Appendix A: Reference Ranges for Common Laboratory Assays of Iron Metabolism

Anthony N. Sireci and Alexander Kratz

INTRODUCTORY COMMENTS

The following is a table of reference values for laboratory tests commonly used in the workup of suspected disorders of iron metabolism. In preparing the appendix, the authors have taken into account the fact that the system of international units (SI, système international d’unités) is used in many countries and in some medical journals. However, conventional units continue to be used in many areas of the world, as well as in the lay press. Therefore, both systems are provided in the table.

A variety of factors can influence reference values. Such variables include the population studied, the duration and means of specimen transport, laboratory methods and instrumentation, and even the type of container used for the collection of the specimen. The reference or “normal” ranges given in this table may therefore not be appropriate for all laboratories, and the values should only be used as general guidelines. Whenever possible, reference values provided by the laboratory performing the testing should be utilized in the interpretation of laboratory data. Values supplied in this table reflect typical reference ranges in adults. Pediatric reference ranges may vary significantly from adult values (Kratz, Pesce, & Fink, 2008).
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Specimen</th>
<th>Reference Range</th>
<th>Diagnostic Notes</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferritin</td>
<td>S</td>
<td>Female: 10–150 ng/mL Male: 29–248 ng/mL</td>
<td>Ferritin reflects total body iron stores and correlates with stainable iron in marrow. It is elevated in iron overload; however, it can also be elevated in liver disease and inflammatory states as an acute-phase reactant.</td>
<td>British Nutrition Foundation (1995)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female: 10–150 μg/L Male: 29–248 μg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepcidin</td>
<td>S</td>
<td>51.6–153.4 ng/mL</td>
<td>High levels of hepcidin, stimulated by IL-6 and IL-1, antagonize iron absorption. Levels are high in anemia of chronic disease and low in iron deficiency anemia as well as some forms of hereditary hemochromatosis.</td>
<td>Kulaksiz et al. (2004)</td>
</tr>
<tr>
<td>Iron</td>
<td>S</td>
<td>41–141 μg/dL</td>
<td>There is significant hour-to-hour and day-to-day variation in serum iron levels. Serum iron levels should therefore only be used in conjunction with other measures of iron status.</td>
<td>Kratz et al. (2008)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7–25 μmol/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean corpuscular hemoglobin (MCH)</td>
<td>WB</td>
<td>26.7–31.9 pg/cell</td>
<td>Low levels indicate prolonged iron deficiency affecting erythrocytes. Represents iron status over the past 120 days.</td>
<td>Kratz et al. (2008)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26.7–31.9 pg/cell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of hypochromatic red cells</td>
<td>WB</td>
<td><6%</td>
<td>A direct measure of iron deficiency, the percentage of hypochromatic red cells increases with worsening iron deficiency.</td>
<td>Tessitore et al. (2001)</td>
</tr>
<tr>
<td>Percentage of iron saturation</td>
<td>S</td>
<td>16–60%</td>
<td>An iron saturation of <16% is considered inadequate for erythropoiesis. If iron saturation is >100%, interference by non-transferrin iron (e.g., iron bound to ferritin) should be considered.</td>
<td>IV. NKF-K/DOQI Clinical Practice Guidelines for Anemia of Chronic Kidney Disease: Update 2000 (2001)</td>
</tr>
<tr>
<td>Test</td>
<td>Unit(s)</td>
<td>Range</td>
<td>Description</td>
<td>References</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>Red cell ferritin, basic</td>
<td>WB g/cell</td>
<td>3–37.3 *10^{-17} g/cell</td>
<td>A measure of erythroid marrow iron; elevated in thalassemia and myelodysplastic syndrome; low levels in iron deficiency anemia</td>
<td>Cazzola et al. (1983)</td>
</tr>
<tr>
<td>Reticulocyte hemoglobin content (CHr)</td>
<td>WB pg/ cell</td>
<td>28–32 pg/ cell</td>
<td>A measure of the hemoglobin content of reticulocytes; allows a real-time assessment of the functional state of the erythroid marrow. Possibly, the best predictor of iron deficiency in children.</td>
<td>Fishbane, Shapiro, Dutka, Valenzuela, and Faubert (2001); Thomas and Thomas (2002)</td>
</tr>
<tr>
<td>RET-Y (Reticulocyte parameter available on certain cell counters)</td>
<td>WB arbitrary units (channel numbers)</td>
<td>1661–1820</td>
<td>A forward light scatter measure corresponding to size and content of reticulocytes. Values are lower in iron deficiency.</td>
<td>Buttarello, Temporin, Ceravolo, Farina, and Bulian (2004)</td>
</tr>
<tr>
<td>Soluble transferrin receptor (sTfR)</td>
<td>S mg/L</td>
<td><2.6</td>
<td>sTRF reflects the overall level of erythropoiesis. Elevated in Fe deficiency and with erythropoietin therapy. Not elevated in anemia of chronic disease.</td>
<td>Tessitore et al. (2001)</td>
</tr>
<tr>
<td>sTfR/ferritin index</td>
<td>S</td>
<td><1.6</td>
<td>Determined by dividing the sTfR level by the log of the serum ferritin. Increases in iron deficiency.</td>
<td>Thomas and Thomas, (2002)</td>
</tr>
<tr>
<td>Stainable iron in bone marrow</td>
<td>BM Present</td>
<td>Present</td>
<td>Gold standard for diagnosis of iron deficiency when iron stain (Prussian blue) is performed on bone marrow aspirate.</td>
<td>Jakkunen (1973); Stuart-Smith, Hughes, and Bain (2005)</td>
</tr>
<tr>
<td>Total Iron-binding capacity (TIBC) or transferrin</td>
<td>S μg/dL</td>
<td>251–406</td>
<td>Elevated in iron deficiency.</td>
<td>International Committee for Standardisation in Haematology (Iron Panel) (1978); Worwood (1997)</td>
</tr>
<tr>
<td>Transferrin saturation Zinc protoporphyrin (ZPP)</td>
<td>S μmol/mol heme</td>
<td>16–60%</td>
<td>Decreased in iron deficiency. In iron deficiency, or ferrochelatase inhibition by lead, zinc is incorporated into protoporphyrin instead of iron, leading to the generation of ZPP. The measure was originally known as free erythrocyte protoporphyrin; ZPP is elevated in iron deficiency.</td>
<td>Hastka, Lasserre, Schwarzbeck, Strauch, and Hehlmann (1992); Kulaksiz et al. (2004)</td>
</tr>
</tbody>
</table>

S: Serum; WB: Whole Blood; BM: Bone Marrow.
REFERENCES

Appendix B: *Nutritional Sources of Iron*

Anthony N. Sireci and Alexander Kratz

INTRODUCTORY COMMENTS

Common food sources vary in the quantity and type of their iron content. The following table provides information on the value of some of the most common nutrients as sources of iron (Linus Pauling Institute: Micronutrient Research for Optimum Health, 2006; McKinley Health Center University of Illinois at Urbana-Champaign, 2006; National Institutes of Health Office of Dietary Supplements, 2004).

The table is divided into non-heme (A) and heme (B) sources of iron. Heme iron is present only in foods of animal origin (meat, poultry, fish) and is absorbed more easily than non-heme iron, found in plant foods.

The iron content for each food is indicated in milligram of iron per gram of food. In the United States, federal regulations require mandatory nutrition labeling of packaged foods. This nutrition information is expressed in both common household measures appropriate to the food (e.g., one slice of bread) and in the system of international units (SI, système international d’unités). The serving size reflects the amount of food customarily consumed per eating occasion. In order to convey this information, the table lists the customary serving size for each food as determined by the US Food and Drug Administration (FDA) in both common household measures and the SI system. The iron content of one serving of each food is then given in the last column.

