Index

A

Adhesion assays,
 aggregation assay of single-cell suspension, 113, 114
 cell preparation, 111, 112
 labeling of cells, 112, 113
 single cell binding to monolayers, 114

α_1 Adrenergic receptor,
 autoradiographic techniques,
 distribution in brain, 38
 film analysis, 6–8
 labeling, 37, 38
 overview, 2, 3
 quantitative ligand-binding
 autoradiography, theory, 5, 6
 in vitro versus in vivo techniques, 4, 5
 subtypes, 37

α_2 Adrenergic receptor,
 autoradiographic techniques,
 distribution in brain, 42
 film analysis, 6–8
 labeling, 40
 overview, 2, 3
 quantitative ligand-binding
 autoradiography, theory, 5, 6
 in vitro versus in vivo techniques, 4, 5
 subtypes, 37

β Adrenergic receptor, autoradiographic techniques,
 distribution in brain, 43
 film analysis, 6–8
 labeling, 42, 43
 overview, 2, 3
 quantitative ligand-binding
 autoradiography, theory, 5, 6
 in vitro versus in vivo techniques, 4, 5

Antibiotics, media supplement preparation, 66

Antibody-excess assay, neural cell adhesion molecule, 119, 120

Astrocyte, culture,
 description of cultures, 75
 dissection and culture, 73, 75
 materials, 73
 overview, 72

B

Basal media, preparation for neuron culture, 64, 65

Brain, postmortem, see Postmortem brain, human

C

Calcium, intracellular, see Flow cytometry

Cancer, magnetic resonance spectroscopy studies of brain, 358–360

Cell adhesion molecule, see
Neural cell adhesion molecules
Cell culture, see Neuron culture
c-fos,
ΔfosB,
chronic marker of neuronal activation, 244
dopaminergic regulation of expression, 244–246
production by alternative splicing, 244
expression in brain as functional activity marker, 213, 215, 236–241
expression regulation,
calcium response element, 233, 234
immediate early gene properties, 232, 233
interdependence of promoter regulatory elements, 235, 236
serum response element, 234
Fos,
AP-1 complex formation with Jun, 215, 241, 242
functions, 215, 231
immunohistochemical staining,
advantages, 226, 227
antibodies, 217, 218
disadvantages, 227
fluorescence microscopy, 219
in situ hybridization with, 224, 225
light microscopy, 218, 219
multiple protein detection, 219, 220
retrograde tracing techniques with, 220, 221, 224
tissue preparation for analysis, 216, 217
regulation of neuropeptide gene expression, 242, 243
stimulus,
application and induction, 215, 216
dopaminergic drugs, 238–241
MK-801, 237–239
pentylentetrazole, 236, 237
physical stimulation, 238
Choline, see Magnetic resonance spectroscopy
Creatine, see Magnetic resonance spectroscopy
Crossed immunoelectrophoresis, neural cell adhesion molecule, 118, 119
Culture, see Neuron culture
CYPs, see Cytochrome P450 enzymes
Cytochrome oxidase, metabolic activity marker, 214
Cytochrome P450 enzymes (CYPs), see also Drug metabolism,
assays, in vitro,
correlation with in vivo assays, 207, 208, 277
incubation mixtures, 274
induction, 201, 202, 273
inhibition, 201–204, 272, 275
interpretation of data, 199, 200, 202–205
kinetic analysis, 202–205, 275, 276
metabolism of test drugs, 200, 201
panel study, 274, 275
practical assessment of new compounds, 202–205, 272
recombinant enzyme assays, 274
clinical testing,
confirmation of in vitro assays, 207, 208, 277
induction, 206, 207
inhibition, 206, 207, 273
metabolism, 206
overview, 205
purposes, 272, 273
factors influencing activity, 196, 198, 199
importance in psychiatric drug actions, 268–270
phenotyping,
metabolizer phenotypes, 264
techniques, 265, 267, 268
polymorphisms, 264, 265, 267, 268
stereoisomers and drug metabolism, 270, 271
structure and function,
overview, 195, 196
substrates versus inhibitors, 199, 271
types,
clinically relevant enzymes, 196, 197, 263, 264
overview, 263
substrates, 265, 266

