Subject Index

Note: The letters ‘f’ and ‘t’ following locators refer to figures and tables respectively.

A
Abdominal insufflation, genitourinary laparoscopy, 24–26, 25f–26t
carbon dioxide (CO₂), 25
helium, effects of, 26
Access of robotic equipment/instrumentation, 48–50
blunt access, 49–50
Hasson technique, 50
Active electrode monitoring (AEM), 52
Adipose tissue, 4, 6, 20, 125, 126
Adrenal glands, 4–6, 125–126
adrenal medulla, 5
adrenal vein, 5
located in retroperitoneum, 4
retroperitoneal /transperitoneal approach, 5
right/left, 4–5
sympathetic stimulation of, 5
urologic laparoscopic anatomy, 4–6
Adrenal glands, anatomy of, 125–126
Adrenal medulla, 5
Adrenal vein, 5, 8, 126, 127, 129–130, 132
Advantages of robotic-assisted laparoscopy
assistance to pediatric surgeon, 62
evolution of robotic assisted laparoscopy in children, 62–63
robotic pyeloplasty, 63
surgical robotics, groups, 60–61
autonomous systems, 60
surgical assist device, 60
teleoperator or master–slave systems, 61
AEM, see Active electrode monitoring (AEM)
AESOP, see Automated Endoscopic System for Optimal Positioning (AESOP)
Aldosterone, 5
Anesthetic concerns, 204–205
fluoroscopy, 205
hypercarbia, effects of, 205
Antegrade continent enema channel, 178
Anticoagulation, 139, 183
Appendicovesicostomy (mitrofanoff procedure), 4, 63, 196, 208, 210t
Arnold-Chiari malformation, 32
Autoaugmentation, 182, 194–195
Automated Endoscopic System for Optimal Positioning (AESOP), 44, 60
Berci facial closure device, 57
Bladder augmentation, robotic-assisted laparoscopy
contraindications
post-operative complications, 183
indications, 182–183
surgical methods, 182
patient preparation
bowel cleansing for neurogenic bladders, 183
results
laparoscopic vs. robotic approach, 187
technique
ileal patch, detubularization of, 186f
instrumentation required in pediatric patient, 184t
re-establishing bowel continuity, methods of, 185
Bladder autoaugmentation, 194–195, 211
Bladder diverticulum, 189–193
completed two-layer bladder repair, 192f, 193f
cystoscopy, 191
diverticulectomy, 190
excised cyst, note foley in bladder, 193f
isolated bladder diverticulum, 191f
mucosal herniation, 189
transsection of diverticulum at neck, 191f
urachal cyst and bladder cuff, 192f
UTI, 190
voiding cystourethrogram demonstrating congenital diverticulum, 190f
VUR, 190
Captopril, 144
Cardiovascular response, genitourinary laparoscopy, 29–30
Carter-Thomason suture passer, 57
Ceftriaxone, 139
Chromaffin cells, 5
Closed (Veress) technique, 92
CO2 insufflation, 26, 35, 93, 177
Complications/prevention management of robotic surgery
anesthetic concerns, 204–205
fluoroscopy, 205
hypercarbia, effects of, 205
consent, 212
conversion to open, 212
fluoroscopy, 205
patient positioning, 205–207, 207f
adolescents, 206
immediate post-operative photograph, 206f
and padding, 206, 207f
robotic-assisted orchiopexy, immediate post-operative, 206f
persistent pneumoperitoneum, 211–212
morbidity, 211
port site and trocar concerns, 207–208
Hasson technique, 207
pediatric abdomens, 208
reported robotic complications, 208–211, 209t–210t
Computed tomography (CT), 70, 83
Computer-assisted telemanipulators, 60
CO2 partial pressure (PaCO2), 27
CO2 PnP creation, effect of, 31
Cortisol, 5, 30
C-reactive protein (CRP), 34
CRP, see C-reactive protein (CRP)
Cryptorchidism, 18–20
CT, see Computed tomography (CT)
Cyst decortication/pyeloplasty, 7–8
Cystoscopy, 101, 110, 119, 138, 140, 141f, 175, 183, 191, 194, 195, 209t
Cytokines, 34
D

da Vinci® S™ system, 45, 60, 61, 110, 124, 203
 arms, flexible joints, 48f
 components, 46f
 interface panel, 47f
 process after initial access, 48f
Detrusorraphy, 175, 175f, 176f
Dopamine, 5