Table B 1
Non-Heme Sources of Iron

<table>
<thead>
<tr>
<th>Food</th>
<th>Iron Content (mg Iron/g of Food)</th>
<th>Serving Size in Common Household Measures</th>
<th>Weight (in g) of Serving Size</th>
<th>Iron Content (in mg) of Serving Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almonds, raw</td>
<td>0.039</td>
<td>1 oz, 23 kernels</td>
<td>28.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Asparagus, canned</td>
<td>0.018</td>
<td>4 spears</td>
<td>72</td>
<td>1.3</td>
</tr>
<tr>
<td>Beans, kidney, mature seeds, cooked, boiled</td>
<td>0.029</td>
<td>1 cup</td>
<td>177</td>
<td>5.2</td>
</tr>
<tr>
<td>Beans, lima</td>
<td>0.018</td>
<td>1 cup</td>
<td>241</td>
<td>4.4</td>
</tr>
<tr>
<td>Beans, lentil, boiled</td>
<td>0.033</td>
<td>1 cup</td>
<td>198</td>
<td>6.6</td>
</tr>
<tr>
<td>Beans, navy</td>
<td>0.024</td>
<td>1 cup</td>
<td>182</td>
<td>4.3</td>
</tr>
<tr>
<td>Beans, soy</td>
<td>0.024</td>
<td>1 cup</td>
<td>180</td>
<td>4.4</td>
</tr>
<tr>
<td>Bread, wheat or white</td>
<td>0.032</td>
<td>1 slice</td>
<td>28</td>
<td>0.9</td>
</tr>
<tr>
<td>Broccoli, florettes, raw</td>
<td>0.0083</td>
<td>1 cup</td>
<td>72</td>
<td>0.6</td>
</tr>
<tr>
<td>Bulgar, cooked</td>
<td>0.0096</td>
<td>1 cup</td>
<td>182</td>
<td>1.8</td>
</tr>
<tr>
<td>Cashew nuts</td>
<td>0.060</td>
<td>18 nuts</td>
<td>28.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Cereals, 100% fortified</td>
<td>0.60</td>
<td>⅔ cup</td>
<td>30</td>
<td>18</td>
</tr>
<tr>
<td>Cereals, 25% fortified</td>
<td>0.15</td>
<td>⅔ cup</td>
<td>30</td>
<td>4.5</td>
</tr>
<tr>
<td>Chickpeas, cooked</td>
<td>0.029</td>
<td>1 cup</td>
<td>164</td>
<td>4.7</td>
</tr>
<tr>
<td>Chocolate, baking, unsweetened</td>
<td>0.17</td>
<td>1 square</td>
<td>28.35</td>
<td>4.8</td>
</tr>
<tr>
<td>Collard greens, boiled, no salt</td>
<td>0.012</td>
<td>1 cup</td>
<td>190</td>
<td>2.2</td>
</tr>
<tr>
<td>Cornmeal, whole grain, yellow</td>
<td>0.034</td>
<td>1 cup</td>
<td>122</td>
<td>4.2</td>
</tr>
<tr>
<td>Grits, white, with water</td>
<td>0.0062</td>
<td>1 cup</td>
<td>242</td>
<td>1.5</td>
</tr>
<tr>
<td>Lettuce, butterhead</td>
<td>0.012</td>
<td>1 head</td>
<td>163</td>
<td>2.0</td>
</tr>
<tr>
<td>Oats, regular, quick and instant, unenriched, prepared with water</td>
<td>0.0068</td>
<td>1 cup</td>
<td>2.34</td>
<td>1.6</td>
</tr>
<tr>
<td>Potato, baked</td>
<td>0.011</td>
<td>1 medium</td>
<td>173</td>
<td>1.9</td>
</tr>
<tr>
<td>Prune juice</td>
<td>0.012</td>
<td>1 cup</td>
<td>256</td>
<td>3.0</td>
</tr>
<tr>
<td>Raisins, seedless</td>
<td>0.019</td>
<td>1 cup</td>
<td>145</td>
<td>2.7</td>
</tr>
<tr>
<td>Rice, brown</td>
<td>0.0061</td>
<td>1 cup</td>
<td>164</td>
<td>1.0</td>
</tr>
<tr>
<td>Rice, white, enriched</td>
<td>0.011</td>
<td>1 cup</td>
<td>158</td>
<td>1.8</td>
</tr>
<tr>
<td>Seeds, pumpkin, roasted</td>
<td>0.148</td>
<td>1 oz</td>
<td>28.3</td>
<td>4.2</td>
</tr>
<tr>
<td>Soy milk</td>
<td>0.011</td>
<td>1 cup</td>
<td>245</td>
<td>2.7</td>
</tr>
<tr>
<td>Spinach, frozen and boiled</td>
<td>0.019</td>
<td>1 cup</td>
<td>190</td>
<td>3.7</td>
</tr>
<tr>
<td>Tofu, raw, firm</td>
<td>0.016</td>
<td>¼ block</td>
<td>81</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Table B 2
Heme Sources of Iron

<table>
<thead>
<tr>
<th>Food</th>
<th>Iron Content (mg Iron/g of Food)</th>
<th>Serving Size in Common Household Measures</th>
<th>Weight (in g) of Serving Size</th>
<th>Iron Content (in mg) of Serving Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef, composite of trimmed retail cuts, separable lean and fat, trimmed to 1/8” fat, cooked</td>
<td>0.025</td>
<td>3.0</td>
<td>85</td>
<td>2.1</td>
</tr>
<tr>
<td>Chicken, dark meat, roast</td>
<td>0.013</td>
<td>3.4 oz</td>
<td>94</td>
<td>1.3</td>
</tr>
<tr>
<td>Chicken, light meat, roast</td>
<td>0.011</td>
<td>3.5 oz</td>
<td>100</td>
<td>1.1</td>
</tr>
<tr>
<td>Clams, canned, drained</td>
<td>0.28</td>
<td>3 oz</td>
<td>85</td>
<td>23.8</td>
</tr>
<tr>
<td>Egg, boiled</td>
<td>0.012</td>
<td>1 large egg</td>
<td>50</td>
<td>0.6</td>
</tr>
<tr>
<td>Halibut, cooked</td>
<td>0.011</td>
<td>3.0 oz</td>
<td>85</td>
<td>0.9</td>
</tr>
<tr>
<td>Liver, goose, raw</td>
<td>0.31</td>
<td>3.5</td>
<td>100</td>
<td>30.5</td>
</tr>
<tr>
<td>Liver (pork, chicken) simmered</td>
<td>0.12–0.18</td>
<td>3.5 oz</td>
<td>100</td>
<td>12.0–18.0</td>
</tr>
<tr>
<td>Oysters, fried</td>
<td>0.033</td>
<td>6 medium</td>
<td>136</td>
<td>4.5</td>
</tr>
<tr>
<td>Pork, (leg, loin, shoulder, and spareribs), separable lean and fat, cooked</td>
<td>0.011</td>
<td>3.0 oz</td>
<td>85</td>
<td>0.9</td>
</tr>
<tr>
<td>Scallops, steamed</td>
<td>0.030</td>
<td>3.5 oz</td>
<td>100</td>
<td>3.0</td>
</tr>
<tr>
<td>Shrimp, cooked (moist heat)</td>
<td>0.032</td>
<td>8 large</td>
<td>44 g</td>
<td>1.4</td>
</tr>
<tr>
<td>Tuna, bluefin, cooked</td>
<td>0.013</td>
<td>3.0 oz</td>
<td>85</td>
<td>1.1</td>
</tr>
<tr>
<td>Tuna, light, in water</td>
<td>0.015</td>
<td>1 can</td>
<td>165</td>
<td>2.5</td>
</tr>
<tr>
<td>Turkey, dark meat, roasted</td>
<td>0.023</td>
<td>3.5 oz</td>
<td>100</td>
<td>2.3</td>
</tr>
<tr>
<td>Turkey, light meat, roasted</td>
<td>0.014</td>
<td>3.5 oz</td>
<td>100</td>
<td>1.4</td>
</tr>
</tbody>
</table>

