Index

A
Adenylate kinase, building block folding model, 193
ADH, see Alcohol dehydrogenase
AFM, see Atomic force microscopy
Alcohol dehydrogenase (ADH), structure prediction, 313–316
Alpha helix,
differential scanning calorimetry of unfolding transition, 106, 107
replica exchange molecular dynamics of folding, 211–214
temperature-jump studies, advantages, 2, 13
helix–coil transition dynamics, 4, 5, 7–9
infrared detection, 2–4
Anisotropic network model (ANM),
elastic network model, 261, 262
ribosome functional dynamics modeling, 265–268
ANM, see Anisotropic network model
Apomyoglobin, see Myoglobin
Artificial neural network, protein structure prediction, 310
Atomic force microscopy (AFM),
data analysis,
 contour length, 155
 dynamic force spectrum, 155
 force trace and peak selection criteria, 153, 154, 161, 162
 kinetic parameter extraction, 155, 156
 phi analysis of mutant proteins, dynamic force spectrum boundaries, 158
 free energy change on protein mutation, 156–158
 intermediate states, 156, 163, 164
 transition state phi value, 156
 force–extension trace, 153
 instrumentation,
 cantilevers, 145–147, 160
 components, 144, 145
 fluid cells, 148
 open versus closed loop mode, 144, 145
 vibration isolation, 148
 optical lever detection, 147
 protein folding study overview, 116, 139, 140
 protein preparation,
 adsorption, 153
 characterization, 152
 expression and purification, 150, 152, 160, 161
 module constructs, 148–150, 160
 spring constant determination, 147, 148
 theory,
 force effects on energy landscape, 140–142
 polymer elasticity modeling, 142
 unfolding forces and pulling speed, 142–144

B
Beta hairpin,
differential scanning calorimetry of unfolding transition, 106, 107
replica exchange molecular dynamics of folding, 212–219
temperature-jump studies, advantages, 2, 13
folding dynamics studies, 9–13
infrared detection, 2–4
Bicelle, alignment of proteins for residual dipolar coupling studies, 46, 47
biHis sites, see Psi analysis
Building block folding model,
building block assignment algorithm, 196, 197, 202
building block cutting algorithm, 191, 192, 201
building block structural template library creation,
clustering of building blocks, 192, 194, 201
overview, 192
secondary structure guided superimposition tool,
alignment and evaluation, 195, 196, 201, 202
clustering of transformations, 195
transformation set creation, 194, 201
combinatorial assembly of building blocks, 197–200, 202, 203
hydrophobic folding units, 189, 190
overview of structure prediction from sequence, 190, 191
protein design, 200, 203

C, D
Cantilever, see Atomic force microscopy
Carboxypeptidase, structure prediction, 313, 314
CASP, structure prediction scoring, 307, 308, 316
CHARMM, see Molecular dynamics
Chevron analysis, psi analysis, 88, 89, 94, 101
Citrate synthase, building block folding model, 199

Coarse graining, hierarchical levels, 262–264
mixed coarse graining, 264
Cytochrome b, see PUF2
Differential scanning calorimetry (DSC),
alpha-helix unfolding transition, 106, 107
beta-hairpin unfolding transition, 106, 107
data analysis, 110, 111
data collection, 109, 110, 112
instrument preparation, 109, 111, 112
materials, 107–109, 111, 112
sample preparation, 109, 112
two-state processes, 105, 106
van’t Hoff enthalpy, 106
DSC, see Differential scanning calorimetry

E
Elastic network models (ENM), advantages, 268
anisotropic network model, 261, 262
Gaussian network model, 259–261
overview, 250
theory, 256–259
Electron transfer, see Triplet–triplet energy transfer
Energy landscape,
force effects in atomic force microscopy, 140–142
high-pressure nuclear magnetic resonance and multidimensional energy landscape elucidation, 26
molecular dynamics, see Molecular dynamics
protein folding theory, 225, 226
ENM, see Elastic network models

F
Flash photolysis, see Triplet–triplet energy transfer
Fluorescence resonance energy transfer (FRET),
Fürster resonance energy transfer, chromatography, 123
controls, 125, 126
cover glasses, 127
filters, 126, 127, 133
fluorophore selection, 123, 124
Fürster radius calculation, 118, 133
free diffusion experiments, 127, 128, 130, 133
immobilized protein experiments, 130–132
instrumentation, 120–122
limitations of single molecule studies, 132
materials, 122, 123
overlap integral calculation, 119
oxygen quenching, 127
protein folding experiment overview, 120
protein labeling, 124, 125
quantum yield of fluorophore, 118, 119, 133
transfer efficiency, 118, 119
limitations, 169, 170
principles, 115, 116
Fluorescence, overview of protein folding studies, 71, 72
Fold recognition, structure prediction, 308
Fürster resonance energy transfer, see Fluorescence resonance energy transfer
FRET, see Fluorescence resonance energy transfer

