A
Acceptable daily intake (ADI), 161, 268
Acute lung injury (ALI), 195
Acute pulmonary vasodilator test (APVT), 196–197
Adenine nucleotide translocase (ANT), 38
Aldehyde dehydrogenase (ALDH2), 212
ALI. See Acute lung injury
Alkyl nitrite, 228
American College of Cardiology Foundation (ACC) Committee, 211
American Heart Association (AHA), 106, 211
Amyl nitrite, 228
Anammox, 15
Angina, 211
 nitrates, 228
 nitroglycerin, 228
Angiotensin-converting enzyme (ACE) inhibitors, 211
ANT. See Adenine nucleotide translocase
Antioxidants, 109–110, 238
APVT. See Acute pulmonary vasodilator test
Arginine, 111–112
Atherosclerosis, 177
Atmospheric nitrogen
 fossil fuel combustion, 12
 Haber-Bosch process, 12
 lightning, 12–13
 microbial dinitrogen fixation, 11–12

B
β-adrenergic agents, 191
Beta-blockers, 211
Bioactive nitrogen oxides
 anammox, 15
 atmospheric nitrogen fixation, 12–13
 biological nitrogen cycle, 10
denitrification, 13–14
dissimilatory nitrate reduction to ammonia, 14
enterosalivary circulation of, 16–17
fixed nitrogen, 11
fossil fuel combustion, 12
Haber-Bosch process, 10, 12
L-arginine nitric oxide synthase pathway, 15–16
mammalian nitrate cycle, 11
microbial dinitrogen fixation, 11–12
nitrate and nitrite, dietary sources of, 16
nitrate assimilation, 13
nitrification, 13
nitrogen balance, mammals, 15
nitrogen fixation, 11
plant growth, 11
urinary nitrate excretion, 18
Biochemical indicators, 89
Blue-baby syndrome, 142
BPD. See Bronchopulmonary dysplasia
Breast milk
 cardiovascular benefits, 151
 characteristic changes
 composition, 145
 foremilk and hind milk, 146
 nitrite and nitrate consumption, 146
 vs. formula and cows milk, 147–149
 immunological benefits, 142, 151
 infants
 health risks, 142
 immune system development, 144
 intestinal microflora changes, 144–145
 vitamin D supplementation, 144

Breast milk (continued)
methemoglobin, 142
nitrite and nitrate exposure level, 149–150
nitrite source, 149
nutritional benefits, 141–142
physiological benefits, 151

Bronchopulmonary dysplasia (BPD), 194–195

C
CAD. See Coronary artery disease
Calcitonin gene-related peptide (CGRP), 216
Calcium-channel blocker (CCB), 196

Cancer
animal studies, 266–267
epidemiologic associations
gastric cancer, 273
Helicobacter pylori infection, 274
NIH-AARP cohort, 275, 276
nitrosamines, 273
quintile of consumption, 275

FFQ, 271–272

human exposure
ADI values, 268
carcinogenicity, 267
DASH diet, 268
factors, 267
IARC report, 267
urinary N-nitroso compounds w, 269
variability of vegetables, 268
nitrate and nitrite intake, 92
relative risk, 270

WCRF, 271

Candida albicans, 24
Carbohydrates, 104–105

Carcinogenicity, 267
Cardiovascular disease
breast milk, infants, 151
nitrate and nitrite intake, 93

Cardiovascular system, 3
endothelial dysfunction
endothelium
endothelial dysfunction (see Endothelial dysfunction)
physiological effects, *NO, 177–178
platelet aggregation, 177–178
tetrahydrobiopterin supplement, 177
vascular perfusion, 177
nitrite and nitric oxide therapy (see also Cytoprotection, nitrite therapy)
dosage, 228
medical history, 228

CCB. See Calcium-channel blocker
cGMP. See Cyclic guanosine monophosphate

CGRP. See Calcitonin gene-related peptide
Chelatable iron pool, 176
Chronic obstructive pulmonary disease (COPD), 58
Clostridium botulinum, 70
Cocoa products, 130–131
Colostrum, 145
Committee on Nitrate and Alternative Curing Agents in Food, 75
Congenital heart disease (CHD), 193
Congestive heart failure, 211
COPD. See Chronic obstructive pulmonary disease
Coronary artery disease (CAD), 129, 131, 255
ORN therapy, 219