REFERENCES

Subject Index

A

Aβ, see Amyloid β–peptide (Aβ)
ABCB7, 15, 256, 264, 265
ABCB7 gene, mutation in, 264–265
ABCB7 protein, 264, 265
Aceruloplasminemia, 5, 33, 105, 127, 231, 259–262, 266, 269
brain MRI of 70-year-old man with, 261
GPI in, 260
gross neuropathology in, 261
treatment of, 262
Acute hypoferremia of inflammation, 58, 59
Acute iron ingestion, treatment of, 83–84
exchange transfusion, 84
iron chelator role in, 83–84
whole bowel irrigation for, 83
AD, see Alzheimer’s disease (AD)
Aging, 109, 114, 125–135, 170, 197, 227, 242, 245, 269, 341, 348
Aging CNS, 135
ALAS, see Amino laevulinic acid synthase (ALAS)
Alopecia, 172
ALS, see Amyotrophic lateral sclerosis (ALS)
ALSPAC, see Avon Longitudinal Study of Pregnancy and Childhood (ALSPAC)
clinical and pathological features of, 241–242
evidence for dysregulation of brain iron homeostasis in patient with, 243
HO-1 and, 127, 132–133
iron and pathogenesis of, 242–243
experimental evidence for a pathogenic role, 243–245
therapeutic implications of iron in, 245–246
key features of lesions in, 242
mutant HFE and, 267–268
sources of oxidative stress in, 127
Amino laevulinic acid synthase (ALAS), 38, 264
Amyloid, 127, 129, 130, 132, 133, 134, 225, 241, 242, 244, 245, 267
Amyloid β–peptide (Aβ), 242
source of ROS in AD, 244
Amyloid precursor protein (APP) gene, mutation in, 242
Amyotrophic lateral sclerosis, 126, 127, 269, 270
Amyotrophic lateral sclerosis (ALS), mutant HFE and, 269
blood transfusion service effects, 307
death rate, from, 306
haemoglobinometry, 309–310
latent iron deficiency, 302–303
and malaria, 301
in newborn, 301
nutritional iron deficiency, 313–323
during pregnancy, 301
during pregnancy and lactation, 335
screening, 322
in under-resourced countries, 308–309
in women, 335
See also Iron deficiency
Anisocytosis, 166–167
Antigen-presenting cells (APC), 213
APC, see Antigen-presenting cells (APC)
ASS, see Autonomic sympathetic system (ASS)
Atrophy of lingual papillae, 168
Attention-deficit hyperactivity disorder (ADHD), 152–153
Auditory system and iron deficiency, 202
Autoimmunity, 214, 215, 216
Autonomic sympathetic system (ASS), 207
Avon Longitudinal Study of Pregnancy and Childhood (ALSPAC), 315
Bacillibactin, 68
BBB, see Blood–brain barrier (BBB)
BCRP/ABCG2, see Breast cancer resistance protein (BCRP/ABCG2)
Behavioral deficits in iron-deficient infants
biological basis of, 141
Bendich, Adrienne, Dr., 327–348
Blood–brain barrier (BBB), 20, 207
free passage to transferrin, ceruloplasmin, 254
permeability of, 207–208
Blood donor studies, CHD risk and, 289–291
Blood-oxygenlevel-dependent (BOLD), 227
Blood transfusion service effects, and anaemia, 307
Body iron
compartments and fluxes, 36
loss, 40–41
regulation of, 39–41
stores, see Body iron stores
See also Brain iron
Body iron stores
CHD risk and, 282–291
blood donor studies and iron and oxidized LDL cholesterol, 289–291
case-control/cross-sectional studies, 288–289
cohort studies based on serum ferritin, 282–285
cohort studies based on TS, 286–287
dietary iron, 289
reduction of, clinical trials, 291–292
serum measures of, 280–282
TIBC in, 280–282
BOLD, see Blood-oxygenlevel-dependent (BOLD)
Bone mineral density (BMD), 344, 345
Bone morphogenetic protein (BMP) pathway, 55
Brain copper, biology of, 227–231
Brain hemorrhage, iron role in, 189, 227
in adult rats, 196
biology of, 227–231
and brain dopamine, 197–198
deposition in aging and disease, model for, 134
forms of, 227
imaging at 7 tesla, 234–235
inherited neurological diseases with accumulation of, 231
metabolism of, 97
inborn errors of, 231
MRI techniques for imaging, 232–234
overview, 223–226
pulse sequences and quantifying brain iron effects, 233
and Parkinson’s disease
role of transition metals in, 105
research papers published per year on, 226
uneven distribution of, 196
See also Body iron
Brain iron deficiency and opamine–endogenous opiate function of, 101–102
interaction between, 101
Brain iron homeostasis
evidence for dysregulation of, in AD patient, 243
Brain MRI
of patient with PKAN, 257
of 70-year-old man with aceruloplasminemia, 261
Brain neurotransmitter receptors, effect of ID on, 98–99
Breast cancer resistance protein (BCRP/ABCG2), 34

C
CA, see Catecholamines (CA)
CAD risk, see Coronary artery disease (CAD) risk
Catecholamines (CA), 111, 143, 147, 211–214, 216
Catecholate siderophore
enterobactin, 66–67
salmochelin S4, 67
CD8+ T cells, in MS patient, 215
CD4+ Th cells, 212, 215
Cellular iron homeostasis, proteins involved in, 3–6, 9, 18, 19
Central nervous system (CNS)
in animals, 207
cytokines in, 211–212
hemochromatosis and, 266–269
iron homeostasis, genetic disorders of, see Genetic disorders of CNS, iron homeostasis and role in maintaining control of chemical microenvironment and iron, 254
stress and, 208
Ceruloplasmin (Cp), 5, 17, 32, 33, 34, 35, 37, 105, 127, 231, 252, 253, 254, 259, 260, 261, 262, 266, 269
GPI-linked form of, 18
hepatic macrophages in knockout mice, 260
role in iron release, 17–18
Ceruloplasmin knockout mice, 259–260
hepatic macrophages in, 260
Chaperones, metal, 230
function of, 231
CHD, see Coronary heart disease (CHD)
CHD risk
and body iron stores, 282–291
blood donor studies and iron and oxidized LDL cholesterol, 289–291
case-control/cross-sectional studies, 288–289
cohort studies based on serum ferritin, 282–285
cohort studies based on TS, 286–287
dietary iron, 289
hemochromatosis and, 292
Cheilitis, 169, 170
Chelation, 68, 84, 85, 86, 145, 146, 148, 149, 228, 230, 245, 259, 267, 270
deferasirox, 87
deferiprone, 86–87
deferoxamine, 86
Chronic iron overload
classification of, 84
clinical signs and symptoms of, 84–85
measure of, 85–86
treatment of
chelation therapy, 86–87
phlebotomy, 86
Chronic transfusion therapy, 85, 86
CNS, see Central nervous system (CNS)
Cognition, 101, 102, 126, 212
Cognitive deficits in iron-deficient infants, biological basis of, 141
Cognitive impairment, 95–113, 132, 204, 241, 245, 267
Compensatory mechanisms, 166
Coronary artery disease (CAD) risk, 284, 291
Coronary heart disease (CHD), 279, 280, 282, 283, 284, 285, 287, 288, 289, 290, 291, 292, 293
Corticotrophin-releasing hormone (CRH), 211, 212
CRH, see Corticotrophin-releasing hormone (CRH)
CSH-treated astroglia
DAB-positive glial granules, 128–129
morphological changes, 128
non-transferrin iron sequestration in, 129
peroxidase-positive astrocyte granules in, 128
Cysteine, in patients with PANK2 deficiency, 258–259
Cys282Tyr mutation, 292
Cytokines, 16, 19, 20, 38, 127, 129, 130, 132, 133, 134, 203, 207–216
in CNS, 211–212
depression associated with proinflammatory, 210–211
effects of stress hormones on proinflammatory and anti-inflammatory, 212
inflammatory, 209
human disease and, 212
stress-like effects of, 210
interaction with HPA axis, 210–211
as mediators of neuroimmune communication, 208–210
peripheral, 209
stimulation of HPA axis by, 211
Cytosol, iron regulation and, 35

