Index

A
Adipocyte, embryoid body differentiation culture for pharmacological studies, embryoid body culture, 344–346, 349, 350 gene expression analysis, 348, 349 Oil-Red O staining, 346, 347 rat embryonic stem cell differentiation, 54 Alizarin red, osteoblast staining, 347, 348 Alkaline phosphatase (AP), chicken blastodermal cell marker detection, 30 horse embryonic stem cell staining, 62, 68 medaka embryonic stem cell staining, 10, 11, 15 AP, see Alkaline phosphatase
electrophoretic mobility shift assay, 336 Northern blot, 334–336 Western blot, 333, 334 propidium iodide staining, 333 ultraviolet irradiation, 332
B–C
Bisulfite restriction mapping, see DNA methylation Buffalo rat liver-conditioned media, preparation, 203, 204 Capillary electrophoresis, see Temperature gradient capillary electrophoresis Cardiomyocyte, Cripto in embryonic stem cell differentiation, 152 differentiation induction of embryonic stem cells, Cripto expression analysis, protein extraction, 160–162, 167, 168 Western blot, 162, 166 Cripto induction in knockout cells, Cripto addition, 163, 164, 168 Cripto purification, 163 embryoid body formation, 159, 160, 167 immunofluorescence microscopy, 164, 168 materials, 152–156, 166 tissue culture, feeder layer preparation, 157 freezing and thawing, 156 gelatin coating of dishes, 157
maintenance, 159
subculture, 159
timetable, 158
Cell cycle, see Apoptosis; DNA damage
Cell fusion,
electrofusion,
cell culture,
 embryonic stem cells, 415, 416, 419
 somatic cells, 416, 419
cell purification, 416
feeder cell preparation, 415
hybrid cell isolation and cloning, 418, 419
materials, 414, 415, 419
microslide chamber setup, 418
principles, 413
selection systems, 413, 414, 418, 419
setup and operation of pulse
generator, 416, 417–419
embryonic stem cell hybrid findings, 412
extinction of gene products, 411, 412
fertilization analogy, 412
virus-mediated fusion, 412, 413
Cell replacement therapy, see Parkinson’s disease
Chemical mutagenesis,
 alkylating agent mechanisms of
 action, 398, 399
cell death calculation, 404, 406
cell expansion and freezing, 405, 406
N-ethyl-N-nitrosourea mutagenesis, 404, 406
freezing and thawing of cells, 403, 405
genotype-based screens, 399, 400
genotyping of mutants,
 denaturing high-performance liquid chromatography, 401
 single-strand conformational polymorphism, 400, 401
 temperature gradient capillary electrophoresis, 401
materials, 401–403, 405
methanesulfonic acid ethyl ester mutagenesis, 403, 405
mutation rate determination, 404, 405
phenotyping of embryonic stem cells, 400
principles, 397, 398
Chicken embryonic stem cells,
culture,
 blastodermal cell isolation and
 maintenance, 28–30, 33
 marker detection in
 undifferentiated blastodermal
cells,
 alkaline phosphatase, 30
 immunofluorescence microscopy, 31
 materials, 20, 21
 STAT3, 31–33
 materials, 19, 20, 33
 leukemia inhibitory factor
 preparation, see Leukemia inhibitory factor
Chromosome analysis,
horse embryonic stem cell Giemsa
 chromosome staining, 62, 67, 68, 77
medaka embryonic stem cells, 10, 11, 15
monkey embryonic stem cell
 karyotyping, 87
 transfected cell karyotyping, 292–294
CMV promoter, see Cytomegalovirus promoter
Cripto,
cardiomyocyte differentiation induction
 of embryonic stem cells,
 Cripto addition, 163, 164, 168
 Cripto purification, 163
 embryonic stem cell differentiation
 role, 152
 neuron differentiation of knockout
 cells, 164
Cytomegalovirus (CMV) promoter,
monkey embryonic stem cell
expression of green fluorescent
protein, 309
stable transgene expression in mouse
embryonic stem cells,
freezing and thawing of cells,
288, 293
karyotyping, 292–294
maintenance culture, 288, 293
materials, 285–287, 293
overview, 283, 285
plasmid propagation and
purification, 288, 289, 293
transfection, 290, 291
transgene expression assays,
flow cytometry, 291, 293, 294
immunofluorescence, 291,
292, 294
transient transfection of embryonic
stem cells, 284, 285, 289
cell cycle regulation response in
mouse embryonic stem cells,
immunofluorescence microscopy, 324
materials, 316, 317
Western blot analysis of cell cycle
checkpoint proteins, 323
embryonic stem cell consequences,
313, 314
etiology, 328
mutation frequency measurement in
mouse embryonic stem cells,
Aprt knockout mouse generation,
gene targeting, 318
Southern blot, 318
targeting vector construction, 317
colony-forming efficiency assay,
319, 325
feeder cell preparation, 318, 319, 325
frequency calculation, 319, 325
materials, 314–316
mutation spectrum analysis, 320, 323
principles, 317
DNA methylation,
embryonic stem cell studies,
bisulfite restriction mapping and
sequencing, 437–439
cell culture, 428, 429, 442
genomic DNA extraction, 429,
430, 442
laser-manipulated microdissection
and teratoma analysis,
439–441, 443
materials, 422–428, 442
methylation-sensitive quantitative
real-time polymerase chain
reaction, 436, 437
overview, 421, 422
promoter methylation assay, 441, 442
restriction landmark genomic
scanning,
autoradiography, 432, 443