Cured meat
addition of salt, 82
nitrate and nitrite, history of
hemoglobin, 71
nitrosylmyoglobin and nitrosylprotop-
haem, 72
salt peter, 71
nitrite salts, 82
regulatory restrictions of
Bureau of Animal Industry, 72
nitrite cured hams, 72
USDA, 73
residual nitrate and nitrite levels, 74–77
Cyanide radical, 213
Cyclic guanosine monophosphate (cGMP), 190, 192

Cytoprotection, nitrite therapy
cardiovascular disease, 232
clinical trials, 236–237
ischemia-reperfusion injury
cerebral, 232–233
hepatic, 233–234
renal, 234
low dosage, 236
peripheral arterial disease, 235
plasma level, biomarker, 237
pulmonary disorders, 234–235
sickle cell disease, 235–236

D
Diastolic blood pressure (DBP), 34
Dietary approaches to stop hypertension (DASH), 53, 107, 290
Dietary factors, 86–87
Dietary flavonoids
and cardiovascular diseases, 130–132
flavanols, 130
nitric oxide activity
acute cardiovascular diseases, 128–129
chronic cardiovascular diseases, 126–128
protection mechanisms
cellular targets, 133–135
nitrate–nitrite–NO pathway, 132–133
sub-classes, 129
Dietary reference intake (DRI), 164
Dietary regulation
dietary nitrate and nitrite intakes
DASH diet, 165
DRI, 164
EFSA, 163, 164
estimates, 160–161
health benefits, 162–163
IARC, 163, 164
lack of inclusion, 165
negative health effects, 161–162
WHO ADI levels, 161
drinking water, 159–160
endothelial nitric oxide synthase (eNOS), 23, 106, 172, 210, 229
Endothelium-derived relaxing factor (EDRF), 50
Environmental Protection Agency (EPA), 81
Epicatechin, 132
Erythrocytes, 180–181
Escherichia coli, 24
European Food Safety Authority (EFSA), 163, 164
Eutrophication, 159
Extracorporeal membrane oxygenation (ECMO), 194
Flavanols, 129–130
Food
nitrate and nitrite
clostridium botulinum, 82
drinking water, 80–81
EPA, 83
gastrointestinal cancer, 82
meat curing, 71–72
meat products, 74–77
regulatory restrictions of, 72–74
vegetables, 77–80
N-nitrosamines, 70
Food-frequency questionnaire (FFQ), 88–89, 271–272
Free radicals, 176
French paradox, 105–106
Glucocorticoids, 191
Haber-Bosch process, 10
Herbal medicine (HM)
biosafety, 259–260
borneol, 258
CAD, 255
Danshen, 258
mitochondrial compartments, 254
nitrogen cycle, 252–253
nitroglycerin, 257

Herbal medicine (HM) (continued)
nonenzymatic reactions, 254
NO production and insufficiency, 252
reductase activity, 255
S-nitrosation, 254
TXL, 258–259
vasodilation, 257
High protein diets, 107
Hypolipidemic agents, 112–113
Hypoxemia
PPHN, newborn, 194
ventilation-perfusion inequality, 195
Hypoxia, 181
blood vessel vasodilation, 236
dysfunction, eNOS, 230
pulmonary, RSNO depletion, 234