D
2-Deoxyglucose, metabolic activity marker, 214
Dopamine D₁ receptor, autoradiographic techniques, distribution in brain, mutant mice, 36, 37
overview, 31
film analysis, 6–8
labeling, 29–31
overview, 2, 3
quantitative ligand-binding autoradiography, theory, 5, 6
regulation, analysis,
dopaminergic denervation effects, 33
neuroleptics, 33–35
in vitro versus in vivo techniques, 4, 5
Dopamine D₂ receptor, autoradiographic techniques, distribution in brain, mutant mice, 37
overview, 31–33
film analysis, 6–8
labeling, 31
overview, 2, 3
quantitative ligand-binding autoradiography, theory, 5, 6
regulation, analysis,
dopaminergic denervation effects, 33
neuroleptics, 35, 36
in vitro versus in vivo techniques, 4, 5
Dopamine transporter, autoradiographic techniques, distribution, mutant mice, 24, 26, 28
rat brain, 23, 24
film analysis, 6–8
labeling, 23
overview, 2, 3
quantitative ligand-binding
autoradiography, theory, 5, 6
regulation, analysis, lithium, 29
neuroleptics, 28, 29
in vitro versus in vivo techniques, 4, 5
Dorsal root ganglion neuron, culture,
description of cultures, 96
dissection and culture, 95, 96
materials, 95
overview, 94, 95
Drug metabolism, see also
Cytochrome P450 enzymes,
importance in psychiatric
drug actions, 268–270
metabolic pathways,
phase I, 257–262
phase II, 257 262, 263
overview, 255, 256
purpose, 256
sites, 256, 257
stereoisomers, 270, 271

E
ELISA, see Enzyme-linked
immunosorbent assay
Enzyme,
assay, see Enzyme assay
cofactors, 133
definition, 133
Enzyme Commission number, 134
inhibitors, see Enzyme inhibitors
kinetics, see Enzyme kinetics
nomenclature, 134
Enzyme assay,
chromatographic assays, 167
electrochemical assay, 167
fluorescence assay, 166, 167
initial velocity determination,
continuous assays, 152–154
discontinuous assays, 154–158
guidelines for assay set-up, 159, 160
multiple measurements, 152
protocol acquisition, 135, 136
purity requirements of enzymes, 136–138
radiochemical assays, 163–166
spectrophotometric assays, 160–163
substrate specificity and purity
requirements, 138–140
troubleshooting, 131, 132
units of activity, 134, 135
Enzyme inhibitors, see also
Cytochrome P450 enzymes,
clinical applications, 167, 168
controls in assay, 190
discontinuous assays in
analysis, 187
ex vivo measurement of reversible inhibition, 187–190
IC_{50} 185, 187
inhibitor constant, 172
kinetic analysis,
competitive inhibition, 172, 173, 175
irreversible inhibitors, 182–185
mixed inhibition, 179
noncompetitive inhibition, 175, 176
partial inhibitors, 179 181
tight-binding and slow tight-binding inhibitors, 181, 182
uncompetitive inhibition, 176, 178
reversible versus irreversible inhibitors, determination of type, 168–172
Enzyme kinetics,
graphical determination of kinetic constants,
data collection, 145, 146
direct linear plot, 150, 151
Hanes–Woolf plot, 147
Hofstee plot, 147, 148
Lineweaver–Burk plot, 149, 150
inhibitors, see Enzyme inhibitors
initial velocity, 141, 142, 151–160
maximum velocity, 142–145
Michaelis constant, 142–145
Michaelis–Menten kinetics, 142–145
unireactant reaction scheme, 141
Enzyme-linked immunosorbent assay (ELISA), neural cell adhesion molecule, 117, 118
Flow cytometry,
apoptosis measurement of neocortical subpopulations, 297 299
calcium, intracellular measurements of dissociated embryonic neocortical cells,
calibration, 306
contributors to calcium homeostasis, 307, 310
neurotransmitter ligand responses, 310
probes, 305, 306
cell preparation in developing nervous system, 288, 289
immunocytochemistry,
cell surface markers, 294, 295
cytoplasmic markers, 291, 292, 294
overview, 289, 291
instrumentation, 287, 291
performance, 287
potentiometric measurements of dissociated embryonic neocortical cells,
comparison with other techniques, 299, 301
membrane excitability in developing neurons, 302, 303, 305
membrane potential calibration, 302
oxonol dye, data acquisition, 301, 302
proliferation measurement of neocortical subpopula-
Index

Fos, see c-fos

Glucose, media supplement preparation, 66
Glutamine, media supplement preparation, 66