E

EBL, see Estimated blood loss (EBL)
Electrocautery
 bipolar electrocautery
 instruments, 53
 hot shears tip cover
 accessory, 52
 8 mm PK dissecting forceps
 (Intuitive Surgical Inc.), 54f
 monopolar energy instruments, 53
Endocontrol robot
 operating view, 79f
 robotic scope holder, 78f
 single-port single surgeon
 roboticassisted surgery, 78, 78f
 tip of articulated instrument, 78f
Endo GIA (USSC), 55
Endopath (non-flex and flex), 55
EndoTIP, 50
End tidal CO₂ (ET CO₂), 27
Enterocystoplasty, 182, 183, 187
Entero-enterostomy, 185f
Epinephrine, 5, 30
Estimated blood loss (EBL), 76, 81, 192, 194

F

Flexible robotics, robotic
 ureterorenoscopy, 69–72
 fluoroscopic/endoscopic, modes of
 manipulation, 71, 71f
 holmium–yttrium–aluminum–garnet
 laser lithotripsy, 69
 robotic catheter system, 70, 70f
 steerable catheter system, 70, 71f
 ureteroscope accessories, 69
Fluoroscopy, 205
Fowler Stevens procedure, 198, 199, 200, 201
FRC, see Functional residual capacity
 (FRC)
6 French feeding tube, 177f
Functional residual capacity
 (FRC), 26

G

Genitourinary operations
 appendicovesicostomy (mitrofanoff
 procedure), 196
 bladder autoaugmentation, 194–195
 bladder diverticulum, 189–193
 completed two-layer bladder
 repair, 192f, 193f
 cystoscopy, 191
 diverticulectomy, 190
 excised cyst, note foley in
 bladder, 193f
 isolated bladder diverticulum, 191f
 mucosal herniation, 189
 transection of diverticulum at
 neck, 191f
 urachal cyst and bladder cuff, 192f
 UTI, 190
 voiding cystourethrogram
 demonstrating congenital
diverticulum, 190f
 VUR, 190
management of renal duplication
 anomalies, 196–197
 completed upper-to-lower pole
 end-to-side
 uretero-ureterostomy, 199f
 3 Fr. stent visible in lower pole
 ureter, 199f
 robotic hook electocautery
 dividing detrusor muscle., 198f
 transection of upper pole
 ureter, 198f
upper urinary tract obstruction/
anomalies, 196–197
orchiopexy, robotic, 197–201,
200f, 201f
impalpable testicle, management
of, 197
“neo-internal ring,” 201
second stage Fowler Stevens
procedure, 199
single stage orchiopexy/first stage
Fowler Stevens procedure, 198
trocar placement, 199
retrocaval ureter, 195–196
ureteroureterostomy, 195
urachal anomalies, 193–194
advantages/disadvantage of
laparoscopy, 194
cystoscopy, 194
types, 193
Genitourinary (paediatric) laparoscopy,
physiology of
abdominal insufflation, 24–26,
25t–26t
carbon dioxide (CO₂), 25
helium, effects of, 26
cardiovascular response, 29–30
neurological response, 31–33
Arnold-Chiari malformation, 32
creation of CO₂ PnP, effect of,
31, 32
pulmonary response, 26–29
CO₂ absorption from intra or
retroperitoneal spaces, 26
end tidal CO₂ (ET CO₂), 27
hypoxemia, 28
intra and retroperitoneal CO₂
insufflation, effect of, 26
mechanical effects of PnP, 28
metabolic monitoring/
(VE CO₂), 27
retroperitoneoscopy, 28
renal response, 30
reverse Trendelenburg
position, 31
surgical stress and immune response,
34–35
CO₂ PnP, 34
markers, usage of, 34
MHC/HLA-DR, role of, 34
PnP-mediated immune
modulation, 35
thermoregulation and metabolism,
33–34
heat dissipation, 33
hypothermia, 33
tumour seeding, effect on, 35–36
Gerota’s fascia, 4, 5, 6, 7, 118, 125,
126, 129, 130, 131
Gonadal disjunction, 20