I
IARC. See International Agency for Research on Cancer
inducible nitric oxide synthase (iNOS), 23, 172
Infants
bleeding risk, inhaled NO, 198
BPD, 194–195
breast milk
health risks, 142
immune system development, 144
intestinal microflora changes, 144–145
vitamin D supplementation, 144
PPHN, 194
Inflammation, 172
Inhaled nitric oxide
clinical applications
BPD, 194–195
improving ventilation-perfusion, 195
PPHN, newborn, 194
pulmonary vasoreactivity test, 196–197
right ventricle failure, 195–196
extrapulmonary effects
elicit, 200–201
ischemia-reperfusion injury, 199
platelets inhibitions, 198
systemic vasoconstriction, hemolysis, 199–200
nitrites, 193
nitroglycerin, 193
O-nitrosoethanol, 193
pulmonary vasodilator effects
breathing NO, 192
mechanism, 192
NO donor, 191
safe administration
bleeding risk, 198
methemoglobinemia, 198
pulmonary vascular rebound, 198
S-nitrosothiol, 193
Inorganic nitrate and nitrite, bioconversion process, 229–230
iNOS. See inducible NOS
Institute of Medicine (IOM), 165
International Agency for Research on Cancer (IARC), 50, 163, 164, 267
Ischemia-reperfusion (I-R) injury, 33
breathing NO, 199
characteristics, 230
nitrite therapy, 231 (see also
Cytoprotection, nitrite therapy)
protection
endothelial dysfunction, 231
mitochondrial dysfunction, 230
nitrite-derived NO, 230–231
Ischemic heart disease, 238
Isosorbide dinitrate (ISDN), 210

J
Janus-faced molecule
cardiovascular system, 176–180
erythrocytes, 180–181
immune system, 181–182
nervous system, 182–183

K
Kidney injury, 234

L
L-arginine, 4, 172, 173, 180, 283, 287
L-carnitine, 111
L-citrulline, 180
Lipids, 102
L-NAME. See N^6-nitro-L-arginine methyl ester
Lung injury
acute, 195
BPD, premature infants, 194
nitric acid, 191

M
Mammals
blood flow control, nitrite, 28
cardioprotective and blood pressure lowering
DBP, 35
dietary nitrate, 35
hypertension, 34
Index

nitratenitrite-NO pathway, 37
renal microvasculature, 36
cardiovascular disease, 40
commensal bacteria, 22
enterosalivary recirculation, 24
hypoxic signaling, nitrite, 28
L-arginine-nitric oxide synthase (NOS)-system, 22
metabolic syndrome, 38–39
nitrate-nitrite
ischemia-reperfusion injury, 33–34
mitochondria and oxygen consumption, 37–38
nitrite and dietary compounds, 27
nitrite bioactivation, mechanisms of hypoxic vasodilation, 29
R-state/oxygenated hemoglobin, 29
venous circulation, 29
NO synthase and diet
endogenous nitrate and nitrite, 22
endogenous vs. exogenous sources, 23
plasma protein ceruloplasmin, 22
vegetables, 23
nutritional implications, 39–40
redox reactions, 23
stomach NO generation
enteropathogens, 24
gastric mucosal blood flow, 26
gastroprotection, 27
salivary nitrite, 25
symbiosis, 26
Matrix metalloproteinase-9 (MMP-9), 218
Maximum contaminant level (MCL), 81
Meconium, 145
Mediterranean diet, 106–107
Methemoglobin, 191
Methemoglobinemia, 5, 142–143, 198
Mitochondrial dysfunction, 230
MMP-9. See Matrix metalloproteinase-9
Monounsaturated fat, 102
Myocardial infarction (MI)
nitrite administration, 181
NTG dosage, 211
right ventricular failure, 196
Myosin light chain kinase (MLCK), 175
N
NAR. See Nitrate reductase enzyme
National Academy of Sciences (NAS), 75
Neisseria gonorrhoea, 14
Neonates, 145, 151
Neuronal nNOS, 172
Neutrophil oxidase, 180