D
DALY, see Disability-adjusted life years (DALY)
DAT expression, 146, 152
dcytb, 4, 19, 31, 32, 34, 35, 37, 110, 252, 253
deferasirox, 86, 87
deferiprone, 86–87, 256
deferoxamine, 83, 84, 86, 87, 135, 259, 262
deferoxamine infusion, 83–84
depression, associated with proinflammatory cytokines, 210–211
deranged body iron homeostasis, 40
dexamethasone
effect on IL-4 production, 214
diabetes, 84, 85, 212, 242, 245, 260, 263, 289, 292, 293, 327, 342, 343, 344, 348
type 2, 342–344
dietary education, prevention of iron deficiency, 320
dietary iron
and CHD risk, 289
intestinal absorption of, 35
types of, 33
diferric transferrin, 4, 7, 11, 21, 40, 42, 55, 129, 130, 253, 254
disability-adjusted life years (DALY), 306
divalent metal-ion transporter 1 (DMT1), 4, 7, 10, 12, 13, 19, 20, 31, 32, 34, 35, 36, 37, 38, 39, 184, 185, 186, 187, 253, 254, 265
in cellular iron acquisition, 12
function of, 12
human iron physiology and, 253
knockout of, 35
in mucosal proton-dependent uptake of divalent metals, 34
divalent metal transporter I, 182
dMT1, see Divalent metal-ion transporter 1 (DMT1)
brain iron and brain, 197–198
catabolism of, 144
D2R-DAT link, 146
pathways in brain, 142
receptors
D1 receptors, 144
D2 receptors, 144–145
effects of ID on, 145
synthesis of
post-weaning ID in rats, 144
TH role in, 142–144
transport, 145
dopamine D1 receptor, 144
dopamine D2 receptor, 144–145
in brains of ID rats, 99, 101–102
dopamine-endogenous opiate and brain iron deficiency, 101–102
function of, 101–102
interaction between, 101
dopamine/H2O2-mediated PC12 cell death, 135
D2R-DAT communication, 146
dysphagia, 169–170
dyspnea, 159, 166
EAR, see Estimated average requirement (EAR)
Early iron deficiency, 100–101, 200–201
 effect on brain function
 and biochemistry, 100
during early brain development, 101
longlasting effects of, 200–201
Effects on populations, 301
Endocrine system and iron deficiency, 202
Endorphins, 101, 153
Enkephalins, 99, 101, 103
Enterobactin, 66–69, 72, 73
 biosynthesis, 67
 components of, 66
 enzymes synthesizing, 66
 glucosylated, 67–69
Enterocyte iron transport, mechanism, 34
Epidemiology, 282, 292, 306
Erythrocyte morphologies, 167
Erythroid cell, 8–10
 iron metabolism in, 8
 iron uptake of immature, 9–10
 release of iron from, 18
Erythropoiesis, 35, 42, 55, 57, 59, 163, 308
Erythropoiesis and hepcidin synthesis, 59
Escherichia coil, 66–67, 70, 84
 enterobactin, see Enterobactin
 enterobactin synthesis by, 66
 uropathogenic, see Uropathogenic E. coli (UPEC)
Estimated average requirement (EAR), of iron in women, 328, 341
Estrogen, 153, 280
Eurogrowth Iron Study Group, 301
Exchange transfusion, in acute iron ingestion, 84

