III Nutrition and Rheumatic Disease-Related Resources
Appendix A: Nutrition Resources

NUTRITION

American Dietetic Association – www.eatright.org
American Society for Nutrition – www.nutrition.org
Center for Science in the Public Interest – www.cspinet.org
Centers for Disease Control and Prevention – www.cdc.gov
Food and Drug Administration – www.fda.gov
United State Department of Agriculture (USDA) Food and Nutrition Service – www.fns.usda.gov/fns
Tufts University Health and Nutrition Letter – www.healthletter.tufts.edu

EXERCISE

American College of Sports Medicine – www.acsm.org
Appendix B: *Rheumatology Resources*

American College of Rheumatology – www.rheumatology.org
Arthritis Foundation – www.arthritis.org
Lupus Foundation of America – www.lupus.org
National Fibromyalgia Association – www.fmaware.org
National Institute of Arthritis and Musculoskeletal and Skin Diseases (National Institutes of Health) – www.niams.nih.gov
Scleroderma Foundation – www.scleroderma.org
Sjogren’s Syndrome Foundation – www.sjogrens.org
The Myositis Association – www.myositis.org
Vasculitis Foundation – www.vasculitisfoundation.org
Index

A

AA, see Arachidonic acid (AA)
Activities of daily living (ADLs), 27
Adalimumab, 62
Adenosine triphosphate (ATP), 189
Alfalfa, 164
harmful for SLE, 164–165
American Heart Association’s (AHA) diet recommendation, 176
Anabolic steroids
risks of, on nonprescription, 203–204
Ankylosing spondylitis (AS), 74
Anthropometry, 17
edema, 20
fatness
skinfolds, 19–20
waist circumferences, 19
height/stature, 17
muscle and bone
bioelectrical impedance analysis, 20
dual-energy X-ray absorptiometry, 20
weight and body mass index, 17–19
Antibodies, against self-antigens, see Autoantibodies
Antigen presentation, altered, 4
Antineutrophilic cytoplasmic antibodies (ANCAs), 8
cytoplasmic (c-ANCA), 9
perinuclear (p-ANCA), 9
Antinuclear antibodies (ANAs), 5
detection of, for diagnostic SLE, 5
in SLEs, 5
and SS, 7
Anti-Sm antibody, 6
Apoptosis, 4
Apoptotic blebs, 4
Aquatherapy, 80
Arachidonic acid (AA), 59, 134
metabolism, 60
Arthritic joints, restriction of movement, 73
Arthritis, 28
frequency of self-reported, 47
limiting ROM, 28
modified diet to ameliorate, 90
preventing symptoms of, 57
Arthritis-attributable activity limitation
NHIS and, 45–46
Arthritis, Diet, and Activity Promotion Trial, 147
Ascorbic acid, see Vitamin C
Aspirin (acetylsalicylic acid), 102
Atkins™, 176
Autoantibodies, 4
and cryoglobulinemia, 9
and disease manifestations, 6
formation in, 4–5
inflammatory muscle disease, 7–8
rheumatoid arthritis, 9–10
scleroderma, 7
SLE, 5–6
SS, 6–7
vasculitides, 8–9
varied pathogenicity of, 6
Autoimmune rheumatic disorder (Sjögren’s syndrome)
causation, 230
consequences of saliva hypofunction, 227–228
effects of, 227, 231, 234
locations of effects in body, 229
prevalence of women, 228
primary SS, 228
salivary gland locations in oral cavity, 230
secondary SS, 228–229
Autoimmune thyroid disease, 5
Autoimmunity, 4

B

Biochemical indices, comorbidities, 23
anemia of chronic disease, 23
hyperglycemia, 23
hyperlipidemia, 23
markers of inflammation, 23
Biochemical tests, 16, 20–21
example, 21
Bioelectrical impedance analysis (BIA), 16, 20
Body mass index (BMI), 17–18
calculation, 18
limitations, 18, 19
Body weight, 19
Bone mineral density (BMD), 131

C
Calciferol, see Vitamin D
Calcium, 22
Caloric restriction for SLE, 160
autoimmune-prone NZB/NZW F1 (B/W) as model, 160
CAM, see Complementary and alternative medicine (CAM)
Case-control studies (retrospective), epidemiological study designs, 42
Catastrophizing, 82
See also Confronters
Celecoxib, (COX-2 inhibitor), 59
Celiac disease, 5
Centers for Disease Control and Prevention (CDC), 89
Central nervous system vasculitides, 219–220
Cherries
compared with other fruits, 174
decrease in plasma urate, 175
role in preventing gout, 174
Childhood-onset type 1 diabetes, 44
Chiropractic care, 90
Chlorella pyrenoidosa, 189
Chondroitin, 99–101
treatment of OA, 99–101
Chronic arthritides of childhood
clinical features, 255
oligoarticular JIA, 255–256
polyarticular JIA, 256
psoriatic arthritis, 257
systemic-onset JIA, 256–257
dietary management, 267–269
enthesitis-related arthritides arthritis of IBD, 258–259
juvenile ankylosing spondylitis, 258
historical background, 252
management and treatment, 259
biological immunomodulators, 262
cytotoxic and immunosuppressive drugs, 262
DMARDs, 260
glucocorticosteroids, 260–261
NSAIDs, 259–260
nutritional impairments in patients with JIA, 264
body composition abnormalities, 266–267
growth abnormalities, 264–265
malnutrition and nutrient deficiencies, 265–266
osteopenia and osteoporosis, 267
nutritional status, 262
oral health in patients with JIA, 263
recommendations, 269–270
risk factors for developing nutritional impairments, 263–264
terminology and classification, 252–253
ACR classification criteria for JRA, 253
EULAR classification criteria for JCA, 253
ILAR classification criteria for JIA, 253–255
Chronic arthritis, 251
Chronic fatigue syndrome, 185
Chronic inflammation, symptoms of, 195, 199
Chronic joint symptoms
frequency of, 47
Chronic juvenile arthritides, classifications of comparison of ACR, EULAR, and ILAR, 254
subtypes of chronic arthritis in children, 254
Churg-Strauss syndrome (CSS), 217
characteristics of, 217
Cohort, epidemiological study designs, 41
Colchicine, 176
See also Autumn crocus (Colchicum autumnale)
Complementary and alternative medicine (CAM), 89
NCCAM’s definition, 89–90
types, 90
Confronters, 82
vs avoiders, 83
Coping strategies, 82
Copper bracelets or magnets, 90
Corticosteroids, 57, 221
as alternative for NSAIDS in RA, 65
drugs for RA, 65
Corticotrophin-releasing hormone, 185
Creatine supplement, 202–203
Creatinine, 21–22
Crepitus, 126
CREST syndrome, 5
See also Scleroderma
Cryoglobulinemia, 9
Cryoglobulinemic vasculitides, 217–218
Curcumin (turmeric), 105
Cyclic citrullinated peptides (CCPs), 10
Cyclooxygenase (COX), 59
Cytokines, 12
- beneficial effects of, 198
- and rheumatic diseases, 12
- role of, 62
Cytoplasmic (c-ANCA), 9

