Index

A
Alamethicin, 213
Alkaline phosphatase, 220–221
Alpha-hemolysin (αHL)
channel insertion, lipid bilayer, 318–319
protein pore, TNT detection, 319, 320
wild-type, 314, 316
Amyloid-β, 218, 219
Anthrax lethal factor (LF)
anti-streptavidin, 213, 214
detection, viral binding, 211, 212
number estimation, 212
Antibody-Fab fragments, 212
Aptamers. See also Single molecule detection,
antipolymer-integrated nanopore
aptamer-target interaction, 52
description, 52
Artificial nanopore
protein pore fragility, 316
resolution, 317
Association constant, 204, 212, 217
Avidin (AV), 207

B
Bacteriophage phi29
characterization, single channel
electrophysiological assays
analytical expression, 86–89
calibration coefficient calculation, 89
conductance, α-hemolysin, 89–90
current-voltage relationship, 86
experimental setup, 84
insertion, planar bilayer lipid
membrane, 84–85
DNA-packaging motor, 78
expression and purification, 80–81
motor channel exercises
Ni-NTA nanogold particle, 98–100
ramping potential, 95–96
switching, voltage polarity, 96–97
translocation frequency, 97–98
nanopore-based stochastic sensing, 102
reengineering, 80
viral DNA packaging, 100–102
Binding isotherm, 213, 214
Biosensing, 204, 205, 209, 213, 217, 218, 222–223
Biosensors
applications, 125
capacitor membrane, 153
channel stochastic sensing, 119
construction, 53
independent storage and free
transportation, 61
nanopore single molecules, 55
Biotin
NeutrAvidin binding, 216
SA, 209
W120A, 214
Blockade
alpha-HL, 263
homopolymers, 260
oligomers, 262
poly(A) and poly(C), 263
RNA, 263
Blockage
levels, 260
poly (A) and poly (C), 260
single DNA bases, 269
translocation time, 272
Bovine serum albumin (BSA)
blockage signal, 131
event number density plots, 128
Bovine serum albumin (BSA) (cont.)
- molecules, 139–140
- native state, 139
- time distribution, 144
- translocation, 140

C
- Carbonic anhydrase II, 211, 213
- Catalytic rate constant
 - enzyme kinetics, 204
 - trypsin and Aβ reaction, 218
- Circuit element modeling
 - DNA translocation
 - angle difference, 168
 - atomistic charge distribution, 169
 - electric circuit approach, 169, 170
 - electrostatic induction, 168
 - nanopore-capacitor, 168–169
 - n-doped silicon electrodes
 - depletion capacitance, 166
 - resistances, 166–167
 - silicon layer discretization, 166
 - screening, DNA
 - electrolyte-oxide interface, 167
 - electrostatic induction, 167
 - SiO2 layers, 167
- Connector
 - explicit engineering, 79
 - fluorescently labeled, 83
 - insertion, protein, 83
 - phi29
 - expression and purification, 80–81
 - reengineering, 80
 - 12-subunit gp10, 78
- Coulter Counter, 3
- Current blockage
 - frequency, 215, 216
 - polymers translocation, 215