H
Hassan technique, 92, 93, 191, 194, 198
Heminephrectomy, robotic-assisted
laparoscopy
complications, 157
contraindications to RALH, 139
cost analysis, 168
duplicated ureteral system,
embryology of, 138
future developments/tools/technique
variations, 168
indications, 138
operative considerations, 139–144
antibiotic prophylaxis, 139–144
bowel preparation, 139
hemostasis, 144
operation set up and patient
positioning, 145f
port placement for left
heminephrectomy, 146f
surgical approach,
benefits/limitations, 142t–143t
typical surgeon’s preference card,
140t
patient positioning and surgical cart
docking, 144, 146f
preoperative evaluation, 138–139
imaging, results of, 139f
surgical steps
retroperitoneal-lateral approach,
151–156, 152f, 153f, 155f,
158t–160r
retroperitoneal–prone approach, 157
transperitoneal approach, 144–150, 147f, 161t–166t

Hemostasis, instruments, 52–55
electrocautery
bipolar electrocautery
instruments, 53
8 mm PK dissecting forceps
(Intuitive Surgical Inc.), 54f
monopolar energy instruments, 53
stapling devices, cutting and non-cutting, 54–55
titanium clips, advantage of, 54
ultrasonic instruments, 53–54
vascular clamps, 55
suturing, 56
tissue glues, 55–56
crossseal, 55
fibrin sealants, 55
FloSeal, 55
Surgiflo, 55
Tisseel, 55
topical hemostats, 56
Vitagel, 55
tissue handling, 50–51, 51t

Internal spermatic vessels, laparoscopic view of, 21f
Intraabdominal pressure (IAP), 26, 205
Intra- and extra-corporeal methods, 185
Intrabdominal testis, laparoscopic view of, 19f
Intracranial pressure (ICP), 23, 32
Intraluminal surgery, robotic, 77
single-port and robot instruments through bladder, 77f
Intravenous pyelogram (IVP), 138
Ipsilateral renal artery, 5, 126

I
IAP, see Intraabdominal pressure (IAP)
Ice slush delivery mechanisms, 141
ICP, see Intracranial pressure (ICP)
Ileocystoplasty, 182, 195
Imaging improvements, 83–84
image registration and probe localization using magnetic field, 83–84
instruments tracking using optical sensor, 84f

Inosine, 144
Instruments, robotic
cutting, 52, 52f
hemostasis, 52–55
crossseals, 52–55
crossseal, 55
fibrin sealants, 55
FloSeal, 55
Surgiflo, 55
Tisseel, 55
topical hemostats, 56
Vitagel, 55
tissue handling, 50–51, 51t

Internal spermatic vessels, laparoscopic view of, 21f
Intraabdominal pressure (IAP), 26, 205
Intra- and extra-corporeal methods, 185
Intrabdominal testis, laparoscopic view of, 19f
Intracranial pressure (ICP), 23, 32
Intraluminal surgery, robotic, 77
single-port and robot instruments through bladder, 77f
Intravenous pyelogram (IVP), 138
Ipsilateral renal artery, 5, 126
IVP, see Intravenous pyelogram (IVP)