D

Daily energy expenditure, total (TEE), 117
Dehydroepiandrosterone (DHEA), 164
- side effects, 164
- and SLE, 163–164
Dental caries, 232
- acid erosion in xerostomic patient, 234
- candidiasis, 234
- gingival recession and root caries, 233
- process of, 233
- rampant caries, 233
- remineralizing agents, 239
Dermatomyositis/polymyositis, 7, 195–208
- balanced diet, intake of, 200–206
- creatine supplement and physical exercise, 201, 202–203
- supplements
 - with calcium and vitamin D, 205–206
 - to reduce risk of steroid-induced osteoporosis, 205–206
Descriptive studies (cross-sectional), epidemiological study designs, 41, 42
Devil’s claw (Harpagophytum Procumbens), 102
- efficacy in OA, 102
Diacerein, 144–145
Diagnosis of SS, 235
Diagnostic tests of SS, 235
Dietary assessment, 16, 24–25
Dietary fat intake and SLE, 161
Dietary intake
- assessment methods
 - 24-hour recalls, 25
 - food-frequency questionnaires, 25–26
 - food records, 26
- need for assessment of, 24–25
Dietary management for patients with JIA, 267–269
- benefits of supplements, 267–269
Dietary n-3 fatty acids, 61
Dietary status, 15
Dietary supplementation, fibromyalgia, 191–192
Dietary supplements, 90
- fish oil (omega-3 polyunsaturated fatty acids), 92–93
- γ-linolenic acid, 96–97
- herbal supplements, 101–106
- vitamins, 97–101
Diet programs, popular, 176
Diets and SLE, low-protein, 160
Diets, special, 90
Disease incidence, 42
Disease-modifying anti-rheumatic drug (DMARD), 57–58, 114, 260
- drugs for RA, 65
- Disease prevalence, 42
Diseases affecting elderly
 - OA - most prevalent, 126
Diuretics, 172
DMARD, see Disease-modifying anti-rheumatic drug (DMARD)
Double-stranded DNA (dsDNA), 5
Drug absorption and bioavailability, 58
Drug-induced vasculitides, 219
- causative drugs, 219
Drug–nutrient interactions in rheumatic diseases, 57–58
 - cytokine antagonists
 - anti-TNF-α-based therapies, 62
 - modulation of proinflammatory cytokines by n-3 fatty acid supplementation, 62–63
 - proinflammatory cytokines in pathogenesis of rheumatic diseases, role of, 62
 - disease-modifying anti-rheumatic drugs, 63
 - folate status and supplementation in methotrexate treatment, 63–64
 - interaction of glutamine with methotrexate, 64
 - nutritional status and dietary management, 64
 - importance, 57
 - mechanisms of, 58
 - biological mediators of rheumatic diseases by nutrients, modulation of, 58
 - nutritional status by drugs, change in, 58
 - pharmacokinetics by food, alteration of, 58
 - nonsteroidal anti-inflammatory drugs, 59
 - arachidonic acid metabolism and prostaglandin production, 59–61
 - clinical benefits of n-3 fatty acids in rheumatoid arthritis, 61
 - concomitant food intake on bioavailability of NSAIDs, effects of, 59
 - impact of vitamin E in rheumatoid arthritis, 61–62
- recommendations, 66
Dry eye test of SS, 235
DsDNA antibodies, 6
Dual-energy X-ray absorptiometry (DEXA), 16
E

Echinacea
- harmful for SLE, 165
- treatment for colds, 165

Ecological (correlational) studies, epidemiological study designs, 41, 42

Edema, 20

Electrical stimulators, 90

Energy expenditure profile, 117–118

Enthesitis-related arthritides
- arthritides of IBD, 258–259
- juvenile ankylosing spondylitis, 258

Environmental epidemiology, 43–44

Enzyme-linked immunosorbent assay (ELISA), 9

Epidemiological, study designs, 41
- experimental studies, 42
- cohort, 41
- descriptive, 41, 42
- ecological (correlational), 41, 42

Epidemiologist
- study methods, 40

Epidemiology, 39–40
- and definitions of prevention, 40
- subdisciplines, 43–44
- examples of, 43
- social, 43

Essential fatty acids, 161

Etanercept (anti-TNF-based therapy), 62

Exercises
- benefits of, 73
- health, 78–80, 83–85, 86
- improving joint movement, 73, 84, 86
- improving proprioception, 77
- improving strength and endurance, 74–77, 34–85
- modifying risk factors for progression, 77–78
- discomfort during/following, 70, 74–75
- discontinuing, 85
- enhancing self-efficacy, 84
- essentiality, 86
- incorporating strengthening, effective, 75
- initiating, 73
- maintenance, 84–85
- psychosocial effects, 80–85
- rheumatic disease and, 70
- role of, 201
 - for patients with myositis, improved performance, 201
- self-monitoring, 71