D
DAG, see Diacylglycerol
Denaturing high-performance liquid
chromatography (DHPLC),
genotyping of embryonic stem
cell mutants, 401
Desert hedgehog, see Hedgehog
DHPLC, see Denaturing high-
performance liquid
chromatography
Diacylglycerol (DAG), phospholipase C
signaling, 128, 129
Digital differential display, see Oct3/4
DNA damage, see also Chemical
mutagenesis,
apoptosis assay,
annexin staining, 325
materials, 317
transfection, 325
first-dimension gel
electrophoresis, 431, 443
genomic DNA treatment, 430, 442
second-dimension gel
electrophoresis, 431, 432, 443
spot DNA cloning, 432, 433
virtual image technique, 434
Southern blot,
DNA transfer to membranes, 435, 443
hybridization and detection, 436
probe labeling, 435, 436, 443
restriction enzyme digestion and
electrophoresis, 435, 443
tissue-dependent DNA methylated
genes, 422

Embryoid body (EB),
differentiation markers, see
Glyceraldehyde-3-phosphate
dehydrogenase; Hypoxanthine
phosphoribosyltransferase; β-
Tubulin
differentiation, see specific cell types
genetically modified embryonic stem
cell differentiation,
adhesion culture, 480, 482
cover slip coating, 479, 480, 482
cytocentrifugation, 480
immunofluorescent detection of
marker genes, 480–482
materials, 475, 481
medium preparation, 479, 482
suspension culture, 480, 482
Hedgehog signaling, see Hedgehog
monkey embryonic stem cells and
formation, 88
peri-implantation development
studies, see Peri-implantation
development
Embryonic stem cell test (EST),
applications, 375
cytotoxicity assay,
independent runs, 388, 393
materials, 378
MTT assay, 380, 385, 387, 388, 393
quality control, 388, 389
differentiation assay, 380–383, 393
embryotoxic potential prediction,
389–391
flow cytometry,
end points of differentiation, 373, 374
independent runs, 385
materials, 377, 378
quality control, 385
staining, 383, 384, 393
freezing and thawing of cells, 392, 394
materials, 375–380, 393