Hanes-Woolf plot, see Enzyme kinetics
Hexokinase, metabolic activity marker, 214
High field spectroscopy, see Magnetic resonance spectroscopy,
Hippocampal neuron, culture, description of cultures, 94
dissection and culture, 93
materials, 92, 93
overview, 91, 92
HIV, see Human immunodeficiency virus
Hofstee plot, see Enzyme kinetics
Human brain, see Postmortem brain, human
Human immunodeficiency virus (HIV), magnetic resonance spectroscopy

Inhibitor constant, see Enzyme kinetics

In situ hybridization,
Fos immunohistochemical staining with, 224, 225
neural cell adhesion molecule, 116
postmortem human brain, 336–338

HIV, see Human immunodeficiency virus
Hofstee plot, see Enzyme kinetics
Human brain, see Postmortem brain, human
Human immunodeficiency virus (HIV), magnetic resonance spectroscopy

I
IC₅₀, see Enzyme inhibitors
Immediate early genes, see also c-fos,
expression in brain as functional activity markers, 213, 215, 236–241
overview of types and functions, 231, 232
Immunocytochemistry, see Flow cytometry
Immunohistochemical staining,
Fos,
advantages, 226, 227
antibodies, 217, 218
disadvantages, 227
fluorescence microscopy, 219
in situ hybridization with, 224, 225
light microscopy, 218, 219
multiple protein detection, 219, 220
retrograde tracing techniques with, 220, 221, 224
neural cell adhesion molecule, 115, 116
postmortem human brain, 332–334

Inhibitor constant, see Enzyme kinetics

In situ hybridization,
Fos immunohistochemical staining with, 224, 225
neural cell adhesion molecule, 116
postmortem human brain, 336–338
Index

Insulin, media supplement preparation, 66
Ischemia, magnetic resonance spectroscopy studies of brain, 357, 358

K
α-Ketoglutarate, media supplement preparation, 66
K_v, see Enzyme kinetics
K_m, see Enzyme kinetics

L
Lactate, media supplement preparation, 67
Lineweaver–Burk plot, see Enzyme kinetics

M
Magnetic resonance spectroscopy (MRS),
applications, overview, 347
comparison to magnetic resonance imaging, 347
localized proton spectra of methyl singlets in human brain,
N-acetyl group resonance distribution, 352–354
acquisition of data, 350–352
choline resonance distribution, 354, 355
creatine resonance distribution, 354
effects,
cancer, 358–360
development and aging, 355
human immunodeficiency virus infection, 360
ischemia, 357, 358
neurodegenerative disease, 355–357
metabolites with coupled proton spins,
compounds, 348–350
qualitative and quantitative analysis,
approaches, overview, 361–363
high field spectroscopy in vivo, 366
numerical modeling, 365, 366
scalar coupling, 363–365
spectral editing in vivo, 367–371
two-dimensional spectroscopy in vivo, 366, 367
nuclei in measurement, 348
signal-to-noise ratio, 351, 352
Michaelis constant, see Enzyme kinetics
Michaelis-Menten kinetics, see Enzyme kinetics
Microglial cell, culture,
description of cultures, 78
materials, 76, 77
mouse, 77, 78
overview, 76
rat, 78
MK-801 immediate early gene induction, 237–239
MRS, see Magnetic resonance spectroscopy
Index