- stretching and flexibility, 74
- ankylosing spondylitis (AS), 74
- rheumatic conditions, 74

Exercises, recommendations
- assessing cardiovascular risk, 72
- general advice, 71
- muscle strengthening, 75
- NICE guidelines, 78
- pain self-management, 80
- for physical health, 70–72
- psychological theories, 83
- stretching, 71, 74

Exocrine tissues, histopathology of, 7

Extracellular matrix (ECM), 130

F

Fasting, 92

Fatness, anthropometry, 19
- skinfolds, 19–20
- waist circumferences, 19

Fatty acids, 205
- clinical trials of, supplementation, 161
- modulates immune system, 161
- role in energy metabolism, 93

Feverfew (Tanacetum parthenium), 104
- increased bleeding time, 104

Fibromyalgia, 35
- alleviation of symptoms using vegetarian diets, 184
- Chlorella pyrenoidosa for treatment, 189
- diagnosis, 184
- and diet, 183–184
 - discussion, 190–191
 - dietary recommendations, 191–192
 - advice to patients, 191
 - dietary supplementation, 191–192
- dietary treatment, 184
- frequency, 90
- gastrointestinal (GI) symptoms and, 183
- higher substance P levels in patients, 185
- increasing incidence with age, 183
- lower growth hormone (GH) in patients, 185
- no effective drug therapy, 185
- nutrition and, 186
 - vegetarian diets, 186–190
- overcoming, by consumption of vegetarian foods, 191
- pathophysiology of, 184–185
- theories on, 184
- poor sleep, 185
- symptoms, 183

Fish oil (omega-3 polyunsaturated fatty acids), 92–93
advantages and disadvantages, 61
adverse effects of, 95–96
amounts of EPA and DHA, 94
clinical trials of, in RA, 91–92
impact on proinflammatory cytokines, 62–63
inhibitory effect of, 63
low prevalence of rheumatic diseases in Eskimos, 92
supplementation, 161
anti-inflammatory effects, 161
See also Dietary n-3 fatty acids
Flaxseed and its benefits for SLE, 163
Flurbiprofen (Ansaid), 59
Food-frequency questionnaires (FFQ), 25–26
advantages, 26
types, 26
Framingham Osteoarthritis Study, 133

G
Garlic (Allium sativum), for gout and rheumatism, 176
Gastrointestinal (GI)
physiology, 58
symptoms and fibromyalgia, 183
GCA, see Giant cell arteritis
GCS, see Glucocorticosteroids (GCS)
Gelling, 126
Genetic (molecular) epidemiological studies, 44
Giant cell arteritis (GCA), 8, 220–221
symptoms and treatment of, 220–221
Ginger (Zingiber officinale), 103
Gliadin, 5
γ-linolenic acid (GLA), 96–97
side effects of, 97
source, 97
treatment of RA, 96
Glomerular filtration rate (GFR), 160
Glomerulonephritis, 6
and zinc, 163
Glucocorticoids
combination with immunosuppressants, 199
Glucocorticosteroids (GCS), 260–261
adverse effects of, 260–261
Glucosamine, 99
and chondroitin sulfate, 138–140
disease-modifying agents, 143–144
pain and function, 141–143
sulfate, 140–141
efficiency in OA, 99
Glucosamine/Chondroitin Arthritis Intervention Trial (GAIT), 101
Glutamine, 204–205
Gluten, 202
Glycosaminoglycan (GAG), 128
Gout, 31–32
alcohol as dietary risk factor for, 177, 178
body weight and, 31
Colchicine as treatment for, 176
dairy intake inversely correlated with, 174
food sources protecting against, 175
and gluttony, 169, 170
importance of dietary assessment, 31
link between purine-rich diets and, 173
low meat and high dairy products prevents, 172–173
prevalence of, in relation to BMI, 171
prevention of arthritis, 57
rare among blacks, 172
study on high-protein diet, 176
use of cherries prevents, 174
use of garlic, 176
Gouty arthritis, 39
sustained hyperuricemia, risk factor, 169
Grave’s disease, patients with polymyositis, 5
Growth delay, 264

H
Hashimoto’s thyroiditis, 4
Herbal supplements, 101–102
avocado and soybean unsaponifiables, 104–105
devil’s claw (Harpagophytum Procumbens), 102
efficacy in OA, 101
feverfew (Tanacetum parthenium), 104
increased bleeding time, 104
ginger (Zingiber officinale), 102–103
immunostimulatory preparations, 207
polyphenols, 207
thunder god vine (Tripterygium wilfordii), 103
achievement of therapeutic effect, 103
beneficial effect, 103
turmeric (Curuma longa), 105
willow bark (salix sp.), 102
refined product of, see Aspirin (acetylsalicylic acid)
Herbal therapies, 90
Herbs, 176
High-protein diets, 175–176
popular diet programs, 176
Hormones
growth hormone and insulin-like growth factor-I, 119
insulin, 119–120
Human leukocyte antigen (HLA) class II molecules, 48
location, 48
Index

Hyperglycemia, 23
Hyperlipidemia, 23
Hyperuricemia, 169–170
and alcohol, 177
association with MetS, 170
cause of, 170
correlation between obesity and, 171
defined, 170
dehydration as cause, 172
and diet, 172
dairy products, 174
fruits and vegetables, 174–175
high-protein diets, 175–176
purine-rich foods, 172–173
diuretics, 172
effect of dairy products against, 174
food sources protecting against, 175
hydration for prevention, 172
metabolic syndrome and, 169
rare among blacks, 172
SU level, 170
surrogate marker of insulin-resistance syndrome, 170
weight management, 178
Hyperuricemia, gout, and diet, 169, 170, 178–179
alcohol, 177–178
dietary supplements
herbs, 176
vitamin/mineral supplements, 177
nutritional status
dehydration/starvation, 172
metabolic syndrome and hyperuricemia, 170–171
obesity, 171–172