J
Jejunum, 16t, 17

K
Kidney, anatomy of, 126–127

L
Laparoscopic antireflux surgery, 174
Laparoscopic partial nephrectomy (LPN), 81, 137, 141, 164, 165, 166, 197
Laser surgery in urology, robotic, 72–74, 74f
bladder neck division using KTP laser, 73
Endowrist® (Intuitive Surgical) technology, 73
laser robotic partial nephrectomy, 74
neodymium-doped yttrium aluminum–garnet (Nd:YAG) laser, 72
potassium–titanium–phosphate (KTP) laser, 72
prototype laser-delivery device, 72, 73f
robotically assisted radical prostatectomy (RARP), 72
Lich-Gregoir technique, 13, 174
LPN, see Laparoscopic partial nephrectomy (LPN)

M
MACE, see Malone Antegrade Continence Enema (MACE)
MAG-3 diuretic renogram, 138
Magnetic resonance imaging (MRI), 83
Major Histocompatibility Complex (MHC), 34
Malone Antegrade Continence Enema (MACE), 16, 103, 104f
Master input device (MID), 70
MCDK, see Multicystic dysplastic kidney (MCDK)
MHC, see Major Histocompatibility Complex (MHC)
MHC/HLA-DR, 34
Minimal invasive surgery (MIS), 59, 123
MIS, see Minimal invasive surgery (MIS)
Mitrofanoff principle, 178
Motion scaling, 125
MRI, see Magnetic resonance imaging (MRI)
Multicystic dysplastic kidney (MCDK), 125, 130, 133f, 138
Multifire Endo (GIA and TA), 55

N
Nephrectomy/adrenalectomy, robotically assisted laparoscopy
advantages, 124
anatomy
adrenal glands, 125–126
kidney, 126–127
renal vessels, 127
ureters, 127–128
complications and limitations, 134–135
lack of haptic feedback and cost of instrumentation, 134–135
indications, 125
benign and malignant conditions, 125
instrumentation, 124–125
nephrectomy/nephroureterectomy surgical dissection and exposure of kidney, 130–134
operative technique, adrenalectomy, 129–130
results, 134
technique
patient position, in adolescent patients/babies, 128–129
port placement, 129
Nephrectomy/nephroureterectomy in children
significant concepts, 128
transperitoneal/retroperitoneal approach, 128
left kidney, 132
multicystic dysplastic kidney, specimen of, 133f
specimen extraction and drain placement, 133–134
surgical dissection and exposure of kidney
hilar exposure and dissection, 131–132
right kidney, 130–131
technique
patient position, in adolescent patients/babies, 128–129
port placement, 129
ureterectomy, 133
Nephroblastoma, 138
Neurological response, genitourinary laparoscopy, 31–33
Arnold-Chiari malformation, 32
creation of CO₂ PnP, effect of, 31, 32
Norepinephrine, 5, 30
Subject Index

O
Open (Hassan) technique, 50, 92, 93, 191, 194, 198
Open pyeloplasty, 118, 119, 120 retroperitoneal RALP, 118
Optiview system, 50
Orchiopexy, robotic, 197–201, 200f, 201f, 202f, 206, 208
impalpable testicle, management of, 197
“neo-internal ring,” 201
second stage Fowler Stevens procedure, 199
single stage orchiopexy/first stage Fowler Stevens procedure, 198
trocar placement, 199
See also Genitourinary operations

