPC) 173, 249, 250, 274, 285, 289, 664, 962, 964
- step-stress accelerated life test 349
- stepwise cross-validated discriminant procedure (SCVD) 601
- stochastic approximation 694
- stochastic discount factor (SDF) 862
- stochastic process 32
- stress–response relationship (SRR) 356
- structural risk minimization (SRM) 1025
- Student’s t distribution 12
- S–U algorithm 694
- subsequent failures 99, 103, 105
- sum of squared errors (SSE) 223
- supervised learning 592, 651, 655, 656, 659, 661
- suppliers, inputs, process, outputs and customer (SIPOC) 962
supply chain management (SCM) 768
support vector classifier (SVC) 1024
support vector machine (SVM) 568, 599, 602, 608, 615, 1023
surface mount technology (SMT) 970
survival analysis 387
survival function (SF) 80
survivor function 99
SVM flow chart 1024
Swiss cheese 453
symbolical-design faults 498, 504
system evaluation 451
system maintenance 826
systematic yield 155

transmission control protocol (TCP) 993
traveling salesman problem (TSP) 756
tree 651, 657, 658, 661, 663, 666
tree coefficient 658
trees and forests 608
trend-adjusted exponential smoothing (TAES) 907
two-dimensional models 103
twoing rule 557
two-way semilinear model (TW-SLM) 719, 720
type II censoring 361

unbiased linear estimating equation 678
uniform design 229–231, 236–245
uniform distribution 10, 87
universal description, discovery, and integration (UDDI) technique 471
unsupervised learning 592, 651, 655, 661, 663
upper control limit (UCL) 969, 984
upper specification limit (USL) 195
usage 97
usage rates 109
useful life 159

validation 107
value at risk (VaR) 133
Vapnik–Chervonenkis (VC) dimension 1024
variable sampling intervals (VSI) 310
variance components 689
variance inflation factor (VIF) 712

variance matrix 22
voice of customer (VOC) 966
vtub-shaped hazard rate 15

wafer-level burn-in (WLBI) 161
wafer-level burn-in and testing (WLBT) 161
wafer-level reliability (WLR) 160
warranty 125
weakest link pruning 557
web services (WS) 444
Weibull derived 63
Weibull distribution 12, 49, 63, 87, 287, 350, 351, 400, 429
– CDF 400
– PDF 400
– quantiles 400
Weibull models 99
Weibull probability plot 100, 109
Weibull probability plot 63
weighted cardinality 662
weighted moving averages (WMA) 907
weighted RED (WRED) 1016
weighted round-robin (WRR) 992, 1016
white-box modeling 98
WPP Weibull probability plot 63

Y

Y2K (year 2000) testing 444
yield defect 156
yield modeling 666

Z

zero-defect process 281, 289
zero-inflated Poisson distribution 284–286