GB1
denatured state ensemble and transition state ensemble structures for mutants, 299
peptide temperature-jump folding studies,
advantages, 2, 13
beta-hairpin folding dynamics, 9–13
infrared detection, 2–4
GNM, see Gaussian network model

H
HDAC, see Histone deacetylase
Hemagglutinin A, packing regularities and dynamics, 262, 263
High-pressure nuclear magnetic resonance,
buffers and standards, 22
instrumentation, 23, 24
on-line cell system, 24, 25
popularity of protein folding studies, 21, 22
pressure requirements, 23, 24
prospects for protein folding studies, 35
thermodynamic parameter determination,
folding intermediate determination, 30–33
multidimensional energy landscape elucidation, 26
NOESY experiments, 33–35
pressure-jump experiments, 33
thermodynamic stability elucidation, 26–29
two-state transition equations, 25, 26
Histone deacetylase (HDAC), structure prediction, 313, 314
Hydrogen exchange,
amide hydrogen exchange,
equations in folded proteins, 73, 74
unfolded protein studies, 60, 72, 73, 80

G
β-Galactosidase, packing regularities and dynamics, 262, 263
Gaussian network model (GNM), elastic network model, 259–261
native-state hydrogen exchange, examples, 70
folding intermediate structure determination, backbone, 15N dynamics, 76–78
multidimensional NMR, 78, 80
hidden intermediate detection, 74, 76
materials, 70
principles, 70
protein engineering, 76
Hydrophobic folding unit, see Building block folding model
17β-Hydroxysteroid dehydrogenase, building block folding model, 193

I–L
Integrin β₃, structure prediction, 312, 313, 315, 316
Kinetic partitioning mechanism (KPM), lysozyme folding, 279
topological frustration, 287, 288
KPM, see Kinetic partitioning mechanism
β-Lactoglobulin, high-pressure nuclear magnetic resonance, 30–33
Laser flash photolysis, see Triplet–triplet energy transfer
Leffler plot, psi analysis, 94, 95

M
MD, see Molecular dynamics
Minimal off-lattice models, folding intermediates, 288–290, 292–294
Molecular dynamics (MD), energy landscape, 226
peptide folding studies, CHARMM program, 227
clusterization, 227, 228
folding probabilities, clusters of similar conformations, 234–237
single snapshot, 232–234
folding probability, 231, 232
free energy landscape projection on order parameters, 228, 229, 231
phi-value analysis, accuracy of two-point and multipoint values, 242, 244–245
overview, 237, 239–242
structural interpretation of phi values, 245–247
prospects, 247
transition state ensemble definition, 226–228, 237
replica exchange molecular dynamics, case studies, alpha-helix, 211–214
beta-hairpin, 212–219
momenta rescaling scheme, 209
optimal temperature sequences, 210, 211, 219
overview, 206, 207
two-step algorithm, 210
c-Myb R2, high-pressure nuclear magnetic resonance, 28, 29
Myoglobin, apomyoglobin folding equilibrium intermediates, cooperativity dependence on mutations and anion type, 279–281
data analysis using cooperativity measure, 281, 282, 284
robustness test, 285–287
hydrogen exchange studies, 70

N
Native-state hydrogen exchange, see Hydrogen exchange
Nectin, structure prediction, 310–314
Neural network, see Artificial neural network
NMR, see Nuclear magnetic resonance
Index

NOESY, see High-pressure nuclear magnetic resonance; Nuclear magnetic resonance
Nuclear magnetic resonance (NMR), see also High-pressure nuclear magnetic resonance; Residual dipolar coupling,
folding intermediate structure determination,
backbone, 15N dynamics, 76–78
multidimensional NMR, 78, 80
hydrogen exchange, see Hydrogen exchange
unfolded protein structure studies,
amide proton exchange, 60
dynamics studies, 58, 59
isotopic labeling of protein,
50, 51
NOESY experiments, 57, 58
overview, 49, 50
prospects, 60
residual dipolar constants, 59, 60
resonance assignment in backbone, 52–54
sample preparation, 51, 52
scalar coupling constants, 60
secondary chemical shifts, 55–57