E
EB, see Embryoid body
Electrofusion, see Cell fusion
Electron microscopy,
peri-implantation studies, 123
RNA interference and morphological
analysis, 254, 255, 258
Electrophoretic mobility shift assay
(EMSA),
Oct3/4 binding targets,
binding reaction, 229
cell lysis, 228, 229
dialysis, 229
electrophoresis, 229
plasmid preparation, 228
probe preparation and labeling, 229
p53 induction and target gene
analysis in ultraviolet-induced
apoptosis, 336
Electroporation,
genetically modified embryonic
stem cells, 477, 478
monkey embryonic stem cells, 309–311
morphological analysis of differentiation, 377, 384, 385
prediction model, 373, 390, 391
principles, 371, 372
test chemicals and solvents, 378–380, 393
trypsinization of cells, 391–394
validation, 373
Embryotoxicity assay, see Embryonic stem cell test
EMS, see Methanesulfonic acid ethyl ester
EMSA, see Electrophoretic mobility shift assay
Endothelial cell,
 horse embryonic stem cell
differentiation, 68, 69
 rat embryonic stem cell
differentiation, 53, 58
ENU, see N-Ethyl-N-nitrosourea
EST, see Embryonic stem cell test
N-Ethyl-N-nitrosourea (ENU),
 embryonic stem cell chemical mutagenesis, see Chemical mutagenesis
 mechanisms of action, 398, 399
 solution preparation, 402, 403, 405
F–G
Flow cytometry,
 embryonic stem cell test,
 end points of differentiation, 373, 374
 independent runs, 385
 materials, 377, 378
 quality control, 385
 staining, 383, 384, 393
RNA interference and gene expression analysis, 247, 248
 simian immunodeficiency virus vector transduction efficiency evaluation, 299, 301
 transgene expression assay, 291, 293, 294
GAPDH, see Glyceraldehyde-3-phosphate dehydrogenase
Gene expression profiling, see Serial analysis of gene expression
Gene therapy, see Genetically-modified embryonic stem cell
Genetically-modified embryonic stem cell,
 characterization,
 materials, 474
 pulse/chase and
 immunoprecipitation, 478, 479
 sulfamidase assay, 478
 culture and transgenesis,
 DNA preparation, 477
 electroporation, 477, 478
 freezing, 477
 materials, 472–474, 481
 passaging, 476, 482
 thawing, 475, 476, 482
 embryoid body differentiation,
 adhesion culture, 480, 482
 cover slip coating, 479, 480, 482
 cytocentrifugation, 480
 immunofluorescent detection of marker genes, 480–482
 materials, 475, 481
 medium preparation, 479, 482
 suspension culture, 480, 482
 stable transfection of transgenes in disease treatment, 472
GFP, see Green fluorescent protein
Glial cell, rat embryonic stem cell
differentiation, 52
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
 embryonic stem cell
differentiation marker analysis, see Experimental design and statistics,
 experimental design and statistics, 110
 materials, 102–104, 110
reverse transcriptase polymerase chain reaction,
 amplification reactions, 108, 111
gel electrophoresis and analysis of products, 109–111
reverse transcription, 107, 108, 111
RNA isolation and quality analysis, 106, 107, 111
tissue culture and embryoid body formation, 104–106, 111
Green fluorescent protein (GFP), lentivirus-mediated gene transfer reporter, 277
monkey embryonic stem cell expression, applications, 306
colony isolation, 310, 311
culture, 308, 311
electroporation, 309–311
feeder layer preparation, 307, 308, 311
freezing of cells, 310, 311
materials, 306, 307
passage, 308, 309, 311
transplanted cell progeny detection in situ, 463–466
vector preparation, 309
promoter analysis in embryonic stem cells, advantages, 188, 192
fluorescence assay, 191, 192

H
Hedgehog (Hh), receptor, 171
signaling in embryoid bodies, embryoid body formation, 178, 183
embryonic stem cell culture, 177, 180, 183
hematopoietic cells, differentiation, 180, 183
staining, 180–183
inhibitors and enhancers, 173, 174
materials for study, 174–177, 182
neural cells, differentiation, 178
staining, 178–180, 183
overview, 171–173
types, 172
Hematopoietic cells, Hedgehog signaling studies in embryoid bodies, differentiation, 180, 183
staining, 180–183
Hepatocyte, polymerase chain reaction of markers, 49, 58
rat embryonic stem cell differentiation, 55, 56, 58
Herpes simplex virus-1 (HSV-1) amplicon vectors, advantages with embryonic stem cells, 265, 266
features, 266
growth factor transfer to embryonic stem cells, embryoid body formation, 269
infection, 268, 269, 271
maintenance culture, 268, 271
materials, 266–268, 271
neural progenitor cells, detection with nestin antibodies, 270, 271
infection, 270, 271
neuron differentiation, 271, 272
selection, 270
Hh, see Hedgehog
High-performance liquid chromatography (HPLC), see also Denaturing high-performance liquid chromatography, inositol phosphates, 138–140, 147
Horse embryonic stem cells, alkaline phosphatase staining, 62, 68
derivation and maintenance, embryo thawing, 65
feeder cell preparation, 64, 65, 76
freezing and thawing, 65, 76
isolation and culture, 65, 67, 76, 77
materials, 60–62, 76
overview, 60
differentiation,
endothelial cells, 68, 69
immunohistochemical staining, 62, 63, 69, 72, 77
materials for study, 62, 63, 76
neurons, 68
reverse transcription polymerase chain reaction,
discrimination between DNA and RNA, 74, 77
materials, 63, 64, 76
RNA denaturation, 75
RNA extraction, 73, 74, 77
SuperScript system, 75, 77
gene targeting, 59, 60
Giemsa chromosome staining, 62, 67, 68, 77
sex determination, 72, 73, 77
HPLC, see High-performance liquid chromatography
HPRT, see Hypoxanthine phosphoribosyltransferase
HSV-1 amplicon vectors, see Herpes simplex virus-1 amplicon vectors
Human immunodeficiency virus, see Lentivirus-mediated gene transfer
Hypoxanthine phosphoribosyltransferase (HPRT), embryonic stem cell differentiation marker analysis,
experimental design and statistics, 110
materials, 102–104, 110
reverse transcriptase polymerase chain reaction,
amplification reactions, 108, 111
gel electrophoresis and analysis of products, 109–111
reverse transcription, 107, 108, 111
RNA isolation and quality analysis, 106, 107, 111
tissue culture and embryoid body formation, 104–106, 111