P
PaCO2, see CO2 partial pressure (PaCO2)
PAKY -RCM system, 60
Patent urachus, 12, 193
Patient positioning, 205–207, 207f adolescents, 206
immediate post-operative photograph, 206f
and padding, 206, 207f
robotic-assisted orchiopexy, immediate post-operative, 206f
Peak inspiratory pressure (PIP), 26, 28
Pediatric urologic surgery, robotic assistance to pediatric surgeon, 62
evolution of robotic assisted laparoscopy in children, 62–63
robotic pyeloplasty, 63
PIP, see Peak inspiratory pressure (PIP)
Pneumoperitoneum (PnP), persistent, 211–212
morbidity, 211
Port site and trocar concerns, 207–208
Hasson technique, 207
pediatric abdomens, 208
Postoperative care, pyeloplasty, 119
Potts scissors, 52
Pulmonary response, genitourinary laparoscopy, 26–29
CO2 absorption from intra or retroperitoneal spaces, 26
end tidal CO2 (ET CO2), 27
hypoxemia, 28
intra and retroperitoneal CO2 insufflation, effect of, 26
mechanical effects of PnP, 28
metabolic monitoring/(VE CO2), 27
retroperitoneoscopy, 28
“Purse string” effect, 186–187
Pyelonephritis/renal scarring, 173
Pyeloplasty, robot-assisted postoperative care, 119
results, 119–120, 120
 retrocolic approach, 113–118
hitch stitch, 113–114
reconstruction, 114–116, 115f, 116f
stent positioning, 116–118, 117f
UPJ excision, spatulation, and ureteral transposition, 114, 114f, 115f
retroperitoneal ralp, 118–119
transmesenteric approach, 112–113, 113f
transperitoneal technique, 110–112
general patient preparation, 110
patient positioning and robot set-up, 110–112, 111f, 112f
Y-V PLASTY, 119

R
RALH, see Robotic-assisted laparoscopic heminephrectomy (RALH)
RALS, see Robotic-assisted laparoscopic surgery (RALS)
RARP, see Robotically assisted radical prostatectomy (RARP)
RCM, see Remote catheter manipulator (RCM)
Rectouterine pouch, 13
Remote catheter manipulator (RCM), 70–71, 71f
Remote telepresence surgery, robot-assisted
articulated instrument with laser, light, and suction, 86f
instruments tracking, 86f
laparoscopic compact robot, 85f
projection of the 3D preoperative CT data on the surgical view., 85f
Renal anomalies, 8–10
crossing vessels, 8
duplication anomalies, 8–9
horseshoe kidney, 9
ureteropelvic junction obstruction, 9–10
Renal duplication anomalies, management of, 196–197
completed upper-to-lower pole end-to-side
uretero-ureterostomy, 199f
3 Fr. Stent visible in lower pole ureter, 199f
robotic hook electocautery dividing detrusor muscle, 198f
transsection of upper pole ureter, 198f
upper urinary tract obstruction/anomalies, 196–197
See also Genitourinary operations
Renal response, genitourinary laparoscopy, 30
reverse Trendelenburg position, 31
Retrocaval ureter, 195–196
ureteroureterostomy, 195
Retrocolic approach, pyeloplasty, 113–118
hitch stitch, 113–114
larger patients, difficulty in, 114
reconstruction, 114–116, 115f, 116f
stent positioning, 116–118, 117f