Hypocomplementemia, 6

I
Ibuprofen (NSAIDs), 59
Idiotypes, 4
Illness behavior
coping strategies, 82
determinants, 82
Immune complexes
and vasculitides, 8
Immune system
role in rheumatic diseases, 4
Immunology and rheumatic diseases, 3–4, 12–13
autoimmunity, 4
cytokines and rheumatic diseases, 12
diseases with autoantibodies, autoantibody formation, 4–5
associated with rheumatoid arthritis, 8–9
in inflammatory muscle disease, 7–8
Sjogren’s Syndrome, 6–7
in SLE, 5–6
in systemic sclerosis (scleroderma), 7
in vasculitides, 8–9
MHC and rheumatic diseases, 10–11
inflammatory myositis, 11
RA, 12
SLE, 11
SS, 11
systemic sclerosis, 11
vasculitides, 11–12
Inflammatory cytokines, 116–117
influence on whole body protein and metabolism, 116
Inflammatory muscle disease, 7
autoantibody formation in, 7–8
MHC and, 11
Inflammatory myopathies, 198
risks of supplements, 198
Infliximab, 62
Instrumental activities of daily living (IADLs), 27
Interleukin (IL)-1β, 116
Intestinal microflora, 190
Intracellular defense, antioxidant enzymes, 127
Iron, 22
anemia, 23
harmful for SLE, 164

J
JIA patients, recommendations for, 269–270
Joint effusions, 127
Juvenile chronic arthritis (JCA), 253
Juvenile idiopathic arthritis (JIA), 252, 253
Juvenile rheumatoid arthritis (JRA), 29–31, 253

K
Kashin-Beck disease, 137
Keutel syndrome, 136

L
Laboratory test abnormalities of SS, 235
Limited scleroderma, see CREST syndrome
Lip biopsy, 235
Lipoxygenases (LOX), 145
Lipopolysaccharide, 4
Living food diet (LFD), 187
antioxidants on, 190
positive effects on serum lipids, 187
studies with, 187–188
therapeutic effect of, 188
Lyme disease, 57
preventing symptoms of arthritis, 57
M

Major histocompatibility complex (MHC), 4
- molecules classes, 10
 - class II molecule, 11
 - class I molecule, 10
- and rheumatic diseases, 10–11
 - inflammatory myositis, 11
 - RA, 12
 - scleroderma, 11
 - SLE, 11
 - SS, 11
 - vasculitides, 11–12
Malnutrition, 18
Management and treatment
- biological immunomodulators, 262
- cytotoxic and immunosuppressive drugs, 262
- DMARDs, 260
- glucocorticosteroids, 260–261
- NSAIDs, 259–260
Management strategies of SS
- dietary and nutritional management, 239
- dietary prevention of dental caries, 240–243
- dietary recommendations to reduce effects of SS, 244
- food choice suggestions for patients with oral complications of Sjogren’s syndrome, 241–243
- good nutriture despite oral impairment, 239–240
- other nutritional therapies for preventing, retarding, or managing SS, 244–245
 - eye palliatives, 237
 - minimizing aggravating factors, 236–237
 - oral candidiasis, management of, 239
 - oral palliatives and therapies, 237, 238
Metabolic Equivalent (MET), 79
Methotrexate, 260
 - effective in fasting state, 58
 - as filate antagonist, 58, 63
 - toxic effects, 63
MHC, see Major histocompatibility complex (MHC)
Microscopic polyangiitis, 217
Minnesota Leisure Time Physical Activity Questionnaire, 72
Molecular mimicry, 4
Morinda citrifolia, 165
 - See also Noni juice (Morinda citrifolia)
Mouse, autoimmune-prone NZB/NZW F1 (B/W), 160
Muscle and bone, anthropometric measurements
 - bioelectrical impedance analysis, 20
 - dual-energy X-ray absorptiometry, 20
Musculoskeletal pain, 81
Myeloperoxidase (MPO), 9
Myositis, 197, 200
Myositis-specific antibodies (MSA), 8
N
N-3 fatty acids
 - beneficial effect
 - in cardiovascular disease (CVD), 92
 - in rheumatic diseases, 92
 - fish contents
 - docosahexaenoic acid (DHA), 93
 - eicosapentaenoic acid (EPA), 93
 - metabolism, 93, 95
 - See also Fish oil (omega-3 polyunsaturated fatty acids)
N-3 fatty acids vs n-6 fatty acids, 93, 95
N-6 fatty acids
 - metabolism, 93, 95
 - unhealthy, 93
Nabumetone (NSAIDs), 59
Naproxen (NSAIDs), 59
National Center of Complementary and Alternative Medicine (NCCAM), 89
National Health Interview Survey (NHIS), 45
Necrotizing vasculitides, and serological diagnostic test, 8
NHIS, see National Health Interview Survey (NHIS)
Noni juice (Morinda citrifolia)
 - effect on C57BL/6 mice, 165
 - as harmful for SLE, 165
Nonsteroidal anti-inflammatory drugs (NSAIDs), 23, 59, 259–260
 - arachidonic acid metabolism and prostaglandin production, 59–61
 - concomitant use, 64
 - drugs in RA, 65
 - examples, 59
 - nutrients influencing production of PGs inhibit, 59
 - side effects, 59
 - See also Cyclooxygenase (COX)
 - See also Iron, anemia
Nonsynonymous single-nucleotide polymorphism (R620W), 49
Norepinephrine, 185
NSAIDs, see Nonsteroidal anti-inflammatory drugs (NSAIDs)
Nutrients and drug components
 - physicochemical interactions between, 58
 - nutritional assessment, overview of, 15
 - anthropometric measurements, 17
Nutritional assessment, overview of (Cont.)
- fatness, 19–20
- height/stature, 17
- muscle and bone, 20
- weight and body mass index, 17–19