I

Immunohistochemistry,
dopaminergic embryonic stem cells in mouse Parkinson’s disease model, 489, 490, 492
RNA interference and gene expression analysis, 253, 254, 257, 258
Indian hedgehog, see Hedgehog
Inositol phosphates,
embryonic stem cell production assays, cell proliferation assays,
 hemocytometer cell counting, 141–143, 148
 MTT assay, 143, 148
 overview, 130
 TUNEL apoptosis assay, 145, 146, 148
 viability staining, 130, 143–145, 148
 extraction,
 inositol phosphates, 135, 147
 phosphoinositides, 136, 147
 inositol phosphate analysis,
 Dowex resin separation, 137, 138, 147
 high-performance liquid chromatography, 138–140, 147
 principles, 136, 137
 materials, 130–134, 146, 147
overview, 129, 130
phosphoinositide analysis, identification and quantification, 141, 148
separation with thin-layer chromatography, 140, 141, 147, 148
tissue culture, 134
tritiated inositol labeling, 134, 135, 147
inositol recycling, 129–134
signaling system, 128, 129
Internal ribosome entry site (IRES), cell lineage marking and selection, 356, 357
IRES, see Internal ribosome entry site

L
Laser-manipulated microdissection (LMM), DNA methylation analysis in teratomas, 439–441, 443
Lentivirus-mediated gene transfer, see also Simian immunodeficiency virus vector, advantages with embryonic stem cells, 273, 274
mouse embryonic stem cell gene transfer, infection,
CRE-mediated recombination, 277
reporter gene expression, 277
maintenance culture, 276, 277, 279
materials, 274–276
vector preparation, 277, 279
safety, 296
Leukemia inhibitory factor (LIF), chicken protein preparation, affinity chromatography, 26, 27
competent cell transformation, 25, 34
expression vector construction, 24, 34
gel filtration, 28
large-scale bacteria culture and sonication, 25, 26
materials, 18, 19, 33
overview, 18
polymerase chain reaction, 23, 24, 34
reverse transcription, 23
RNA extraction, 21, 23, 34
embryonic stem cell maintenance culture, 18
LIF, see Leukemia inhibitory factor
LMM, see Laser-manipulated microdissection
Luciferase, see Promoter analysis, embryonic stem cells
Lysosomal storage diseases, enzyme replacement therapy, 471
mucopolysaccharidosis type IIIA, 471, 472
sulfamidase expression in embryonic stem cells, see Genetically modified embryonic stem cell