F
FA, see Friedreich's ataxia (FA)
FAO, see Food and Agriculture Organization (FAO)
Feline leukemic virus protein C (FLVCR), 34
Ferric gluconate, 81
Ferric reductase redundancy, in guinea pigs and humans, 34
Ferric siderophores, 66
 accumulation, defect in, 110–111
 distribution in hippocampus
 addition of zinc to iron therapy, 103–105
 iron deficiency effects on, 102–103
 MF system, 103–104
 spatiotemporal trend in, 102
 iron release from, 108
 level within cells, 16
 subunits of, 16
 binding protein, 14
 cellular iron export function of, 52
 cellular regulation of, 53
 internalization, 52–53
 in iron efflux from cells, 32–33
 regulation by hepcidin, 52–53
 Ferroportin 1 (FPN), 17, 252, 266
 expression, 17
Fertility, 327, 334
Finnish Kuopio Ischemic Heart Disease Risk Factor Study (KIHD), 282, 283, 290
FLVCR, see Feline leukemic virus protein C (FLVCR)
Food and Agriculture Organization (FAO), 299, 300
Frataxin, 5, 15, 231, 252, 254–256
FRDA gene, in FA, 231, 254, 255
Friedreich's ataxia (FA), 105, 111, 231, 254–256, 266, 269
 erythroblasts, 255
 FRDA gene in, 254
 treatment of, 256
G
GABA, see Gamma amino butyric acid (GABA)
Gamma amino butyric acid (GABA), 150, 151, 230
 GABA_A and GABA_B, 152
 synthesis of, 151
Gastric lavage, 83
Gastritis, 161, 170–171
GC, see Glucocorticoids (GC)
Genetic disorders of CNS, iron homeostasis and, 254–266
 aceruloplasminemia, 259–262
 differential diagnosis, 266
 IRP2 deficiency, 265–266
 neuroferritinopathy, 262–263
 PKAN, 257–259
 XLSA/A, 264–265
Glial senescence, 128–129
 and iron sequestration
cysteamine model, 128
 mitochondrial precursors of, 128–129
 non-transferrin iron sequestration in, 129
 Globus pallidus, of patient with PKAN, 258
Glossitis, 168, 169
GLP-1, see Glucagon-like peptide 1 (GLP-1)
Glucagon-like peptide 1 (GLP-1), 245
Glucocorticoids (GC), 211, 212, 214, 216
 inflammatory cytokines and, 212
 stress and, 214
 suppressive effect on Th1 cells, 214
Glutamate, 97, 104, 113, 134, 141, 150, 151, 152, 153, 200, 242, 244, 265
GABA_A and GABA_B, 152
synthesis of, 151
Glycosylphosphatidylinositol (GPI), 18, 54, 260
GPI, see Glycosylphosphatidylinositol (GPI)
Gradient-recalled echo (GRE) imaging, 233
Graves' disease, 214–215
GRE imaging, see Gradient-recalled echo (GRE) imaging
H
Hallervorden-Spatz syndrome, see Pantothenate kinase-2-associated neurodegeneration (PKAN)
HAMP, see Heparicin antimicrobial peptide (HAMP)
Haptoglobin complex, 13
HCP1, see Heme carrier protein 1 (HCP1)
Heart disease, 162, 279–293
Heme, 33–34
intestinal absorption of, 35
Heme carrier protein 1 (HCP1), 14, 31, 34, 37
Heme catabolic pathway, 130
Heme/hemopexin complex, 13–14
Hemoglobin, 9, 13, 17, 20, 78, 80, 85, 86, 163, 165, 166, 167, 189, 196, 199, 201, 202, 223, 227, 236, 251, 253, 260, 266, 280, 291, 328, 329, 333
Hemoglobin, 9, 13, 17, 20, 78, 80, 85, 86, 163, 165, 166, 167, 189, 196, 199, 201, 202, 223, 227, 236, 251, 253, 260, 266, 280, 291, 328, 329, 333
Hemosiderin, 7, 16, 86, 163, 168, 225, 227, 230, 329, 331
Hepercidin, 5, 6, 7, 9, 18, 19, 20, 21, 31, 35, 36, 37, 38, 39, 40, 41, 42, 51–60, 165, 166, 252, 352
catabolism, 53
expression, 21
ferroportin regulation by, 52–53
as inhibitor of iron release, 20–21
in regulation of iron absorption and distribution, 41–42
structure–function analysis of, 53
synthesis regulation by erythropoietic activity, 59–60
synthesis regulation by hypoxia-inducible transcription factors
HIF-dependent mechanism, 58
hypoxia, 57
synthesis regulation by iron
BMP pathway, 55
hemochromatosis proteins, 54
HFE mutations, 56–57
holotransferrin, 56
model of, 57
TIR1 deficiency, 55
TIR2 deficiency, 56
in vivo iron-regulatory activity of, 52
Hepidin antimicrobial peptide (HAMP), 41, 54
Hephaestin, 5, 18, 31–35, 37, 252, 253
Hereditary hemochromatosis (HH), 266, 268
mutant HFE in, 267–268
overview, 266–267
HFE, 6, 12, 17, 21, 37, 54, 56, 57, 110, 252, 267, 268, 269, 291, 341
HFE gene mutation, 56, 268
HFE hemochromatosis, 56, 110
HFE mutant
and Alzheimer's disease, 267–268
and amyotrophic lateral sclerosis, 269
and idiopathic Parkinson's disease, 268–269
and ischemic stroke, 269
HIF, see Hypoxia-inducing factor (HIF)
High-resolution MR brain imaging, at 7 tesla, 235
Hippocampus, zinc and iron interaction in
FER distribution pattern, 102
iron therapy, 103–105
MF neuro-anatomy, 102–103
Hippocampus iron metabolism, 199–200
HNE, see 4-hydroxynoneal (HNE)
HO-1, see Heme oxygenase 1 (HO-1)
Holotransferrin, 55, 56, 57, 58
Hormone replacement therapy (HRT), 334, 341, 345, 347
Hormone replacement therapy (HRT) axis, see Hypothalamic pituitary–adrenal (HPA) axis
HRT, see Hormone replacement therapy (HRT)
Human iron physiology, 251–253
Hydroxynoneal, 244, 245
4-Hydroxynoneal (HNE), 244
Hypoferremia, 58
Hypoferritinemia, 263
Hypothalamic pituitary–adrenal (HPA) axis, 207
interaction with cytokines, 210–212
Hypoxia, 166
 effect on erythropoiesis, 57
 iron and hepcidin regulation by, 57–58
Hypoxia-inducing factor (HIF), 166, 189
 role in hepcidin suppression, 58
 subunits of, 57
I
ICSH, see International Council for Standardization in Hemeatology (ICSH)
ID, see Iron deficiency (ID)
IDA, see Anaemia
IL-1, effects on interstitial levels of monoamines, 210
IL-4, dexamethasone effect on production of, 214
IL-12, differentiate Thp cells to Th1, 213, 214, 215
Immune system
 and iron deficiency, 203
 stress and, 208
Immunoreactivity, transferrin, 133, 200
IMPAC, see Integrated Management of Pregnancy and Childbirth (IMPAC)
Inborn errors, of brain iron metabolism, 231
Infection susceptibility, in iron deficiency, 319–320
 acute hypoferremia of, 58
 hemojuvulin regulation by, 59
 hepcidin and anemia of, 58
 hepcidin regulation by, 59
 role of Th17 in, 215–216
 stress and, 214–215
Inherited neurological diseases, with brain iron accumulation, 231
Integrated Management of Pregnancy and Childbirth (IMPAC), 305
International Council for Standardization in Hemeatology (ICSH), 300
Intestinal absorption, of dietary iron, 35
Intra-neuronal iron metabolism, 142
IRE, see Iron-responsive elements (IRE)
 Ireb−/− mice, 5, 265
 Ireb2+/− mice, 265
 Ireb2−/− mice, 265
 IroA cluster, 67–68
Iron, 3
 accumulation, 15, 17, 18, 39, 40, 52, 84, 96, 111, 126, 129, 182, 183, 189, 224, 225, 231, 232, 255, 257, 258, 260, 261, 266, 268
 biochemical functions, 329
in brain, See Brain iron
in cellular proteins, 7, 9
clinical value, 332–335
deposition in aging and degenerating CNS
 Alzheimer’s disease, 127
 glial senescence and iron sequestration, 128–130
 heme-degrading enzyme, 126
 idiopathic PD, 127
 regional predilections on, 126
 "distribution map", 196
 elevated levels in bloodstream, 188
 excretion, 331–332
GI absorption of, 78
in hemorrhage, 189
neuromelanin, interaction with
 iron-binding ability of, 109–110
 neuroprotectant in PD, 109–110
 in SN of patients with PD, 109
as nutrient, 65–66
overload, 4, 5, 6, 15, 16, 17, 32, 33, 35, 36, 38, 40, 41, 42, 52, 54, 55, 56, 60, 84, 85, 86, 129, 189, 190, 254, 255, 260, 263, 266, 280, 292, 293, 301, 302, 320, 330, 331, 334, 341, 343, 344, 352
and ovulation, 334
and pathogenesis of AD, 242–243
 experimental evidence for, 243–245
 therapeutic implications of, 245–246
and pathogenic bacteria, 66
role in myelination, 197
salts, 78, 79, 223
and schizophrenia, 198
sensing, 56
starvation, 65, 70, 71, 72
starvation, RyhB activity during, 70–71
supplementation and fortification, 333–334
trafficking and regulation in cell, 7
turnover, 42, 253
utilization, intracellular
 mitochondrion role in, 14–15
and women’s health, 327–348
and zinc interaction in hippocampus
 FER distribution pattern, 102
 iron therapy, 103–105
 MF neuro-anatomy, 102–103
Iron absorption, 31–43, 57, 299, 330–331, 334
hepcidin in regulation of, 41–42
increase in, 57
mechanisms adjusting, 51
mechanisms of, in mammals, 33–35
putative functions of proteins involved in intestinal, 37
Iron chelator, in acute iron ingestion, 83–84
Iron-containing proteins, hemoglobin and myoglobin, 9, 163, 329, 333
Iron deficiency (ID)
 animal IDD model of, 198
BBB, 198
 hippocampus iron metabolism, 198–199
 learning paradigms, 199
 transferrin immunoreactivity, 200
 auditory system and, 202
BBB studies in, 101
 causes of, 161–162
 cerebral iron homeostasis in
 developmental stages affected by, 187
 myelin formation in, 188
 transferrin receptor changes in, 187–188
 clinical manifestations of, 159–160, 195
 immune function, 173
 muscular function and exercise tolerance, 173
during development, 146–147
D2R-DAT link, 146
 and drugs of abuse, 152
 early, see Early iron deficiency
 and endocrine system, 202
global, 299–310
 high-risk group for, 195
 history of, 159–160
 human studies of, 200
 and immune system, 203
 infection susceptibility, 319–320
 laboratory evaluation of
 MCV and MCH, 165
 reticulocyte hemoglobin content (CHr), 165
 serum transferrin receptor, 165
 TIBC, 164
 and lactation, 340
 latent iron deficiency, 302–303
 lifestyle factors, in women, 334–335
 long-term effects of rehabilitated infancy, 201
 management strategies, 304–305
 and menopause, 340–342
 and myelination of neurons, 100
 neuronal effects in humans, 148
 nutritional, 313–323
 pathogenesis of
 epithelial cells and skeleton, 164
 proteins and enzymes, 163–165
 and pregnancy, 335–340
 and preterms, 200–201
 prevalence, 161, 314–315
 prevention, in childhood, 320–322
 psychomotor development deficits, 317–318
 risk factors, in childhood, 315–317
 in women, 327–348
 See also Anaemia
Iron deficiency anaemia (IDA)
 causes of, 161–162
 clinical manifestations of
 alopecia, 172
 anisocytosis, 166–167
 atrophy of lingual papillae, 168
 cheilitis, 167, 168
 compensatory mechanisms, 166
 dysphagia, 167–168
 dyspnea, 166
 effects on epithelial tissues, 168
 erythrocyte morphologies, 167
 gastritis, 170–171
 hypoxia, 166
 koilonychia, 171–172
 microcytic and hypochromic red cells, 168
 orthopnea, 166
 peripheral blood, 167
 pica, 172–173
 platelet count, 168
 tongue and mouth, 168–169
 elemental iron treatment dose for, 77–78
Iron deficiency diet (IDD)
 animal model of iron deficiency, 198–200
 effect on hippocampus iron metabolism, 199–200
 magnitude of effect on, 201
 nutritional iron deficiency by, inducing, 196
 transferrin receptor immunoreactivity and, 200
Iron dextran injection
 administration methods, 79–80
 dose for
 adults and children over 15 kg, 80–81
 children 5–15 kg, 81
Iron distribution
 disordered, in chronic inflammatory
 conditions, 38
 hepcidin in regulation of, 41–42
Iron efflux, from cells, 15, 17, 32–33, 41, 52, 259
Iron fortification, 305, 318, 321–322, 329, 333
Iron homeostasis, 4, 8, 9, 10, 15, 17, 18, 19, 20, 21, 33, 40,
 in bacteria, intracellular
 RyhB activity, 70–71
 sRNAs and environmental stresses, 69–70
 genetic disorders of CNS, 254–266
 aceruloplasminemia, 259–262
 differential diagnosis, 266
 IRP2 deficiency, 265–266
 neuroferritinopathy, 262–263
 PKAN, 257–259
 XLSA/A, 264–265
 inherited disturbances in, 10
 mitochondrial, 15
 in myelin-forming cells
 oligodendrocyte-derived transferrin, 186–187
 uptake of iron, 186
 in neural and peripheral tissues, 125
 proteins in mammalian, 252
 in Schwann cells, 187
Iron loss
 body, 40–41
 mechanisms of, in mammals, 33–35
 relative size of, 40
Iron metabolism, 329–332
 disorders of, 110–111
 in duodenal enterocyte, 8
 in erythroid cell, 8
 in hepatocyte, 8
 importance of, 65–66
 intra-neuronal, see Intra-neuronal iron metabolism
 in macrophage, 8
 neuronal, see Neuronal iron metabolism
 regulation of
 IREs role in, 19
 IRPs role in, 18–19
 posttranslational, 19–20
 systemic, see Systemic iron metabolism
Iron overload, see Chronic iron overload;
 Hemochromatosis
Iron physiology, human, 251–254, 262
Iron regulation
 at body level, 39–41
 at cellular level, 38–39
 in cytosol, 35
 hepcidin in, 41–42
 putative functions of proteins involved in intestinal, 37
Iron-regulatory protein (IRP1, IRP2), 5, 18, 100, 187,
 243, 254, 269
Iron regulatory protein, in iron regulation at cellular
 level, 31, 38–39, 100
Iron release
 by cells, 32–33
 liver function to control, 36
Iron requirements, during pregnancy and lactation, 327,
 335–336
Iron-responsive elements (IRE), 12, 16, 17, 18, 19, 34,
 38–39, 53, 185, 187–188, 254
Iron-responsive proteins (IRP), 16, 17, 18, 19, 37, 38, 39,
 187, 231, 254
Iron saccharate, see Iron sucrose
Iron salts
 elemental iron content of, 79
Iron storage
 intracellular
 biology of, 16–17
 ferritin, 16
 hemosiderin, 16
 liver function to control, 36
Iron sucrase, 81
Iron–sulfur (Fe–S)-dependent enzymes, FA and, 255–256
Iron–sulfur (FeSS) clusters
 biogenesis, 15
 in mitochondria and cytoplasm, 15
 roles in electron transport and catalysis, 9
Iron supplement
 during pregnancy and lactation, 336–338
 for prevention of iron deficiency, 320–321, 333
 use in postmenopausal women, 342
Iron toxicity
 clinical stages of, 82
 measure of, 85
 range of, 83
 treatment of
 exchange transfusion, 84
 iron chelator role in, 83–84
 whole bowel irrigation for, 83
Iron transport, 331
 in body and tissue uptake, 35–38
 cellular, in mammals, 32–33
Iron uptake
 by cells, 32–33
Iron uptake, cellular
 DMT1 role in, 12
 by heme/hemopexin complex, 13–14
 from internalized heme, 14
 non-transferrin-bound, 12–13
 under normal conditions, 9–10
 in pathological states, 9
 TfR2 role in, 11
 transferrin receptor 1 role in, 10–11
IRP, see Iron regulatory protein (IRP)
IRP1, 5, 7, 9, 18, 31, 34, 37, 38, 100, 254, 265
 anaemia and, 39
 loss of, 38
IRP2, 5, 7, 18, 19, 31, 34, 37, 38, 39, 100, 110, 111, 113,
 251, 254, 265, 266, 269
 anaemia and, 39
 loss of, 38–39
IRP2 deficiency, 100, 265–266, 269–270
IRP2–/– mice, 266
IRPs (iron-regulatory proteins)
 IRP1, 18
 IRP2, 18–19
Ischemic stroke, 269
 Ischemic stroke, mutant HFE and, 269
K
 Kaiser-Fleischer rings, 266
 KIHD, see Finnish Kuopio Ischemic Heart Disease Risk
 Factor Study (KIHD)
 Koilonychia, 171–172
L
 Labile iron pool (LIP), 230, 231
 expansion of, 253–254
 Laboratory assays, of iron metabolism, reference ranges
 for, 351–353
Subject Index