Biochemical indices, 20–21
- comorbidities, 23
- nutritional implications, medications with, 23
- nutritional status, key indicators of, 21–23

Clinical indices, 24
- comorbidities, 24
- dietary intake, 24–26
- dietary status vs nutritional status, 15

Environmental factors, 27
- essential components of, 16–17
- functional status
 - activities of, 27
 - health-related quality of life, 28
 - instrumental activities of, 27
 - range of motion and difficulties performing everyday tasks, 28

Historical perspective, 16
- various arthritic and rheumatoid diseases, 29
 - gout, 31–32
 - juvenile rheumatoid arthritis, 29–31
 - other rheumatic and arthritic diseases, 34–35
 - polymyositis, 33–34
 - rheumatoid arthritis, 29
 - Sjögren’s Syndrome, 34
 - systemic sclerosis, 32–33

Nutritional impairment, 251, 262

Nutritional issues in vasculitides
- central nervous system vasculitides, 219–220
- Churg-Strauss syndrome, 217
- cryoglobulinemic vasculitides, 217–218
- drug-induced vasculitides, 219
- giant cell arteritis, 220–221
- microscopic polyangiitis, 217
- nutritional values and vasculitides, 222
- other vasculitides, 221
- polyarteritis nodosa, 215–216
 - Wegener’s granulomatosis, 218–219

Nutritional status, 15

ABCDEFs of
- anthropometry, 16
- biochemistry, 16
- clinical evaluation, 16
- dietary history, 17
- environmental assessment, 17
- functional status, 17
- decline of, 17
- dietary management, gluten, 202

Glucocorticoids, 200–201
- muscle metabolism, 200
- nutritional impairments in patients with JIA
 - body composition abnormalities, 266–267
 - growth abnormalities, 264–265
 - malnutrition and nutrient deficiencies, 265–266
 - osteopenia and osteoporosis, 267
- oral health in patients with JIA, 263
- risk factors for developing nutritional impairments, 263–264
- role of exercise, 201–202

Nutritional status, key indicators of
- calcium, 22
- iron, 22–23
- albumin, 21
- creatinine, 21–22
- transthyretin (prealbumin), 21
- urinary 3-methylhistidine, 22
- vitamin D, 22

Nutritional status, supplements
- anabolic steroids, 203–204
- creatine, 202–203
- fatty acids, 205
- glutamine, 204–205
- herbal supplements, 207
- vitamin D, 205–206
- vitamin E, 206

Nutritional values and vasculitides, 222
- toxicity of drugs, 222

Nutrition and polymyositis and dermatomyositis
- clinical features, 197–198
- epidemiology, 196
- etiology, 196
- historical perspectives, 196–197
- laboratory features
 - molecules present in muscle tissue in inflammatory conditions, 198–199
 - muscle tissue features, 198
 - pharmacological treatment, 199
 - prognosis, 199

Nutritional status
- dietary management, gluten, 202
- glucocorticoids, 200–201
- muscle metabolism, 200
- role of exercise, 201
- supplements, 202

Nutritional status, supplements
- anabolic steroids, 203–204
- creatine, 202–203
- fatty acids, 205
- glutamine, 204–205
herbal supplements, 207
vitamin D, 205–206
vitamin E, 206

OA
OA epidemiology, 52–53
incidence rates in US, 52
symptomatic prevalence, 52
Obesity
correlation between hyperuricemia and, 171
defined, 171
Observational studies (experimental)
randomized controlled trial, epidemiological study designs, 41
Ocular effects of SS, 231
Oligoarticular JIA, 255–256
Omega-3 (n-3) fatty acids, 145, 161
sources, 145
Omega-6 (n-6) fatty acids, 145, 161
sources, 145
Oral effects of SS and influence on diet and nutrition, 231–232
functions of saliva, 232
Osteoarthritic process, 131
Osteoarthritis (OA), 4, 27, 34
affected areas, 126
Arthritis, Diet, and Activity Promotion Trial, 147
as consequence of aging, 126
cross-sectional studies suggesting inverse relationship between osteoporosis and, 131
diagnostic criteria, 52
effects of vitamin D deficiency, 132
efficacy of devil’s claw extract, 102
as example of primordial prevention, 40
findings on physical examination, 126–127
frequency, 90
of hip, risk of incident, 133
most prevalent, affecting elderly, 126
overweight people at increased risk of, knee, 146
primary, 52
relationship between vitamin D and cartilage loss, 133
risk for developing
hand, 53
hip, 52
knee, 52
secondary, 52
strengthening exercise, 75
symptom, 126
TGF in pathophysiology, 130
vitamin C, beneficial effects of, 129–130
placebo-controlled case-crossover study, 130
Osteoarthritis, nutrition and nutritional supplements and, 125–126, 149
clinical features, 126–127
historical perspective, 126
nutritional status and dietary management
antioxidant micronutrients, 127
avocado/soybean unsaponifiables, 145–146
diacerein, 144–145
glucosamine and chondroitin sulfate, 138–144
nutritional products, 146
polyunsaturated fatty acids, 145
selenium and iodine, 137–138
vitamin C, 127–131
vitamin D, 131–134
vitamin E, 134–135
vitamin K, 135–137
weight loss, 146–148
Osteopenia, defined, 267
Osteophytes, 126, 130, 131
Osteoporosis, defined, 267