M
Medaka embryonic stem cells, advantages of study, 3, 4
cell lines, 4
cellular characterization, alkaline phosphatase staining, 10, 11, 15
chromosome preparation and analysis, 10, 11, 15
chimera formation, 11–15
gene targeting, 5, 13
isolation and differentiation, culture initiation, 8, 9, 14
directed differentiation, 14
fish embryo extract preparation, 7, 8, 14
fish serum preparation, 8
freezing, 10
materials, 5–7
overview, 4, 5
subculture, 10, 14
thawing, 10, 14
prospects for study, 14
transfection and drug selection, 13
Methanesulfonic acid ethyl ester (EMS),
embryonic stem cell chemical mutagenesis, see Chemical mutagenesis
mechanisms of action, 398, 399
solution preparation, 403, 405
Monkey embryonic stem cells,
characterization,
differentiation potency, 87, 88
karyotyping, 87
marker expression, 87
clinical significance, 81–83
embryoid body formation, 88
establishment,
expansion and maintenance, 85, 86, 88
feeder cell layer preparation, 84, 88
inner cell mass,
culture, 85, 88
isolation from blastocysts, 84, 88
materials, 83, 84, 88
overview, 82
gene transfer vectors, see Simian immunodeficiency virus vector
green fluorescent protein expression,
applications, 306
colony isolation, 310, 311
culture, 308, 311
electroporation, 309–311
feeder layer preparation, 307, 308, 311
freezing of cells, 310, 311
materials, 306, 307
passage, 308, 309, 311
vector preparation, 309
human embryonic stem cell comparison, 306
mouse embryonic stem cell comparison, 295
tumor formation,
allogeneic monkey fetus teratoma formation, 462, 463, 465, 466
immunodeficient mice and teratoma formation, 461, 462, 465
materials, 460, 461, 465
overview, 459, 460
transplanted cell progeny detection in situ, 463–466
Mouse embryonic stem cells,
cell replacement therapy, see Parkinson’s disease
differentiation culture for pharmacological studies,
adipocyte differentiation, embryoid body culture, 344–346, 349, 350
gene expression analysis, 348, 349
Oil-Red O staining, 346, 347
maintenance culture, 344, 349
materials, 342–344, 349
osteoblast differentiation,
alizarin red staining, 347, 348
embryoid body culture, 346, 350
gene expression analysis, 348, 349
von Kossa staining, 348
overview, 341, 342
RNA preparation from embryoid body outgrowths, 348, 350
embryotoxicity assay, see Embryonic stem cell test
gene expression profiling, see Serial analysis of gene expression
historical perspective, 91, 92
injection into blastocysts, 96, 97
mutation, see Chemical mutagenesis; DNA damage
promoter strength studies, see Promoter analysis, embryonic stem cells
serum- and feeder-free culture, disaggregation and expansion, 95–97
embryo recovery, 94, 96
freezing, 96, 97
materials, 92–94
passaging, 96
rationale, 92
ultraviolet-induced apoptosis, see Apoptosis,
viral vectors, see Cytomegalovirus promoter; Herpes simplex virus-1 amplicon vectors; Lentivirus-mediated gene transfer
Mouse trophoblast stem cells, applications, 36
derivation and culture, establishment from blastocysts, 38–41, 43
feeder cells, removal from culture, 41, 42
stock preparation, 38, 42, 43
feeder-free culture, 42
freezing and thawing, 42, 43
materials, 36–38
overview, 36
passage, 41, 43
origins, 35, 36
MTT cytotoxicity assay, embryonic stem cell test, independent runs, 388, 393
materials, 378
MTT assay, 380, 385, 387, 388, 393
quality control, 388, 389
embryonic stem cells in inositol phosphate detection, 143, 148
Mutation, see Chemical mutagenesis; DNA damage
N
Neuron,
Cripto knockout embryonic stem cell, differentiation, 164
immunofluorescence microscopy, 165, 166, 168
embryonic stem cell neural differentiation culture for pharmacological screening, advantages, 353, 354
Cre deletion, 362, 365
embryoid body differentiation culture, 354–356
embryoid body differentiation culture, 362, 363, 366
high-throughput screening, 358, 359
lineage marking and selection, 356, 357
materials, 359–361, 365
monolayer differentiation, 363, 365, 366
neurogenesis monitoring, immunostaining, 364
X-Gal staining, 364, 366
plate screening, 364, 365
selected clone analysis, 362, 365
Sox-1-based selection, 359, 361, 362, 365
Hedgehog signaling studies in embryoid bodies, differentiation, 178
staining, 178–180, 183
herpes simplex virus-1 amplicon vector transfer of growth factors to neural progenitor cells, detection with nestin antibodies, 270, 271
infection, 270, 271
neuron differentiation, 271, 272
selection, 270
horse embryonic stem cell
differentiation, 68
rat embryonic stem cell
differentiation, 52
Northern blot, p53 induction and target
gene analysis in ultraviolet-
induced apoptosis, 334–336