Niacin, 109
Nitrate–nitrite–nitric oxide pathway. See also Mammals
chemical biology of, 22
dietary nitrate, 36
enterosalivary, 25
herbal medicine, heart disease
biosafety, 259–260
borneol, 258
CAD, 254, 255
Danshen, 258
diagnosis and treatment, 256
mitochondrial compartments, 254
nitrogen cycle, 252–253
nitroglycerin, 257
NO bioactivity, 257
nonenzymatic reactions, 254
NO production and insufficiency, 252
S-nitrosation, 254
therapeutic effect, 260
TXL, 258–259
vasodilation, 257
L-arginine, 6
NO production, 35
oral commensal bacteria, 4
therapeutics, 37
Nitrate reductase enzyme (NAR), 14
Nitric oxide (NO)
biochemical action and targets
radicals, 176
reactivity and diffusivity, 174–175
transition metals, 175–176
DASH diet, 290
dietary flavonoids
acute cardiovascular diseases, 128–129
chronic cardiovascular diseases, 126–128
dietary supplementation, 286
endothelial function, 285
enzymatic reaction
isoforms, 172
signaling mechanism, 172–173
exercise training, 285–286
formation of, nitrite, 174
health and disease
cardiovascular system, 176–180
erthrocytes, 180–181
immune system, 181–182
nervous system, 182–183
hypothetical graphical representation, 286
inhaled therapy, 283
L-arginine, 283, 287
method of delivery, 283
morbidity and mortality, 289
nitrite/nitrate formation, 173–174
Nitric oxide (NO) (continued)
nitrite reduction, 284
nitroglycerin, 283
NO index, 288–289
ORAC score, 287
pathway
antioxidants, 6
carcinogenic N-nitrosamines, 5
cardiovascular medicine, 3
cell signaling, 3
L-arginine, 4, 5
oral commensal bacteria, 4
plasma nitrite, 4
sensoral communication, 3
sildenafil, 283
VINTAGE MI, 283
Nitric oxide reductases (NOR), 14
Nitric oxide synthase (NOS), 252, 261
DASH diet, 107
dietary supplement
antioxidants, 109–110
arginine, 111–112
L-carnitine, 111
omega-3 fatty acids, 108–109
soy phytoestrogens, 110–111
vitamins B, 109
endothelial dysfunction, 106
French paradox, 105–106
high protein diets, 107
Mediterranean diet, 106–107
nutrition components
carbohydrates, 104–105
lipids, 102
monounsaturated fat, 102
polyunsaturated fat, 102, 104
protein, 103
regulation, 100–101
ultra-low fat diets, 107–108
vascular homeostasis, 100
Nitrification, 253
Nitrogen oxides
diet
animal manure, 52
ascorbate/erythorbate salts, 53
chemical fertilizers, 52
cured meats, 54
nitrite and nitrate, 52
nitrogen compounds, 52
oral cavity, 54
vegetables and fruits, 53
endogenous production
NO formation, 50
plasma nitrite, 51
steady-state concentrations, nitrite, 51
vascular endothelial cells, 50
nitrite and nitrate, nitrosative chemistry of,
58–60
non-dietary sources
fossil fuels, 56
photo catalysis, 57
potassium nitrate, 58
pharmaceuticals, 60
saliva, 56
water, 54–55
Nitroglycerin (NTG), 228
chest pain patients, angina pectoris, 193
management, myocardial infarction, 211
ORN family member, 210
Nitrosamines, 273
Nitrous acid (HNO₂), 5
Nitrovasodilators
anti-aggregatory effects, platelets, 216–217
cardiovascular disease, 210
clinical use, 210–212
congestive heart failure, 211
dosage, 214
organic nitrates
ALDH2, NTG bioactivation, 212–213
cardiovascular mechanisms, 215–216
clearance-based pathway, 212
mechanism-based metabolic pathway, 212
NTG denitration, 213
therapy, 219–220
pharmacokinetics, 214–215
sodium nitroprusside metabolism,
213–214
structure, 210
tolerance
chronic nitrate exposure, 217
cross-tolerance, 217–218
oxidation, signaling proteins, 218
self-tolerance, 218
spermine NONOate, 219
sulfhydryl (-SH) involvement, 217
N-nitrosamines (RNNO), 200, 238
Nonsteroidal anti-inflammatory drug (NSAID), 26
NOR. See Nitric oxide reductasesdrug
Normoxia, 230
NOS. See Nitric oxide synthase
NSAID. See Nonsteroidal anti-inflammatory drug
NTG. See Nitroglycerin
Nursing, 144
Nutritional epidemiology
dietary factors, 86–87
diet assessment methods
biochemical indicators, 89
food-frequency questionnaire, 88
nitrate and nitrite intake
assessment of, 90–91
cancer, 92
cardiovascular disease, 93
study designs, 86–88
Nutrition components
nitric oxide synthase pathway
lipids, 102
monounsaturated fat, 102
polyunsaturated fat, 102, 104
protein, 103
\(N^\circ\)-nitro-L-arginine methyl ester (L-NAME), 26