P
PAN, see Polyarteritis nodosa
Penicillamine
effective in fasting state, 58
Perceived exercise, rating of, 73
Perinuclear (p-ANCA), 9
antigens of, 9
PGE2, 59
Pharmacoepidemiology, 43
Pharmacokinetics, 58
effect of food on, 58
effect on ibuprofen, 59
Physical activity, 71–72
assessment of, 72
individual’s cardiovascular risk, 72, 73
examples of light and moderate, 79
exercise, 70
low levels of, obesity, 77
misconception regarding, 80
psychosocial effects, 80–83
reduced activity and benefits of exercise, 74
Physicochemical interaction, 58
Piascledine, 146
Plant herb and SLE, 163
Polyarteritis nodosa, 215–216
symptoms and treatment of, 215–216
Polyarticular JIA, 256
Polyclonal activation, 4
Polymyositis, 7, 33–34, 195–208
 antisynthetase antibodies as characteristic of, 8
 prescription of corticosteroids, 34
Polypharmacy, 23
Polyunsaturated fatty acid (PUFA), 145
 metabolized by COX and LOX, 145
 omega-3 (n-3), 145
 sources, 145
 omega-6 (n-6), 145
 sources, 145
Poor sleep, 185
Prevention, epidemiological definitions of, 40
Primary angiitis of CNS (PACNS)
 treatment of, 220
Primary prevention, rheumatic disease, 40
Primordial prevention, rheumatic disease, 40
Proinflammatory cytokines
 role in pathology of rheumatic diseases, 58, 62
Proprionception, 75
Proteinase 3 (pR3), 9
Protein diets and SLE
 high intake accelerates kidney damage, 160
 low, 160
 improved survival in NZB/NZW mice, 160
 restriction of different, 160
Protein tyrosine phosphatase gene, 49
Psoriatic arthritis, 257
Psychosocial traits, interactions of, 93
Purine-rich foods, 172–173
 cooking techniques, 173
 risk of developing gout, 173
Purpura, 8

Q
Quality-of-life
 arthritis-specific, 28
 questionnaires, disease-specific
 health-related, 28

R
RA, see Rheumatoid arthritis (RA)
RA epidemiology, 46–49
 diagnosed age, 46
 prevalence, 46
 risk of developing
 rheumatoid factor (RF) proportional to, 46
 tobacco smoke as, 44
Range of motion (ROM), 28
Rapid Assessment of Physical Activity, 72
Reactive oxygen species (ROS), 127
 chondrocytes as sources, 127
Recreational swimming/water aerobic exercises, 80
Retinol, see Vitamin A
Rheumatic diseases, 3
 biopsychosocial model of, 80
 classification of
 difficulties in, 44
 restrictive, 45
 effect of nutrients on symptoms of, 58
 epidemiological issues in studying, 44–45
 and folate deficiency, 66
 heterogeneity and variability in, 39
 interactions between patients with, and environment, 81
 limitations
 complex etiologies of, 45
 identifying individuals with, 44–45
 pathogenesis of, 4
 people with
 challenging erroneous ill-health beliefs, 83–84
 importance of muscle strength, 73
 prescription of exercises for, 73
 and psychosocial traits, 83
 stretching exercises, 74
 prevention, 40
 symptoms leading to low appetites, 64
 varying treatment, 57
See also individual rheumatic diseases
Rheumatic disease epidemiology, 39
 arthritic conditions, burden of
 osteoarthritis epidemiology, 52–53
 rheumatoid arthritis epidemiology, 46–49
 systemic lupus erythematosus epidemiology, 49–52
 epidemiological issues in studying rheumatic diseases, 44–45
 epidemiological methods, 39–40
 epidemiology subdisciplines, 43–44
 primary epidemiological study design, 40–43
 methodological issues in, 45
 R620W in tyrosine phosphatase gene, 49
Rheumatic diseases
 nutritional approach of treatment, misunderstood, 184
 and self-medication, 184
Rheumatic diseases, exercise in, 69–70
 benefits of exercise, 73
 health benefits, 78
 improve joint movement, 73
 improve proprioception, 77
 improve strength and endurance, 74–77
 modifying risk factors for progression, 77–78
discontinuing exercise, 85
exercise maintenance, 85
exercise safety, 70–71
initiating an exercise regimen, 71–72
assessment, 72
self-monitoring, 73
psychosocial effects of physical activity, 80–83
education, 83–84
positive mastery, 84
traits and symptoms, 83
recommendations, 86
Rheumatic diseases, medications
anticytokine-based therapies, 58
corticosteroids, 57
disease modifying anti-rheumatic drugs (DMARDs), 57
fasting drugs, 58
nonsteroidal anti-inflammatory drugs (NSAIDs), 57
timing of, 58
Rheumatic diseases, therapies, 89–90, 105–106
categories of, 90
complementary and alternative medicine, 90
diets and dietary supplements, 92–93
diets, 91–92
hinders, 92–101
Rheumatoid arthritis (RA), 3, 9, 23, 29, 42, 46, 113
antibodies to CCPs, 10
autoantibody formation in, 9–10
body composition of patients with, 115
cachexia in, 115
cardiovascular disease and role of n-3 fatty acids, 95
classification of, 42
clinical trials of fish oil in, 93
corticosteroids treatment, 58
decreased fertility and, 48
drugs used in, and interactions with nutrients, 65
elevated levels of (IL)-1β and (TNF)-α, 58
epidemiology, 46–49
fish-oil use in, 61
frequency, 90
greatest risk of deficiency, 120
high concentration of TNF-α and IL-1β, 115
idiopathic, 46
impact of vitamin E in, 61–62
incidence in selected cities, 48
inheritance of, 48
joint damage, involvement of TNF-α and IL-1β in, 116
low physical activity, 119
oral contraceptives and onset of, 48
patient having Hashimoto’s thyroid disease, 5
during pregnancy, 48
prevalence, 46
in Australia, 42
and progressive resistance, 76
randomized controlled trials, effect of n-3 fatty acids, 61
relationship between (TNF)-α production and lean body mass, 116
RF in, 10
role of proinflammatory cytokines in, 58, 62
and sarcopenia, 77
therapy
TNF-α as target, 58
tobacco smoke as increased risk, 44
treated with dietary fish-oil, meta-analysis, 61
treating
pharmacotherapeutic options, 43
treatment via GLA, 97
types of anti-TNF antibodies, 62
See also Adalimumab; Infliximab
Rheumatoid arthritis (RA), patients with fasting, 92
fish- or plant-oil preparations in diet, 91
prevention of CVD, a key feature, 95
vegan and lacto-vegetarian diet,
placebo-controlled study, 91–92
and vegetarian diets, 91
Rheumatoid cachexia (RC), 113–114
clinical features
pathophysiology of, 116–119
signs and symptoms, 114–115
dietary prescription, 120
exercise prescription, 120–121
historical perspective, 114
interactions leading to, 121
management, recommendations, 120–121
nutritional status, 119–120
reduced physical activity, 114
Rheumatoid cachexia, pathophysiology of energy expenditure profile, 117–118
hormones
growth hormone and insulin-like growth factor-I, 119
insulin, 119–120
inflammatory cytokines, 116–117
interleukin (IL)-1β, 116
tumor necrosis factor (TNF)-α, 116
physical activity, 119
whole-body protein turnover, 118
Rheumatologists
importance of pharmacoepidemiology, 43
ROM, see Range of motion (ROM)
Rose Bengal staining test, 235
S