O

Oct3/4
embryonic stem cell expression, 223
functions, 223, 224
target gene identification,
digital differential display,
binding site identification in
candidate genes, 226, 227
materials, 224
overview, 224, 225
software utilization, 225, 226, 230
Web resources, 225, 230
electrophoretic mobility shift
assay,
binding reaction, 229
cell lysis, 228, 229
dialysis, 229
electrophoresis, 229
plasmid preparation, 228
probe preparation and
labeling, 229
reporter gene analysis of
candidate gene regulatory
elements,
luciferase assay, 228
plasmid construction, 227, 228
transfection, 228, 230

gene expression analysis, 348, 349
von Kossa staining, 348
PA6 cells, embryonic stem cell
differentiation induction, 152
Parkinson’s disease (PD),
cell replacement therapy rationale, 485
mouse model studies of
differentiating embryonic stem
cells,
animal preparation, 489, 491, 492
cell maintenance culture, 487, 488, 490
dopaminergic differentiation
induction, 488–491
immunohistochemistry, 489, 490, 492
materials, 486, 487, 490
overview, 485, 486
transplantation of cells, 489, 492
PCR, see Polymerase chain reaction
PD, see Parkinson’s disease
Peri-implantation development,
analytical applications, 118
embryoid body differentiation,
embryonic stem cell cluster
preparation, 121, 123
induction, 121, 123, 124
preparation for microscopy,
electron microscopy, 123
frozen sectioning and
immunostaining, 121–124
sequence, 115, 117, 118
embryonic stem cell culture,
feeder cell preparation, 120, 123
maintenance, 120, 121, 123
trypsinization, 120
extracellular matrix assembly, 113, 115
materials for study, 119, 120
mutant studies, 118
overview, 113–115

Pharmacological screening,
embryonic stem cell neural
differentiation culture,
advantages, 353, 354
Cre deletion, 362, 365
embryoid body differentiation culture, 354–356
embryoid body differentiation culture, 362, 363, 366
high-throughput screening, 358, 359
lineage marking and selection, 356, 357
materials, 359–361, 365
monolayer differentiation, 363, 365, 366
neurogenesis monitoring, immunostaining, 364
X-Gal staining, 364, 366
plate screening, 364, 365
selected clone analysis, 362, 365
Sox-1-based selection, 359, 361, 362, 365
mouse embryonic stem cell
differentiation culture for pharmacological studies,
adipocyte differentiation,
embryoid body culture, 344–346, 349, 350
gene expression analysis, 348, 349
Oil-Red O staining, 346, 347
maintenance culture, 344, 349
materials, 342–344, 349
osteoblast differentiation,
alizarin red staining, 347, 348
embryoid body culture, 346, 350
gene expression analysis, 348, 349
von Kossa staining, 348
overview, 341, 342
RNA preparation from embryoid body outgrowths, 348, 350
Phosphatidylinositol, see Inositol phosphates
Phosphoinositides, see Inositol phosphates
Phospholipase C,
embryonic stem cell assays, see Inositol phosphates
signaling system, 128, 129
Polymerase chain reaction (PCR), ditag amplification in SAGE, 209, 210
DNA methylation analysis,
bisulfite restriction mapping and sequencing, 437–439
laser-manipulated microdissection and teratoma analysis, 439–441, 443
methylation-sensitive quantitative real-time polymerase chain reaction, 436, 437
embryonic stem cell differentiation marker analysis with reverse transcriptase polymerase chain reaction,
amplification reactions, 108, 111
gel electrophoresis and analysis of products, 109–111
reverse transcription, 107, 108, 111
RNA isolation and quality analysis, 106, 107, 111
gene expression analysis in differentiated embryoid bodies, 348, 349
hepatocyte markers, 49, 58
horse embryonic stem cell,
reverse transcription polymerase chain reaction of differentiation markers,
discrimination between DNA and RNA, 74, 77
materials, 63, 64, 76
RNA denaturation, 75
RNA extraction, 73, 74, 77
SuperScript system, 75, 77
sex determination, 72, 73, 77
mutation spectrum analysis in mouse embryonic stem cells, 320, 323
RNA interference and gene expression analysis with reverse transcription polymerase chain reaction, 248–250, 256, 257
simian immunodeficiency virus vector transduction efficiency evaluation, 299, 301, 302