P
Packing, proteins,
coarse graining,
hierarchical levels, 262–264
mixed coarse graining, 264
density and regularities, 250, 251
elastic network models,
advantages, 268
anisotropic network model, 261, 262
Gaussian network model, 259–261
overview, 250
theory, 256–259
flexibility, hydrophobicity, and sequence entropy, 256
ribosome functional dynamics modeling,
anisotropic network model,
265–268
overview, 264, 265
sequence alignment and structure,
252, 254–256
Parallel tempering, see Replica exchange
Phi analysis,
atomic force microscopy of mutant proteins,
dynamic force spectrum boundaries, 158
free energy change on protein mutation, 156–158
intermediate states, 156, 163, 164
transition state phi value, 156
classical (ϕ_r)-values and role of denatured state ensemble,
297, 298
molecular dynamics of peptide folding,
accuracy of two-point and multipoint values,
242, 244–245
overview, 237, 239–242
structural interpretation of phi values, 245–247
nonclassical (ϕ_r)-value origins,
multiple transition states, 295–297
narrow transition state ensemble,
295
overview, 84
single molecule experiments, 298
Polyacrylamide gels, see Residual dipolar coupling
Pressure-jump, see High-pressure nuclear magnetic resonance
Protein packing, see Packing, proteins
Protein–protein interactions, prediction in silico, 315, 316
Pseudoazurin, building block folding model, 197, 198
Psi analysis,
biHis site engineering, 85–87, 101
Chevron analysis, 88, 89, 94, 101
correcting for biHis site effects, 99, 100
equilibrium analysis and detection, 87, 88, 101
equilibrium denaturation profiles, 93, 94
fast equilibrium testing, 93
heterogeneous versus homogeneous scenarios, 100
Leffler plot, 94, 95
materials, 84, 85
metal-dependent folding kinetics, 89, 91–93
metal stabilization analysis, 94
principles, 84
psi value interpretation, 95, 96, 98, 99
PUF2, multidimensional nuclear magnetic resonance of folding intermediate structure, 78, 80

R
RDC, see Residual dipolar coupling
Replica exchange,
overview, 206
replica exchange molecular dynamics,
case studies,
alpha-helix, 211–214
beta-hairpin, 212–219
momenta rescaling scheme, 209
optimal temperature sequences, 210, 211, 219
overview, 206, 207
two-step algorithm, 210
technique, 207–209, 218, 219
Residual dipolar coupling (RDC),
bicelle alignment of proteins, 46, 47
materials, 41, 42
polyacrylamide gel alignment of proteins,
highly-charged gels, 44–47
neutral gels, 42–44, 46, 47
principles, 40, 41, 46
unfolded protein studies, 59, 60
Ribosome, functional dynamics
modeling,
anisotropic network model, 265–268
overview, 264, 265

S
Sequence-based structure prediction,
see also Building block folding model; Replica exchange,
difficult sequence approach, 308–310
efficacy scoring with CASP, 307, 308
fold recognition/threading, 308
known structures as templates, 306, 307
machine learning and structure prediction, 310
membrane proteins, 310, 312
prospects, 316–318
validation, 315
Staphylococcal nuclease, high-pressure nuclear magnetic resonance, 26, 27
Stopped-flow, psi analysis and metal-dependent folding kinetics, 89, 91–93
Structure prediction, see Sequence-based structure prediction

T
Temperature-jump,
advantages in protein folding studies, 2, 13
beta-hairpin folding dynamics
studies, 9–13
helix–coil transition dynamics, 4, 5, 7–9
infrared detection, 2–4
principles, 2
Index

Tissue transglutaminase, structure prediction, 312, 313, 315, 316

Topological frustration, kinetic partitioning mechanism, 287, 288

Transition state (TS), see also Psi analysis,
classical (ϕ_r)-values and role of denatured state ensemble, 297, 298
ensemble, 226, 278
molecular dynamics analysis, 226–228
multiple folding routes, 294, 295
nonclassical (ϕ_r)-value origins, multiple transition states, 295–297
narrow transition state ensemble, 295

Triplet–triplet energy transfer (TTET), data analysis, 179
donor–acceptor pair suitability assessment,
amino acid interference testing, 177, 178
diffusion-controlled reaction testing,
activation energy determination, 177
bimolecular rate constant determination, 175
viscosity dependence of transfer reaction, 175, 176
photochemistry characterization, 175, 185
instrumentation, 178, 179
intrachain diffusion rates, 170
kinetic equations, 172–174
principles, 170–172
triplet quenching study comparison, 180–185
Trpzip peptides, temperature-jump folding studies,
advantages, 2, 13
beta-hairpin folding dynamics studies, 9–13
infrared detection, 2–4
TS, see Transition state
TTET, see Triplet–triplet energy transfer

U, V
Ubiquitin, biHis site engineering, 85, 86
van’t Hoff enthalpy, differential scanning calorimetry, 106
VDAC, see Voltage-dependent anion channel
Voltage-dependent anion channel (VDAC), structure prediction, 312, 313