Salivary function test of SS, 235
Salivary gland biopsy of SS, 235
Sarcopenia, 77
Schirmer test, 235
Scleroderma, 3, 32–33
autoantibody formation in, 7
biochemical indices and, 33
dietary intake, 33
MHC and, 11
Symptoms, 7
Sclerosis, 131
Secondary prevention, rheumatic disease, 40
Selenium, 137, 162
clinical trial, 138
deficiency, 137
efficacy in treating OA symptoms, 138
and SLE, 163
toxicity, 163
Selenium and iodine
OA and nutritional supplements, 137–138
Self-antigens
formation of antibodies and, 4
Self-efficacy, 82
Serological diagnostic test
and necrotizing vasculitides, 8
Serotonin, 185
Serum albumin, 21
Serum urate (SU)
alcohol and increased, 177
Chinese vegetarians vs omnivores in, 175
dietary intervention and decreased, 176
effect of diet on, 171
effect of vitamin C, 177
foods that increase, levels, 172
higher levels in humans, 169
increased, 170
milk proteins reduce, 174
purine-rich foods and increased, 173
Sjögren’s syndrome (SS), 5, 6
and ANAs, 7
autoantibody formation in, 6–7
defined, 227, 229
diagnosis of, 235
dietary and nutritional management, 239–245
dietary habits and patterns, 240–244
good nutriture despite oral impairment, 239–240
nutritional therapies, 244–245
dry eyes, 24
effect on exocrine glands, 6
efficacy of GLA, 97
epidemiology, 228
etiology, 230
history, 228
hypergammaglobulinemia in, 7
immunoglobulin (Ig)G found in, 7
managing, 236–239
eye palliatives, 237
minimizing aggravating factors, 236–237
oral palliatives and therapies, 237–239
MHC and, 11
nonerosive arthritis, 6
nutritional assessment in, 34
other adverse effects, 6
pathophysiology, 229–230
physiological effects of, 230–234
effects of xerostomia on dentition, 232
effects of xerostomia on diet and nutrition, 234
ocular effects, 231
oral effects and influence on diet and nutrition, 231–232
other oral effects, 232–234
other physiological effects, 234
types of, 228–229
Skinfold thickness, 19
measuring, 19
SLE, see Systemic lupus erythematosus (SLE)
SLE epidemiology, 49–52
concordance rates among twins, 52
different classification criteria in studies, 49
environmental influences, 49
incidence by Race and Gender for Selected Studies, 50
incidence rates in
African-American females, 49
age-specific, African-American and white females, 51
age-standardized rates, in Baltimore, 51
Europe, 49, 51
NY males vs females, 49
similar gender- and race-specific rates in studies, 49
suspected risk factors, 51
Sm, 5
involvement in RNA processing, 5
Social epidemiology, 43
South Beach™, 176
Spondyloarthropathies, 10–11
SS, see Sjögren’s syndrome
Strength training, 74
Symptom reports of SS, 236
Systemic lupus erythematosus (SLE), 3, 35, 49, 159
ANAs in, 5
antibodies against nuclear antigens, 5
autoantibody formation in, 5–6
and environmental exposures, 44
epidemiology, 49–52
immune complex formation and, 6
MHC and, 11
pathogenesis of, 49
prevention of CVD, a key feature, 95
Systemic lupus erythematosus, beneficial nutritional modifications
caloric restriction, 160
dehydroepiandrosterone, 163–164
dietary fat intake, 161
flaxseed, 163
low-protein diets, 160
plant herb, 163
selenium, 162–163
vitamin A, 162
vitamin E, 162
zinc, 163
Systemic lupus erythematosus, harmful nutritional substances
alfalfa, 164–165
echinacea, 165
iron, 164
noni juice (Morinda citrifolia), 165
Systemic lupus erythematosus, nutritional supplementation in, 159, 165
beneficial nutritional modifications
caloric restriction, 160
dehydroepiandrosterone, 163–164
dietary fat intake, 161
flaxseed, 163
low-protein diets, 160
plant herb, 163
selenium, 162–163
vitamin A, 162
vitamin E, 162
zinc, 163
harmful nutritional substances
alfalfa, 164–165
echinacea, 165
iron, 164
noni juice (Morinda citrifolia), 165
Systemic-onset JIA, 256–257
Systemic sclerosis, see Scleroderma

T
Takayasu’s arteritis, 8
T-cell help, increased, 4
Tertiary prevention, rheumatic disease, 40
Th (T helper)2 cells, 12
and cytokines, 12
Thunder god vine (Tripterygium wilfordii), 103
achievement of therapeutic effect, 103
beneficial effect, 103
Tofu, 175
Transforming growth factor (TGF), 130
Transthyretin (Prealbumin), 21
Tripterygium wilfordii hook F (TWH)
toxicity, 163
used for SLE and RA, 163
Tumor necrosis factor (TNF)-α, 116
relationship between production of,
whole-body protein breakdown, 118
Turmeric (Curuma longa), 105