UPJ excision/spatulation/ureteral transposition, 114, 114f, 115f
Retroperitoneal approach, 93–94
Retroperitoneal RALP, pyeloplasty, 118–119
Retroperitoneoscopy, 6, 28, 93, 94, 95
“Robot,” definition, 60
Robotically assisted radical prostatectomy (RARP), 72
Robotic-assisted laparoscopic heminephrectomy (RALH), 137–169
Robotic-assisted laparoscopic surgery (RALS), 62, 137
Robotic equipment and instrumentation
Berci facial closure device, 57
Carter-Thomason suture passer, 57
da Vinci system components, 44–48
See also da Vinci®STM system
development of robotics, 44
AESOP, 44
EndoWrist instruments, 45, 45f
“master–slave” concept, 44
doclose device, 57
instruments
cutting, 52, 52f
hemostasis, 52–55
suturing, 56, 56f
tissue glues, 55–56
tissue handling, 50–51, 51f
See also Instruments, robotic
master grips on the console, 46f
specimen retrieval, 57
SutureCutTM driver, 56f
Robotic nephrectomy, 124, 125, 128, 130, 134, 135, 208
Robot installation/targeting accuracy, 82f
Robotic reconstructive procedures
orchidopexy, 182
partial nephrectomy, 182
pyeloplasty, 182
Robotic surgery, future considerations combination of robotic and novel technologies, 79–81
articulated instruments, 79, 80f
3D vision, 79, 80f
light endoscopic robot, 81f
complications in, 208–211, 209r–210r
Endocontrol robot
operating view, 79f
robotic scope holder, 78f
single-port single surgeon robotic assisted surgery, 78, 78f
tip of articulated instrument, 78f
flexible robotics, robotic ureterorenoscopy, 69–72
fluoroscopic/ endoscopic, modes of manipulation, 71, 71f
holmium–yttrium–aluminum–garnet laser lithotripsy, 69
robotic catheter system, 70, 70f
steerable catheter system, 70, 71f
ureteroscope accessories, 69
future possibilities, 84
imaging improvements, 83–84
image registration and probe localization using magnetic field, 83–84
instruments tracking using optical sensor, 84f
imaging improvements, augmented reality, 83–84
intraluminal surgery, 77
single-port and robot instruments through bladder, 77f
laser surgery in urology, 72–74, 74f
bladder neck division using the KTP laser, 73
Endowrist® (Intuitive Surgical) technology, 73
laser robotic partial nephrectomy, 74
neodymium-doped yttrium aluminum–garnet (Nd:YAG) laser, 72
potassium–titanyl–phosphate (KTP) laser, 72
prototype laser-delivery device, 72, 73f
robotically assisted radical prostatectomy (RARP), 72
remote telepresence surgery articulated instrument with laser, light, and suction, 86f
instruments tracking, 86f
laparoscopic compact robot, 85f
projection of 3D preoperative CT data on surgical view, 85f
single-port surgery, trans-umbilical and trans-vaginal access, 74–77
multi-channel single-port (R-Port), 76f, 77
Single Port multicannula (Uni-X(TM) Pnavel Systems), 74, 75f
targeting accuracy/robot installation, 82f
trans-rectal ultrasonography (TRUS), 81–83