Lactation, 146, 150, 153, 162, 328, 335–340
anaemia during, 336
ID and, 339
iron supplement, 336–338
LDL cholesterol, see Low-density lipoprotein (LDL) cholesterol
LEAP1, see Liver-expressed antimicrobial peptide (LEAP1)
L-ferritin gene, 263
Lifestyle, and ID, 334–335
LIP, see Labile iron pool (LIP)
Liver, controls iron storage and release by ferroportin, 14, 16, 17, 36, 51, 86
Liver-expressed antimicrobial peptide (LEAP1), 41
Low-density lipoprotein (LDL) cholesterol, 278
oxidized, CHD risk and, 289–291
Lymphocytes, differentiation into Th1/Th2 cells, 213

M
Macrophage, iron metabolism in, 8, 17, 20–21, 331
Magnetic resonance imaging, 85, 107, 108, 223, 227, 256
Major histocompatibility complex (MHC) antigens, 56, 208
Mammalian iron homeostasis, proteins in, 252
Management strategies, 304
MAO blockade, see Monoamine oxidase (MAO) blockade
MAP, see Metabolically active iron pool (MAP)
Maternal iron supplementation, 338
Maternal post-pregnancy iron status, 338–339
Menopause, ID and, 279, 280, 340–342
Metabolically active iron pool (MAP), 231
Metabolic syndrome, 342–344
Metal chaperones, 230
Mfrn, see Mitoferrin (Mfrn)
MHC antigens, see Major histocompatibility complex (MHC) antigens
Mitochondria, 3, 5, 7, 9, 15, 16, 111, 112, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 142, 228, 231, 244, 251, 252, 254, 255, 256, 264, 329
Mitochondrial ferritin (MtF), 5, 16, 252, 256
Mitochondrial iron accumulation, 15, 111, 255
Mitoferrin (Mfrn), 5, 15, 22, 252
Monoamine oxidase (MAO) blockade, 135
Monoamines
dopamine, see Dopamine
endorphins, 153
estrogen, 153
norepinephrine, see Norepinephrine
serotonin, see Serotonin
Mostofsky, D. I., 100, 181, 182, 195–204
Motor neuron, 182–185, 269
Mouse strains, with inherited disturbances in iron homeostasis, 10
MPTP-induced dopaminergic neurotoxicity, 112
MRI imaging techniques, for brain iron, 232–234
imaging at 7 tesla, 234–235
overview, 223–226
pulse sequences and quantifying brain iron effects, 233
MS, see Multiple sclerosis (MS)
MTP, 253
Multiple sclerosis (MS), 105, 111, 126, 128, 135, 215, 225, 231
Myelin, 100, 135, 141, 181, 186, 187, 187, 188, 190, 197, 230, 242
Myelination, iron role in, 187, 197, 317
Myoglobin, 9, 33, 77, 163, 328, 329, 331
N
Naïve T cells, differentiation into effector T-cell subtype induced by cytokines, 213
National Diet and Nutrition Surveys, 301, 314
National Health and Nutrition Examination Survey (NHANES), 161, 280, 281, 282, 284, 301, 314
NBIA, see Neurodegeneration with brain iron accumulation (NBIA)
Neisseria meningitidis, gene repression pattern under Fe starvation, 72
Neural damage, in neuropathological conditions, 125–126
Neurodegeneration with brain iron accumulation (NBIA), 225, 257, 259, 266, 269, 270
Neurodegenerative diseases, 96, 105, 111, 113, 208, 223–236
Neurodegenerative diseases, localized brain ferritin and iron deposits in, 105
Neuroferritinopathy, 231, 262–263, 266, 269
molecular pathophysiology of, 263
MRI images in, 262
Neurofibrillary tangles (NFT), 127, 132, 241, 242, 243, 244, 245, 267
Neuroimmune communication, cytokines as mediators of, 208–210
Neurological diseases, inherited, with brain iron accumulation, 231
Neuromelanin
concentration of nigral, 109
interaction with iron
iron-binding ability of, 109–110
neuroprotectant in PD, 109–110
in SN of patients with PD, 109
Neuronal iron metabolism
in basal ganglia, 182–183
in cerebellum, 184
in cerebral cortex, 182, 185
in cranial nerve nuclei, 184
in pontine nucleus, 184
Neuronal iron metabolism (Cont.)
in red nucleus, 184
in spinal cord motor neurons, 184–185
in substantia nigra, 182–183, 185