U
Uric acid (urate), 169
beer ingestion and, 178
higher levels of serum urate (SU) in humans,
169–170
high-protein diets associated with increased
urinary, 175
metabolism and insulin resistance, 171
See also Gout; Hyperuricemia
Urinary creatinine, 22

V
Vasculitides, 8, 215–222
autoantibodies formation in, 8–9
association, 8
cause, 8
central nervous system, 219–220
Churg-Strauss syndrome, 217
cryoglobulinemic, 217–218
defined, 215
drug-induced, 219
giant cell arteritis, 220–221
and immune complexes, 8
MHC and, 11–12
microscopic polyangiitis, 217
nutritional values and, 222
other vasculitides, 221
polyarteritis nodosa, 215–216
Wegener’s granulomatosis, 218–219
VDR, 131–132
Vegetarian diets, nutrition and fibromyalgia,
186–187
antioxidants, 189–190
food intake and their matched controls, 188
intestinal microflora, 190
raw-food diets and dietary supplements,
187–189
Vinegar preparations, 90
Vitamin A
and its benefits for SLE, 162
Vitamin C, 97–98, 127, 129
beneficial effects in OA, 129–130
functions in biosynthesis of cartilage, 128
high dose associated with arthritis, 130
higher intake, reduced progression of OA, 129
long-term exposure, 98
OA and nutritional supplements, 127–131
participation in GAG synthesis, 128
study on its effect on OA, 130
limitations, 130–131
Vitamin D, 22, 97, 131
deficiency affecting other elements of OA, 132
effects on chondrocytes in osteoarthritic cartilage, 131
OA and nutritional supplements, 131–134
relationship between, and cartilage loss in OA, 133
risk of osteoporosis, 205–206
role in OA and RA, 97
supplements and its use, 133–134
Vitamin E, 134, 162, 206
blocking formation of AA, 134
controversial usage, 162
effects of, on chondrocytes, 134
increasing cardiovascular disease (CVD), 162
and its benefits for SLE, 162
OA and nutritional supplements, 134–135
sources of, 134
trials on effects of, 135
Vitamin K, 99, 135–136
bone and cartilage effects, 136
deficiency, 137
OA and nutritional supplements, 135–137
Vitamins, 97
deficiencies diseases, 97
glucosamine and chondroitin, 99–101
treatment of OA, 99–101
Vitamin C, 97–99
long-term exposure, 98
Vitamin D, 97
role in OA and RA, 97
Vitamin K, 99

W
Waist circumference measurement, 19
Walking, as physical activity, 77
Wegener’s granulomatosis (WG), 5, 8, 218–219
ANCAs pathogenic role, 9
symptoms and treatment of, 218–219
WG, see Wegener’s granulomatosis
Willow bark (salix sp), 102
refined product of, see Aspirin (acetylsalicylic acid)

X
Xerophthalmia (KCS), 231
Xerostomia, 231
effects of, on dentition, 232
risk of dental caries, 232
effects of, on diet and nutrition, 234

Z
Zinc
and its benefits for SLE, 163
role in T-cell development and thymic atrophy, 163
Zone™, 176
Dr. Laura A. Coleman is a Project Scientist in the Epidemiology Research Center at the Marshfield Clinic Research Foundation in Marshfield, WI. Prior to obtaining her doctorate in Human Nutrition Science from the Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, where she concentrated on nutrition and immunology, Dr. Coleman worked as a clinical dietitian at Massachusetts General Hospital. She has written multiple peer-reviewed articles and book chapters on nutrition and rheumatic disease over the past decade, focusing primarily on systemic lupus erythematosus and rheumatoid arthritis. She currently serves on the Advisory Board for the Lupus Foundation of America’s award-winning publication, Lupus Now.
About the Series Editor

Dr. Adrianne Bendich is Clinical Director of Calcium Research at GlaxoSmithKline Consumer Healthcare, where she is responsible for leading the innovation and medical programs in support of several leading consumer brands including TUMS and Os-Cal. Dr. Bendich has primary responsibility for the coordination of GSK’s support for the Women’s Health Initiative (WHI) intervention study. Prior to joining GlaxoSmithKline, Dr. Bendich was at Roche Vitamins Inc., and was involved with the groundbreaking clinical studies proving that folic acid-containing multivitamins significantly reduce major classes of birth defects. Dr. Bendich has co-authored more than 100 major clinical research studies in the area of preventive nutrition. Dr. Bendich is recognized as a leading authority on antioxidants, nutrition and bone health, immunity, and pregnancy outcomes, vitamin safety, and the cost-effectiveness of vitamin/mineral supplementation.

In addition to serving as Series Editor for Humana Press and initiating the development of the 20 currently published books in the Nutrition and Health™ series, Dr. Bendich is the editor of 11 books, including Preventive Nutrition: The Comprehensive Guide for Health Professionals. She also serves as Associate Editor for Nutrition: The International Journal of Applied and Basic Nutritional Sciences, and Dr. Bendich is on the Editorial Board of the Journal of Women’s Health and Gender-Based Medicine, as well as a past member of the Board of Directors of the American College of Nutrition. Dr. Bendich also serves on the Program Advisory Committee for HelenKeller International.

Dr. Bendich was the recipient of the Roche Research Award, was a Tribute to Women and Industry Awardee, and a recipient of the Burroughs Wellcome Visiting Professorship in Basic Medical Sciences, 2000–2001. Dr. Bendich holds academic appointments as Adjunct Professor in the Department of Preventive Medicine and Community Health at UMDNJ, Institute of Nutrition, Columbia University P&S, and Adjunct Research Professor, Rutgers University, Newark Campus. She is listed in Who’s Who in American Women.