O
Observing protein and energy nutrition (OPEN) study, 272
Omega-3 fatty acids, 108–109
O-nitrosoethanol, 193

Organic nitrates (ORN)
cardiovascular mechanisms, 215–216
clinical use, 210–212
metabolism
\(\text{ALDH2, NTG bioactivation, 212–213} \)
clearance-based pathway, 212
mechanism-based metabolic pathway, 212
NTG denitration, 213
therapy
endothelial dysfunction, 219
toxicity, 219–220
vascular oxidative stress, 219
Oxygen radical absorbance capacity (ORAC), 287

P
PDE5 inhibitors, 193
Peripheral arterial disease (PAD), 235
Persistent pulmonary hypertension (PPHN), 194
Polyphenols, 129
Polyunsaturated fat, 102, 104
Prostacyclin, 178
Pulmonary artery pressure (PAP), inhaled NO, 192
Pulmonary disorders, 234–235
Pulmonary hypertension
in animal, nitroglycerin inhalation, 193
inhaled NO, 195
neonatal, 194
NO-donor compounds, 191
rebound, 198
Pulmonary hypoxia, 8
Pulmonary vascular disease, 194

R
Reactive nitrogen intermediates (RNIs), 25
Reactive oxygen species (ROS), 230
Red wine, 131
Red yeast rice, 113
Relative risk (RR), 270, 274–276
Right ventricular myocardial infarction (RVMI), 196
RNIs. See Reactive nitrogen intermediates

S
Sepsis, 182
S-glutathionylation, 218
Sickle cell disease, 235–236
Sildenafil, 215
Sildenafil citrate, 252
Smooth muscle cell (SMC), 177
S-nitrosation, 254
S-nitrosohemoglobin (SNOHb), 181
S-nitrosothiols (RSNO), 193, 200
Society of Agricultural and Biological Engineers, 160
Sodium nitroprusside metabolism, 213
Soluble guanylyl cyclase (sGC), 175, 190, 192
Soy phytoestrogens, 110–111
Superoxide, 179, 180

T
Tetrahydrobiopterin (BH4) supplement, 177
Thiosulfate, 213
Thrombosis, 177
Tongxinluo (TXL), 258, 259
Trinitrotoluene (TNT), 57

U
U46619, 192, 193
Ultra-low fat diets, 107–108
United States Department of Agriculture (USDA), 70

V
Vascular homeostasis, 100
Vascular interaction with age in myocardial infarction (VINTAGE MI), 283
Vasodilation
hypoxia, 180–181
nitrite, 229
NO-donor compounds, 191
ORN dosage, 215
Vitamins B, 109
Vitis vinifera, 131

W
Western diet, 106
World Cancer Research Fund (WCRF), 92, 271, 272

X
Xanthine dehydrogenase (XD), 179
Xanthine oxidoreductase (XO/XOR), 31, 179

World Health Organization (WHO), 161
Dr. Adrianne Bendich has recently retired as Director of Medical Affairs at GlaxoSmithKline (GSK) Consumer Healthcare where she was responsible for leading the innovation and medical programs in support of many well-known brands including TUMS and Os-Cal. Dr. Bendich had primary responsibility for GSK’s support for the Women’s Health Initiative (WHI) intervention study. Prior to joining GSK, Dr. Bendich was at Roche Vitamins Inc. and was involved with the groundbreaking clinical studies showing that folic acid-containing multivitamins significantly reduced major classes of birth defects. Dr. Bendich has co-authored over 100 major clinical research studies in the area of preventive nutrition. Dr Bendich is recognized as a leading authority on antioxidants, nutrition and immunity and pregnancy outcomes, vitamin safety and the cost-effectiveness of vitamin/mineral supplementation.