Neurotransmitters, 97, 98, 104, 141, 142, 150, 181, 190, 210, 317
NFT, see Neurofibrillary tangles (NFT)
NHANES, see National Health and Nutrition Examination Survey (NHANES)
NHANES dietary intake, of iron in women, 328
NHANES III, see National Health and Nutrition Examination Survey III (NHANES III)
Non-hemeiron, 34
intestinal absorption of, 35
Non-heme sources of iron, 356
Non-ribosomal peptide synthesis (NRPS) activities, 66–67
protein–protein interactions within, 67
Non-transferrin-bound iron (NTBI), 9, 11, 12, 13, 20, 35, 36, 86, 186
uptake, 13
under iron-loading syndromes, 12
by liver, 13
molecular basis of, 13
Noradrenergic innervation of rodent brain, 148
Norepinephrine (NE) degradation of, 148
signaling, 148
synthetic pathway of, 147
transport of, 148
NTBI, see Non-transferrin-bound iron (NTBI)
Nutritional iron deficiency (NID), 95–97, 196, 313–322
effect on brain
behavioral abnormalities, 97
brain enzymes, 97–98
CNS aminergic neurotransmitters, 97
iron distribution, uneven, 96, 97
iron transport, 96
neurotransmitter receptors, 98–99
neurochemical aspect of, 96
in rats
BBB examination, 100
brain enzyme activity, 97–98
dopamine D2 receptor, 99
neurotransmitter activities, 98
Nutritional sources of iron, 355–357
heme sources, 357
non-heme sources, 356

O
Oligodendrocyte, 100, 108, 181, 184, 186–190, 200, 208, 243, 263
Oral iron preparations, 77
bioavailability of, 78
drug interactions with, 79–80
side effects of, 78–79
Oral iron therapy, drug interactions with, 80
Organum vasculosum of the laminae terminalis (OVLT), 209
Orthopnea, 166
Osteoporosis, 327, 344–345
OVLT, see Organum vasculosum of the laminae terminalis (OVLT)
Ovulation, and iron, 334
sources in AD brain, 127

P
PANK2, see Pantothenate kinase-2 (PANK2)
Pantothenate kinase-2-associated neurodegeneration (PKAN), 257–259, 269
brain MRI of patient with, 257
globus pallidus of patient with, 258
PANK2 in, 258–259
biosynthetic pathway of, 259
Parenchymal brain copper in normal adult, 230
quantitative measurements of, 228
Parenchymal brain iron in normal adult, 230
quantitative measurements of, 228
Parenteral iron formulations, 77, 78
ferric gluconate injection, 81
dextrans injection administration methods, 79–80
for adults and children over 15 kg, 80–81
for children 5–15 kg, 81
iron sucrose injection, 81
side effects of, 81–82
Parkinsonian substantia nigra, iron overload in 6-hydroxydopamine neurotoxicity, 112
MPTP-induced dopaminergic neurotoxicity, 112
protein aggregation in Lewy bodies, 111
α-synuclein crosslinking, 111
protophilbrils, 111–112
Parkinson’s disease (PD), 96, 105, 107, 112, 113, 114, 126, 127, 133, 134, 183, 189, 190, 208, 225, 231, 268
and heme oxygenase-1, 133–135
dopamine/H2O2-related killing, 134–135
iron sequestration, 133
idiopathic, 127
iron in, increased levels of
MRI experiments of, 108
putamen and globus pallidus, 107
SN pars compacta, 106–107
SN pars reticulata, 108
mutant HFE and idiopathic, 268–269
neuromelanin interaction in SN of patients with, 109
neuroprotectant in, 109–110
role of transition metals in, 105
Pathogenic bacteria, 65–69, 71
salmochelin-secreting, 68
siderophores synthesized by, 66
virulence factor in
IroA cluster, 67–68
siderophore modification., 68
PD, see Parkinson’s disease (PD)
Perls stain, 224, 225, 230, 231
See also Brain iron
Peterobactin, 68
PGE, see Prostaglandin E (PGE)
Phlebotomy, 16, 17, 85, 86, 291, 344
Pica, 172–173, 195
PKAN, see Pantothenate kinase-2-associated neurdodegeneration (PKAN)
PLA2G6, 259
Plasma iron regulation, by inflammation, 58–59
Plasmodium falciparum, 302
Plasmodium yoelli, 302
Platelet count, 168
Postmenopausal women, iron supplement use in, 280, 292, 341, 342, 344, 345
Pregnancy, 21, 33, 41, 203, 300, 301, 305, 308, 315, 316, 320, 327, 328, 331, 334–339, 345–347
anaemia during, 336
ID during, 335–339
iron requirements during, 335–336
iron supplement during, 336–338
Prenatal period, 200
Presenilin-1, 242, 245
Preterms and iron deficiency, 200–201
Primary hemochromatosis, 84, 85, 86
Prostaglandin E (PGE), 209
Proteins, in mammalian iron homeostasis, 252
Pseudomonas aeruginosa, gene repression pattern under Fe starvation, 72
Psychomotor development, 317, 318, 319, 322
Psychomotor development deficits, ID, 317–319, 322
R
RDA, see Recommended daily intakes (RDA)
Reactive oxygen species (ROS), 243
Aβ source of, in AD, 244
Recommended daily intakes (RDA), of iron in women, 328, 334, 335, 342
Reference ranges, for laboratory assays of iron metabolism, 351–353
Restless leg syndromes, 173
Risk factors, 270, 284, 285, 293, 315, 316, 336, 339, 344
ROS, see Reactive oxygen species (ROS)
RyhB, 69–72
S
Saccharomyces cerevisiae, gene repression pattern under Fe starvation, 72
Salmochelin S4, 67
Salmochelin-secreting pathogenic bacteria, 68
Schizophrenia and iron, 198
Schizosaccharomyces pombe, gene repression pattern under Fe starvation, 72
Schwann cells, iron homeostasis in, 181, 187
Secondary hemochromatosis, 84
Serotonin
catabolism of, 150
5-HT receptors, 150
synthesis of, 149
transport, 149–150
Serum ferritin
CHD risk and case-control/cross-sectional studies, 288–289
cohort studies based on, 282–285
geometric mean, 281
Serum iron measurement, 300
Serum transferrin saturation level, 281
gene repression pattern under Fe starvation, 72
siderophore biosynthesis and, 66–67
siderophore modification
role during iron starvation
intracellular Fe levels, 71
mRNA degradation, 70
role in acid resistance, 71
role in biofilms and chemotaxis, 71
siderophore biosynthesis and, 72
Staphylococcus aureus
gene repression pattern under Fe starvation, 72
STAT-4, see Signal transduction and activator of transcription (STAT)-4
STEAP3, 4, 10, 31, 32, 36, 252
STEAP3 expression, 10
Steap3 gene, see Six-transmembrane, epithelial antigen of the prostate 3 (Steap3) gene
Step 2 Diet, 291
Stress, 3, 17, 65, 69, 78, 79, 95, 96, 108, 109, 112, 113, 114, 126, 127, 129, 130, 131, 132, 134, 135, 148, 183, 189, 199, 203, 207–216, 242, 244, 245, 254, 255, 267, 290, 308, 317 and autoimmune inflammatory disease, 214–215 characteristics of, 207–208 CNS and immune system in, 208 defined, 207 depression and, 210–211 and glucocorticoids effects on Th1/Th2 balance, 214 and increase in IL-6 and IL-1 secretion, 216 and Th1/Th2 subsets, 212–213 Stress hormones, 207, 211, 212–213, 214, 215, 216 Striatal neurotransmitters in brains of ID rats, 98 deficiency in rats, 100 Striatum, 97–99, 103, 108, 113, 142–145, 147, 149–151, 361 Stroke, see Ischemic stroke Sullivan, Dr. Jerome, 279, 280, 287, 289, 292, 293 Synaptic dysfunction, 242 α-Synuclein, mutations in, 111 Systemic iron metabolism regulation of iron homeostasis ferroportin role in, 52 hepcidin role in, see Hepcidin hypoxia-inducible transcription factors, 57–58 supply of iron to plasma Tf, 20 systemic iron transport, 20 Systemic regulation, 5, 20, 35, 53 T Tangles, 127, 132, 241, 242–244 TfR1, see Transferrin receptor (TFR1) TfR2, 6, 11, 20, 21, 32, 37, 54–57, 110, 111 affinity for diferric Tf, 11 deficiency and iron regulation, 56 expression of, 11 TfR1–apoTf complex, 7 Th17 cells, role in inflammation, 215–216 T-helpers, 212, 214, 215–216 T-helper progenitor (Thp) cells, 214 Thp cells, see T-helper progenitor (Thp) cells Th1/Th2 balance, 213–214 stress and glucocorticoids effects on, 214 Th1/Th2 cells, 212–214 glucocorticoids suppressive effect on, 214 and stress, 212–213 Th1/Th2 cells, differentiation of lymphocytes into, 213 TIBC, see Total iron-binding capacity (TIBC) TIM-2, binding with ferritin, 14 Tissue copper concentration, in normal adult brain, 229 Tissue iron concentration, in normal adult brain, 229 Tissue uptake, and iron transport in body, 35–38 TLR, see Toll-like receptors (TLR) Toll-like receptors (TLR), 213 Total iron-binding capacity (TIBC), 83, 280 in body iron stores, 280–282 Toxicity, 82–87, 109, 112, 129, 134, 151, 185, 189, 200, 231, 242–245, 252, 270, 321 of drug, 82–87 acute, 82 chronic, 84 Transferrin, 331 in cellular iron transport, 32–33 genetic deficiency of, 56 receptor 1, 4, 10, 22, 37 receptor 2, 6, 11, 37, 54 Transferrin-bound iron uptake, 12–13 low-affinity uptake of, 11 TFR1 role in, 10–11 Transferrin immunoreactivity, 200 Transferrin pathway of iron mobilization, 127 Transferrin receptor 1 (TFR1), 4, 10, 37 binding with diferric Tf, 10 homolog transferrin receptor 2, 11 homozygous ablation of, 55 iron regulation controlled by, 38 iron uptake by, 10–11 Transferrin saturation (TS), 56, 163, 266, 267, 280, 281, 314, 332, 345, 353 in body iron stores, 280–282 cohort studies based on, CHD risk and, 286–287 T_reg, see T regulatory cell (Treg) T regulatory cell (Treg), 215, 216 TS, see Transferrin saturation (TS) Turpentine-induced inflammation, hypoferremic response to, 58 Type 2 diabetes, 342–344 U Untranslated region (UTR), 16, 17, 19, 22, 38, 72, 244, 254 UPEC, see Uropathogenic E. coli (UPEC) Uropathogenic E. coli (UPEC), 66, 67 acute cystitis due to, 66 chemical structures of catecholate siderophores used by, 67 UTR, see Untranslated region (UTR) V Veteran’s Administration (VA) patients, serum ferritin levels in, 291 W WHA, see World Health Assembly (WHA) WHO, global iron deficiency, 299–310 Whole bowel irrigation, for acute iron ingestion, 83 WHO programmes, 96, 241, 299–310, 315, 345
Subject Index