Promoter analysis, embryonic stem cells,
embryonic stem cell culture, freezing and thawing, 190, 192
gelatin coating of plates, 190, 192
passaging, 190, 192
plating, 189, 190
green fluorescent protein reporter, advantages, 188, 192
fluorescence assay, 191, 192
luciferase assay, 192
materials, 188, 189, 192
overview, 187, 188
reporter DNA construct preparation, 191, 192
transfection, 191

R
Rat embryonic stem cells, culture,
fibroblast feeder layer preparation, 50
freezing, 49, 50, 58
maintenance, 50, 58
materials, 46, 47, 57
Matrigel culture, 53
overview, 45, 46
thawing, 50, 58
differentiation,
adipocytes, 54
carboxyfluorescein succinimidyl ester labeling, 52, 58
cellular transplant preparation, 52, 58

embryonic bodies, 51
endothelial cells, 53, 58
glial cells, 52
hepatocytes, 55, 56, 58
immunostaining, 48, 49, 56, 57
materials, 47, 48
neurons, 52
polymerase chain reaction of hepatocyte markers, 49, 58
signs, 51, 53
Restriction landmark genomic scanning (RLGS), DNA methylation analysis,
autoradiography, 432, 443
first-dimension gel electrophoresis, 431, 443
genomic DNA treatment, 430, 442
second-dimension gel electrophoresis, 431, 432, 443
spot DNA cloning, 432, 433
virtual image technique, 434
Retinoic acid, embryonic stem cell differentiation induction, 152
RLGS, see Restriction landmark genomic scanning
RNA interference, embryonic stem cell studies, gene expression monitoring,
flow cytometry, 247, 248
immunohistochemistry, 253, 254, 257, 258
morphological analysis with microscopy, 254, 255, 258
reverse transcription polymerase chain reaction, 248–250, 256, 257
Western blot, 250–253, 257
materials, 241–245, 255, 256
nonspecific interferon-like response, 246, 247, 256
rationale, 233, 234, 255
transfection, 245, 246, 256
expression plasmids, delivery to embryonic stem cells, 240
inducible RNA interference, 238, 239
RNA polymerase III promoters, 236–238
short-hairpin RNA expression constructs, 236–238
mechanisms, 234, 235
targeting constructs, development, 235, 236
selection markers, 239, 240

S
SAGE, see Serial analysis of gene expression
Serial analysis of gene expression (SAGE), cell extract preparation, 207, 218
complementary DNA, cleavage and binding to magnetic beads, 208
linker ligation, 208, 209
synthesis, 207, 208
tag release and blunt ending, 209, 218
concatemer cloning and sequencing, 212–215, 218, 219
data collection and analysis, 215, 216, 219
ditags, large-scale amplification, 210, 211
ligation and polymerase chain reaction amplification, 209, 210, 212
purification, 211, 212
DNA preparation, ethanol precipitation, 206, 208
isopropanol precipitation, 206, 218
phenol-chloroform extraction, 205, 206

embryonic stem cell culture, buffalo rat liver-conditioned media preparation, 203, 204
overview, 203
passaging, 203–205, 218
linkers, ligation control reaction, 206, 207
ligation to bound cDNA, 208, 209
phosphorylation, 206
materials, 198–202, 217, 218
principles, 195–198
reference libraries for mouse embryonic stem cells, 216, 217
RNA preparation, 207, 218
Simian immunodeficiency virus (SIV) vector, monkey embryonic stem cell gene transfer, materials, 296, 297
specificity, 296
transduction, 298, 300
transduction efficiency evaluation, flow cytometry, 299, 301
overview, 298, 299
polymerase chain reaction, 299, 301, 302
vector construction, harvesting and titering, 298, 300
transfection, 297–299
VSV-G-pseudotyped virus, 297
safety, 296
Single-strand conformational polymorphism (SSCP), genotyping of embryonic stem cell mutants, 400, 401
SIV vector, see Simian immunodeficiency virus vector
Small-interfering RNA, see RNA interference
Sonic hedgehog, see Hedgehog
Index