Dr. Bendich, who is now President of Consultants in Consumer Healthcare LLC, is the editor of ten books including *Preventive Nutrition: The Comprehensive Guide For Health Professionals, Fourth Edition* co-edited with Dr. Richard Deckelbaum, and is Series Editor of *Nutrition and Health* for Springer/
Humana Press (www.springer.com/series/7659). The Series contains 40 published volumes - major new editions in 2010-2011 include *Vitamin D, Second Edition* edited by Dr. Michael Holick; “*Dietary Components and Immune Function*” edited by Dr. Ronald Ross Watson, Dr. Sherma Zibadi and Dr. Victor R. Preedy; “*Bioactive Compounds and Cancer*” edited by Dr. John A. Milner and Dr. Donato F. Romagnolo; “*Modern Dietary Fat Intakes in Disease Promotion*” edited by Dr. Fabien DeMeester, Dr. Sherma Zibadi, and Dr. Ronald Ross Watson; “*Iron Deficiency and Overload*” edited by Dr. Shlomo Yehuda and Dr. David Mostofsky; “*Nutrition Guide for Physicians*” edited by Dr. Edward Wilson, Dr. George A. Bray, Dr. Norman Temple and Dr. Mary Struble; “*Nutrition and Metabolism*” edited by Dr. Christos Mantzoros and “*Fluid and Electrolytes in Pediatrics*” edited by Leonard Feld and Dr. Frederick Kaskel. Recent volumes include: “*Handbook of Drug-Nutrient Interactions*” edited by Dr. Joseph Boullata and Dr. Vincent Armenti; “*Probiotics in Pediatric Medicine*” edited by Dr. Sonia Michail and Dr. Philip Sherman; “*Handbook of Nutrition and Pregnancy*” edited by Dr. Carol Lammi-Keefe, Dr. Sarah Couch and Dr. Elliot Philipson; “*Nutrition and Rheumatic Disease*” edited by Dr. Laura Coleman; “*Nutrition and Kidney Disease*” edited by Dr. Laura Byham-Grey, Dr. Jerriylynn Burrowes and Dr. Glenn Chertow; “*Nutrition and Health in Developing Countries*” edited by Dr. Richard Semba and Dr. Martin Bloem; “*Calcium in Human Health*” edited by Dr. Robert Heaney and Dr. Connie Weaver and “*Nutrition and Bone Health*” edited by Dr. Michael Holick and Dr. Bess Dawson-Hughes.

Dr. Bendich served as Associate Editor for “Nutrition” the International Journal; served on the Editorial Board of the Journal of Women’s Health and Gender-based Medicine, and was a member of the Board of Directors of the American College of Nutrition.

Dr. Bendich was the recipient of the Roche Research Award, is a *Tribute to Women and Industry* Awardee and was a recipient of the Burroughs Wellcome Visiting Professorship in Basic Medical Sciences, 2000-2001. In 2008, Dr. Bendich was given the Council for Responsible Nutrition (CRN) Apple Award in recognition of her many contributions to the scientific understanding of dietary supplements. Dr Bendich holds academic appointments as Adjunct Professor in the Department of Preventive Medicine and Community Health at UMDNJ and has an adjunct appointment at the Institute of Nutrition, Columbia University P&S, and is an Adjunct Research Professor, Rutgers University, Newark Campus. She is listed in Who’s Who in American Women.
About the Editors

Nathan S. Bryan, Ph.D.
Assistant Professor of Molecular Medicine
The University of Texas Health Science Center at Houston Houston, Texas

Dr. Nathan S. Bryan is an Assistant Professor of Molecular Medicine within the Brown Foundation Institute of Molecular Medicine, part of the School of Medicine at the University of Texas Health Science Center at Houston. He is also on faculty within the Department of Integrative Biology and Pharmacology and Graduate School of Biomedical Sciences at the UT Houston Medical School. Dr. Bryan earned his undergraduate Bachelor of Science degree in Biochemistry from the University of Texas at Austin and his doctoral degree from Louisiana State University School of Medicine in Shreveport where he was the recipient of the Dean’s Award for Excellence in Research. He pursued his post-doctoral training as a Kirschstein Fellow at Boston University School of Medicine in the Whitaker Cardiovascular Institute. Dr. Bryan joined the Institute of Molecular Medicine, University of Texas Health Science Center in Houston, in June 2006 with his primary
appointment within the Texas Therapeutics Institute. In 2007, he was recognized as one of the University’s Most Accomplished Young Investigators. He is an active member of the Nitric Oxide Society, Society for Free Radical Biology and Medicine and the American Heart Association.