N
NCAMs, see Neural cell adhesion molecules
Nerve growth factor, media supplement preparation, 67
Neural cell adhesion molecules (NCAMs),
 binding mechanism, 107, 108
cell adhesion assays,
 aggregation assay of single-cell suspension, 113, 114
cell preparation, 111, 112
labeling of cells, 112, 113
 single cell binding to monolayers, 114
classification, 104
detection,
 immunohistochemistry, 115, 116
 in situ hybridization, 116
 overview of techniques, 114, 115
Western blot analysis, 116, 117
expression, 106, 107
functions,
 cell adhesion, migration, and recognition, 108, 109
diseases, 110
neuronal regeneration, 110
overview, 103, 104
synaptic plasticity, learning, and memory, 109, 110
purification, 120, 121
quantitation,
 antibody-excess assay, 119, 120
crossed immunoelectrophoresis, 118, 119
enzyme-linked immunosorbent assay, 117, 118
Western blot analysis, 119
structure and isoforms, 104–106
Neuron culture,
 astrocyte culture,
 description of cultures, 75
dissection and culture, 73, 75
 materials, 73
 overview, 72
basal media preparation, 64, 65
cell-filtration devices, 60, 61
cerebellar glutamatergic
 neurons,
 description of cultures, 91
dissection and culture, 89, 91
 materials, 89
 overview, 89
cortical GABAergic neurons,
 description of cultures, 89
dissection and culture, 88
 materials, 87–88
 overview, 87
dispersed cell cultures,
 dissociation methods, 54
 postmitotic neurons, 56, 57
 proliferating cells,
 enriched cell cultures, 55
glial cells, 54
 mixed cell cultures, 55
dorsal root ganglion neurons,
 description of cultures, 96
dissection and culture, 95, 96
 materials, 95
 overview, 94, 95
equipment, 59
hippocampal neurons,
 description of cultures, 94
dissection and culture, 93
materials, 92, 93
overview, 91, 92
microglial culture,
 description of cultures, 78
materials, 76, 77
mouse, 77, 78
overview, 76
rat, 78
oligodendrocyte culture,
mature cells as starting
 material,
 description of cultures, 86
dissection and culture, 84–86
materials, 84
overview, 84
precursors as starting
 material,
 description of cultures, 81, 83–84
materials, 79
overview, 78, 79
precursor preparation
 and culture, 79–81
solution preparation for cell
 handling, 69–71
sterile technique, 58, 59
substrata,
 collagen coating, 63
 plastic versus glass, 62
 poly-D-lysine coating, 62, 63
 poly-L-ornithine coating, 63
supplement preparation, 65–69
three-dimensional culture
 systems,
aggregate cultures,
 description of culture, 98
dissection and culture,
 97, 98
materials, 96, 97
overview, 57, 58, 96
slice cultures, 57
tissue dissection,
 brain isolation from
 postnatal animal, 71, 72
dissecting dish, 60
embryo isolation from
 pregnant animal, 72
instruments, 59, 60
materials, 71
sterilization, 60
vessels for culture, 61, 62
Neurotensin, regulation of
 expression by Fos, 242,
 243
O
Oligodendrocyte, culture,
mature cells as starting
 material,
 description of cultures, 86
dissection and culture, 84–86
materials, 84
overview, 84
precursors as starting material,
 description of cultures, 81,
 83, 84
materials, 79
overview, 78, 79
precursor preparation and
 culture, 79–81
P
Pentylenetetrazole, immediate
 early gene induction,
Peptone, media supplement preparation, 67
Postmortem brain, human, advantages over animal studies, 320, 321
collection and dissection, 322–324
disease changes, imaging study correlations, 341, 342
neurotransmitter deficits, 340, 341
functional studies in fresh tissue, 338, 339
immunocytochemistry, 332–334
in situ hybridization, 336–338
limitations of study, 321, 322
microdissection, 338
receptor autoradiography, 334–336
safety of study, 325, 326
value of study, 319, 320
variables affecting neurochemistry,
age of donor, 326
agonal state and cause of death, 327, 328
controlling of factors, 330–332
cyclical fluctuations with time, 328, 329
drug treatment, 328
postmortem delays, 329, 330
Progesterone, media supplement preparation, 67
Pyruvate, media supplement preparation, 67
Receptor autoradiography, see also specific receptors,
postmortem human brain, 334–336
Scalar coupling, see Magnetic resonance spectroscopy
Serotonin receptor, autoradiographic techniques,
film analysis, 6–8
overview, 2, 3
quantitative ligand-binding autoradiography, theory, 5, 6
in vitro versus in vivo techniques, 4, 5
Serotonin transporter, autoradiographic techniques,
distribution,
mutant mice, 16, 17, 19, 21
rat brain, 13–16
film analysis, 6–8
in vitro versus in vivo techniques, 4, 5
labeling, 11–13
overview, 2, 3
quantitative ligand-binding autoradiography, theory, 5, 6
regulation, analysis,
lithium, 21–23
neuroleptics, 21
Sorbitol, media supplement preparation, 67
Spectral editing, see Magnetic resonance spectroscopy
Index

T
Triiodothyronine, media supplement preparation, 68
Two-dimensional spectroscopy,
see Magnetic resonance spectroscopy

V
Valine, media supplement preparation, 68

\(V_{\text{max}} \), see Enzyme kinetics

W
Western blot analysis, neural cell adhesion molecule,
116, 117, 119

Z
\(zif268 \), expression in brain as functional activity marker, 241