Southern blot,
DNA methylation analysis,
DNA transfer to membranes,
435, 443
hybridization and detection, 436
probe labeling, 435, 436, 443
restriction enzyme digestion and
electrophoresis, 435, 443
knockout mouse genotyping, 318
SSCP, see Single-strand conformational polymorphism
STAT3, Western blot from chicken
blastodermal cells, 31–33

T
Temperature gradient capillary electrophoresis (TGCE),
genotyping of embryonic stem cell mutants, 401
Teratoma, see also Tumorigenicity,
formation assay, 455–457
laser-manipulated microdissection
and DNA methylation analysis,
439–441, 443
TGCE, see Temperature gradient capillary electrophoresis
Thin-layer chromatography (TLC),
phosphoinositides, 140, 141, 147, 148
TLC, see Thin-layer chromatography
Transcriptome, see Serial analysis of gene expression
β-Tubulin, embryonic stem cell
differentiation marker analysis,
experimental design and statistics, 110
materials, 102–104, 110
reverse transcriptase polymerase chain reaction,
amplification reactions, 108, 111
gel electrophoresis and analysis of products, 109–111
reverse transcription, 107, 108, 111
RNA isolation and quality analysis, 106, 107, 111
tissue culture and embryoid body formation, 104–106, 111
Tumorigenicity, see also Teratoma,
embryonic stem cell gene identification,
gene expression assays, 452, 453, 457
materials, 450, 451, 456
NIH3T3 cell tumor-like property analysis,
colony formation assay, 454
stable transfection, 454, 457
transformation assay, 455
primary mouse embryonic fibroblast retroviral transduction, 453, 454, 457
supertransfection, 451, 452, 457
teratoma formation assay, 455–457
ERas-deficient cells, 450
monkey embryonic stem cell tumor formation,
allogeneic monkey fetus teratoma formation, 462, 463, 465, 466
immunodeficient mice and teratoma formation, 461, 462, 465
materials, 460, 461, 465
overview, 459, 460
transplanted cell progeny detection in situ, 463–466
PTEN-null cells, 449, 450

U–V
Ultraviolet-induced apoptosis, see Apoptosis
Viral vectors, see Cytomegalovirus promoter; Herpes simplex virus-1 amplicon vectors;
Lentivirus-mediated gene transfer; Simian immunodeficiency virus vector
von Kossa stain, osteoblast staining, 348
W
Western blot,
cell cycle checkpoint proteins, 323
Cripto, 162, 166
p53 induction and target gene analysis in ultraviolet-induced apoptosis, 333, 334

RNA interference and gene expression analysis, 250–253, 257
STAT3, 31–33
Embryonic Stem Cell Protocols
Volume 1: Isolation and Characterization
SECOND EDITION
Edited by
Kursad Turksen
Ottawa Health Research Institute, Ottawa, Ontario, Canada

From Reviews of the First Edition...
“...elegantly introduces tremendous methods and protocols in ES studies...one of the most useful books that I have ever read in this field...” —CELL BIOLOGY INTERNATIONAL
“...highly valuable for any scientist who wants to make a start in the exciting field but also for experienced ES cell researchers who want to widen their repertoire” —DIABETOLOGIA
“...a very informative resource for any developmental or cell biologist with an interest in developments and prospects of ES cell research” —MOLECULAR BIOTECHNOLOGY
“...a useful companion volume to other more specialized ES cell books...” —NATURE CELL BIOLOGY

Authoritative and cutting-edge, the two volumes of Embryonic Stem Cells illuminate for both novices and experts not only our current understanding of the biology of embryonic stem cells and their utility in normal tissue homeostasis and regenerative medicine applications, but also provide detailed accounts of the tools required for successful work in the area.

FEATURES

- Readily reproducible protocols for the manipulation of nonhuman embryonic stem cells
- Derivation and characterization of embryonic stem cells from nonhuman species
- State-of-the-art methods optimized by leading experts for embryonic stem cells
- Highly practical techniques suitable for both experts and novices
- Coverage of recent developments in the isolation and characterization of ES cells
- CD containing electronic color versions of all the illustrations in the book
- New protocols for the use of ES cells in studies of diverse cell lineages