Dr. Bryan’s research is dedicated to providing a better understanding of the interactions of nitric oxide and related metabolites with their different biological targets at the molecular and cellular level and the significance of these reactions for physiology and pathophysiology. Attempts are made to identify what particular changes in NO-related signaling pathways and reaction products occur in disease states such as endothelial dysfunction, ischemia/reperfusion, tissue/cardiac protection, diabetes, atherosclerosis and inflammation with the aim of testing their amenability as biomarkers for diagnosis and/or treatment of specific disease. Current research is directed to understand the interactions of exogenous dietary nitrite/nitrate (NOx) on the endogenous NO/cGMP pathway and how perturbations in each system affect cardiovascular health. Dr. Bryan and colleagues recently discovered that nitrite is a biologically active molecule which was previously thought to be an inert breakdown product of NO production. These findings have unveiled many beneficial effects of nitrite in the treatment and prevention of human disease. These discoveries may provide the basis for new preventive or therapeutic strategies in diseases associated with NO insufficiency and new guidelines for optimal health. Dr. Bryan has published a number of highly cited papers and authored or edited 4 books.
Dr. Joseph Loscalzo is Hersey Professor of the Theory and Practice of Medicine at Harvard Medical School, and Chairman of the Department of Medicine, and Physician-in-Chief at Brigham and Women’s Hospital. Dr. Loscalzo received his A.B. degree, summa cum laude, his Ph.D. in biochemistry, and his M.D. from the University of Pennsylvania. His clinical training was completed at Brigham and Women’s Hospital and Harvard Medical School, where he served as Resident and Chief Resident in medicine and Fellow in cardiovascular medicine.

After completing his training, Dr. Loscalzo joined the Harvard faculty and staff at Brigham and Women’s Hospital in 1984. He rose to the rank of Associate Professor of Medicine, Chief of Cardiology at the West Roxbury Veterans Administration Medical Center, and Director of the Center for Research in Thrombolysis at Brigham and Women’s Hospital. He joined the faculty of Boston University in 1994, first as Chief of Cardiology and, in 1997, Wade Professor and Chair of Medicine, Professor of Biochemistry, and Director of the Whitaker Cardiovascular Institute. He returned to Harvard and Brigham and Women’s Hospital and Harvard Medical School in 2005.

Dr. Loscalzo is recognized as an outstanding cardiovascular scientist, clinician, and teacher. He has received many awards, including the Clinician-Scientist Award, the Distinguished Scientist Award, the Research Achievement Award, and the Paul Dudley White Award from the American Heart Association; a Research Career Development Award, a Specialized Center of Research in Ischemic Heart Disease Award, and a MERIT Award from the National Institutes of Health; the George W. Thorn Award for Excellence in Teaching at Brigham and Women’s Hospital, and Educator of the Year Award in Clinical Medicine from Boston University; the
Glaxo Cardiovascular Research Award, and the Outstanding Investigator Prize from the International Society for Heart Research; and election to the American Society for Clinical Investigation, the Association of American Physicians, and the Institute of Medicine of the National Academy of Sciences. He has served on several NIH study sections and editorial boards, and has chaired the Gordon Conference on Thrombolysis. He served as an associate editor of the New England Journal of Medicine for nine years, Chair of the Cardiovascular Board of the American Board of Internal Medicine, Chair of the Research Committee of the American Heart Association, Chair of the Scientific Board of the Stanley J. Sarnoff Society of Fellows for Research in the Cardiovascular Sciences, and Chair of the Board of Scientific Counselors of the National Heart, Lung, and Blood Institute of the National Institutes of Health. He is currently Editor-in-Chief of Circulation, a senior editor of Harrison’s Principles of Internal Medicine, a recent member of the Advisory Council of the National Heart, Lung, and Blood Institute, and a recent member of the Council of Councils of the National Institutes of Health.

Dr. Loscalzo has been a visiting professor at many institutions, holds two honorary degrees, has authored or co-authored more than 600 scientific publications, has authored or edited 27 books, and holds 31 patents for his work in the field of nitric oxide. He is also the recipient of many grants from the NIH and industry for his work in the areas of vascular biology, thrombosis, and atherosclerosis over the past twenty-five years.