WHOSIS, 300
Wilson disease, 266
World Health Assembly (WHA), 300

X

X-linked sideroblastic anemia with ataxia (XLSA/A), 256, 264, 266, 269
 differential diagnosis of, 266
 sagittal T1-weighted MR image of patient with, 264
XLSA/A, see X-linked sideroblastic anemia with ataxia (XLSA/A)

Y

Yehuda, Shlomo, 97, 100, 101, 102, 113, 144, 145, 153, 182, 187, 188, 196, 197, 198, 201, 203
Yfh1 mutants, 255

Z

Zinc and iron interaction in hippocampus, 102–105
 FER distribution pattern, 102
 iron therapy, 103–105
 MF neuro-anatomy, 102–103
About the Editors

Shlomo Yehuda received his Ph.D. degree in Psychology and Brain Sciences from M.I.T. He is a Professor at the Department of Psychology and he is the Director of the Psychopharmacology Laboratory at Bar Ilan University. He is currently held the Ginsburg Chair Alzheimer Research and Farber Center. He is trained in Prof. Wurtman’s laboratory at M.I.T., a visiting professor at Kastin’s Peptide Laboratory (Tulane Medical School, New Orleans), and Rosenstadt Professor at Toronto Medical School – Nutrition Department. He published over 180 scientific papers and 7 books in the following fields: brain biochemistry, effects of nutrients on brain and behavior (mainly brain iron and essential fatty acids), ADHD children, and aging of the brain.

David I. Mostofsky is a Professor of Experimental Psychology and Behavioral Medicine at Boston University, and holds associate appointments at several major medical institutions in the Boston area. A Charter Fellow of the Academy for Behavioral Medicine Research, he has been involved with Behavioral Medicine and Psychopharmacology for many years. Scientific and scholarly activities during his career include research investigations with both human and animal subjects, concerning basic science experimentation as well as clinical applications. He has published numerous articles and books on a variety of topics in this area, especially with regard to epilepsy, pain, stress, essential fatty acids, and psychoneuroimmunology. He has been the recipient of many awards including, a Marshal Fund Award, Einstein Award, NIH Fogarty Fellowship, Fulbright Fellow, and is active as an invited lecturer in Europe, South America, and the Far East.
Dr. Adrianne Bendich is Clinical Director, Medical Affairs at GlaxoSmithKline (GSK) Consumer Healthcare, where she is responsible for leading the innovation and medical programs in support of many well-known brands including TUMS and Os-Cal. Dr. Bendich had primary responsibility for GSK’s support for the Women’s Health Initiative (WHI) intervention study. Prior to joining GSK, Dr. Bendich was at Roche Vitamins Inc. and was involved with the groundbreaking clinical studies showing that folic acid-containing multivitamins significantly reduced major classes of birth defects. Dr. Bendich has co-authored over 100 major clinical research studies in the area of preventive nutrition. Dr. Bendich is recognized as a leading authority on antioxidants, nutrition and immunity and pregnancy outcomes, vitamin safety, and the cost-effectiveness of vitamin/mineral supplementation.

Dr. Bendich is the Editor of nine books including Preventive Nutrition: The Comprehensive Guide For Health Professionals, co-edited with Dr. Richard Deckelbaum, and is Series Editor of Nutrition and Health for Humana Press with 29 published volumes including Probiotics in Pediatric Medicine edited by Dr. Sonia Michail and Dr. Philip Sherman; Handbook of Nutrition and Pregnancy edited by Dr. Carol Lammi-Keefe, Dr. Sarah Couch, and Dr. Elliot Philipson; Nutrition and Rheumatic Disease edited by Dr. Laura Coleman; Nutrition and Kidney Disease edited by Dr. Laura Byham-Grey, Dr. Jerrilynn Burrowes, and Dr. Glenn Chertow; Nutrition and Health in Developing Countries edited by Dr. Richard Semba and Dr. Martin Bloem; Calcium in Human Health edited by Dr. Robert Healney and Dr. Connie Weaver, and Nutrition and Bone Health edited by Dr. Michael Holick and Dr. Bess Dawson-Hughes.

Dr. Bendich served as Associate Editor for Nutrition, the International Journal; served on the Editorial Board of the Journal of Women’s Health and Gender-based Medicine, and was a member of the Board of Directors of the American College of Nutrition.

Dr. Bendich was the recipient of the Roche Research Award, is a Tribute to Women and Industry Awardee, and was a recipient of the Burroughs Wellcome Visiting Professorship in Basic Medical Sciences, 2000–2001. In 2008, Dr. Bendich was given the Council for Responsible Nutrition (CRN) Apple Award in recognition of her many contributions to the scientific understanding of dietary supplements. Dr. Bendich holds academic appointments as Adjunct Professor in the Department of Preventive Medicine and Community Health at UMDNJ, and has an adjunct appointment at the Institute of Nutrition, Columbia University P&S, and is an Adjunct Research Professor, Rutgers University, Newark Campus. She is listed in Who’s Who in American Women.