S
Salute, the (surgical prosthesis), 64
Scrotum, 14f, 15f, 19, 20, 200, 201f
Sew-Right, 64
Single-port surgery, trans-umbilical and trans-vaginal access, 74–77
multi-channel single-port (R-Port), 76f, 77
Single Port multicannula (Uni-X(TM) Pnavel Systems), 74, 75f
Snap-Fit instrument, 52
Splenocolic ligament, 7
Submucosal lesion, 191, 194
Surgery in children, robotic challenges and limitations with, 64 novel devices, development of, 64
Surgical robotics, groups, 60–61
autonomous systems, 60
surgical assist device, 60
teleoperator or master–slave systems, 61
Surgical stress and immune response, genitourinary laparoscopy, 34–35
CO2 PnP, 34
markers, usage of, 34
MHC/HLA-DR, role of, 34
PnP-mediated immune modulation, 35

T
Tacker spiral tack, 64
Techniques and tricks, robotic-assisted laparoscopy
abdomen, prep, 98–99
anastomosis, 101–102
case of ectopic upper pole ureter, 104
LigaSure device, 104, 106f
MACE procedure, 104f
nephroureterectomy, 102–103
placement of Foley catheter, 98
placement of suture, 103f
positioning the patient, 98
prep the abdomen, 98
robotic pediatric urology, 98
surgeon, definition, 97
tying knots, 102
UPJ obstruction, 100f
upper pole nephrectomies, 104f, 105f
Technologies and robot, combination of, 79–81
articulated instruments, 79, 80f
3D vision, 79, 80f
light endoscopic robot is a novel scope holder, 81f
Telemanipulator system (computer motion), 124
Teleoperator or master–slave systems, 61
Teleoperators, 61
Tetrodotoxin, 144
Theory of triangulation, 129
Thermoregulation and metabolism, genitourinary laparoscopy, 33–34
heat dissipation, 33
hypothermia, 33
Ti-Knot systems, 64
Transmesenteric pyeloplasty, 112–113, 113f, 130
Transperitoneal approach, laparoscopic heminephrectomy
closure of renal capsule, 151f
identification of ureters, 149f
identification of vasculature, 150f
intraperitoneal aerosolization of bupivacaine, 148f
isolation of the ureter from vasculature, 149f
mobilization and dissection of affected ureter, 150f
mobilization of colon, 147f
renal hilum, exposure of, 148f
Transperitoneal technique, pyeloplasty, 110–112
general patient preparation, 110
patient positioning and robot set-up, 110–112, 111f, 112f
Transperitoneal vs. retroperitoneal laparoscopic approaches comparison, 94–95
retroperitoneal approach, 93–94
retroperitoneoscopy, advantages, 94
transperitoneal approach, 92–93
open (Hassan) or closed (Veress) technique, 92
transabdominal laparoscopy, disadvantages, 93
Trans-rectal ultrasonography (TRUS), 81–83
Trendelenburg position, reverse, 31
TRUS, see Trans-rectal ultrasonography (TRUS)
Tumour seeding, 35–36
paediatric genitourinary laparoscopy, 35–36

U
U-Clip anastamotic device, 64
Umbilical-urachus sinus, 193
See also Genitourinary operations
Urachal anomalies, 193–194
advantages/disadvantage of laparoscopy, 194
cystoscopy, 194
types, 193
Urachal cyst, 12, 190, 192f, 193, 194
See also Genitourinary operations
Ureteral ectopia, 138
Ureteral reimplantation, robotic-assisted laparoscopy extravesical, 174–176 bilateral/unilateral procedures, 174f cystoscopy, 175 transperitoneal Lich-Gregoir procedure, 174 transvesical, 176–178 laparoscopic Cohen procedure in pig model, 176 ureters, anastomosis of, 177 Ureteral system, duplicated cystoscopy with stent placement, 141f embryology of, 138 Ureterectomy, 133 Ureteropelvic junction (UPJ) obstruction, 109 Ureteroureterostomy, 195 See also Retrocaval ureter Ureters, anastomosis of Cohen Cross Trigonal/Glenn-Anderson approach, 177 Ureters, anatomy of, 127–128 Urinary tract infection (UTI), 138, 162, 173, 183, 190, 195 Urologic laparoscopic anatomy adrenal glands, 4–6 bladder blood/lymphatic supply, 15 general considerations, 12–13 in infants, 12–13 internal iliac artery, branches of, 14r–15t laparoscopic view of pelvis, 12f reconstruction, gastrointestinal segments for, 15–16 bowel anatomy and blood supply image abdominal aorta, branches of, 16f large intestine, 17–18 MACE procedure, 16 small intestine, 17 internal ring and inguinal canal, 19f cryptorchidism, 18–20 hernias of, 18 inspection of affected side, 20 varicocele, 21 kidney exposure, 7–8 renal anomalies, 8–10 renal hilum anatomy and dissection, 8 right/left, 6 retroperitoneal lymphatics, 11 ureters, 10–11 Uterine artery, 10, 14, 15, 128, 133, 175 UTI, see Urinary tract infection (UTI)

V
Varicocele, 21
Vascular sealing devices Harmonic Scalpel®, 6 Ligasure®, 6 VCUG, see Voiding cystourethrogram (VCUG)
Veress needle insufflation, 48 Vesicoureteral reflux (VUR), 9, 13, 133, 157, 173, 190, 196 pyelonephritis/renal scarring, cause, 173 Vesicouterine pouch, 13 Visiport, 50 Visual obturators, 48 Voiding cystourethrogram (VCUG), 138, 139f, 176, 190f VUR, see Vesicoureteral reflux (VUR)

W
Waldeyer’s fibromuscular sheath, 13 Weigert-Meyer rule, 138

Y
Y-V plasty, pyeloplasty, 119

Z
ZEUS (Computer Motion Inc.), 44, 61