D
- Deoxyribonucleic acid (DNA)
 - dsDNA interaction, 327, 328
 - ionic liquid solutions, 327
 - nanopore sequencing, 325, 327
 - (dA)20 translocation, 326, 327
- Dissociation constant, 204, 211–214
- 3D modeling, capacitor response
 - molecular dynamics simulation, 159
lipid vesicles, preparation
dehydration–hydration method, 82
epifluorescence images, giant liposome, 83
fluorescently labeled connector, 83
hydrophilic-hydrophobic-hydrophilic layers, connector, 81
incorporation, connector, 81
motor channel exercises, phi29
Ni-NTA nanogold particle, 98–100
quantification, translocation frequency, 97–98
ramping potential, 95–96
voltage polarity switching, 96–97
motor, phi29, 79
nanopore-based sequencing, 103
stochastic sensing, 102
phi29 connector
analytical expression, number determination, 86–89
calibration coefficient calculation, KCl and NaCl buffer, 89
conductance, α-hemolysin, 89–90
current-voltage relationship, 86
experimental setup, characterization, 84
expression and purification, 80–81
insertion, planar lipid bilayer, 84–85
reengineering, 80
translocation, double-stranded DNA artifacts, signals, 92–93
blockade events, 90–92
pH effect, stability, 92
phi29 connector channels, 90
quantitative PCR, 93–95
viral genomes, 78
virus
ATP hydrolysis, 101
one-way traffic phenomenon, 100
pRNA and gp16, 101–102
DNA–pore interactions, 243–245
DNA sequencing. See also Nanopore-based DNA sequencing and motion control
 C3AC7, 164–165
description, 293
dsDNA, 293–294
error analysis, translocation
controlled DNA translocation, 189
Fokker–Planck equation, 190
λ−dsDNA molecule, 190
mean-first-passage time, 191
polymer configurations, 189
“reverse translocation”, 191–192
HANS
oligonucleotides, 188–189
sequencing-by-hybridization (SBH), 188, 189
ssDNA, 188
sequencing, single molecule conveyance to nanopore, 295–297
nanopore fabrication, 294–295
noise, nanopore, 305–307
prospects, 290–292
trapping, synthetic nanopore, 297–305
single molecule electrical, 172
synthetic nanopores, 293–294
DNA transistor
biasing electrical field, 283
dielectric zone and layer, 289–280
gate voltages and voltage bias, 281
harmonic spring approach, 283
pulling force, 283
realistic molecular dynamics simulations, 282
simulation system, 282
structure, 263
trapping potential vs. displacement, 281
uphill and downhill motions, 283
DNA translocation
 cis and trans chamber, 230
dwell-time distribution shapes, 243
error analysis, positional measurement, 189–192
hybridization detection
melting transitions, 197
12-mer hybridization, 195
ssDNA trimer complex, 197
TEM “drilling” approach, 197
trimer-bead complex, events, 198
Watson-Crick pairing, 196
Zucker mfold software, 195–196
ion-current trace, 236
log–log plot, 246
reverse, magnetic tweezers
 Chang-Bashir effect, 193
 entropic spring effects, 195
 force, magnetic, 195
 ionic current vs. time, 194
 magnetic bead, 192
 signals, ionic current, 193
statistical analysis, 244
voltage driven
 DNA interaction, 230
DNA translocation (cont.)
- length dependence, transport dynamics, 245–249
- nanopore size effect, DNA transport, 245
- polymer-pore interaction, 243, 244
- salt gradient effect, 249–250
- SiN membrane, 242
- transport time distributions, 243–245

DNA translocation control
- blockage, 273
- magnetic tweezers, 276–279
- solid-state nanopore, 276
- speed, 272
- SWCNT, 276
- voltage signals, 265

DNA unzipping
- basepairs, 346–347
- duplexes, 339
- hairpin, 348–349
- translocation, 348

Drift velocity, 208, 209, 222

Drug protein interaction, 213

E
E. coli maltose binding protein (MBP), 210

Electrochemical signals, 125

Electronic sensing simulation, biomolecules
- circuit element modeling
 - capacitances and resistances, 165–166
 - DNA translocation, 167–169
 - n-doped silicon electrodes, 166
 - screening, 167
 - SiO₂ layers, 167
- device optimization, 173
- DNA conformation dynamics, 173
- 3D self-consistent modeling, ssDNA stretch conformation one mutated base, 162–165
 - translocation, helical conformation, 160–162
- ionic current blockade, 152
- molecular charge distribution, 153
- nano-biophysical device, 172
- nanopore device modeling
 - computational approach, 156
 - 3D self-consistent, capacitor response, 156–159
 - idealized geometry, 155
- Poisson Solver (PS), 156
- recorded voltage trace, 172
- SOS membrane, 152
- SPICE model
 - DNA strand translocation, 169–172
 - electric circuit domain, 173
 - stochastic “wigging”, DNA, 172
 - structure description
 - 2D projection, 154, 155
 - fabrication process, 154
 - metal-oxide-semiconductor (MOS), 154
 - novel biosensor, 153
 - semiconductor-oxide-insulator (SOI), 154
 - transmission electron micrograph (TEM), 154
- Electrophoretic mobility, 209
- Electrostatic tweezers, 336

Enzyme activity
- alkaline phosphatase, 220–221
- anthrax lethal factor, 221
- detection, gA peptides, 221
- gramicidin pores, membranes surface charge, 218, 220
- PLD and PLC, 218–219
- protease detection, α-hemolysin pore, 218, 219
- quantification, 219, 220
- quantitative information, 218

F
Fabrication process, selective sensing
- focused ion beam (FIB), 110
 - penetration depth, 111
 - recursive and continuous sub-processes, 109
- RIE, 110
- SiO₂ membrane, 110, 111
- Si wafer oxidation, 109
- size reduction
 - H₂O vapor introduction, 112
 - pore diameter reduction, 111
 - PPF deposition, 113–114
 - TEM shrinking, 112–113
 - TEOS reservoir, 112
 - surface erosion and diffusion, 108
 - thicker membrane, 111
 - wet etching, 109–110
 - ZEISS 1540XB FIB equipment, 111

Fabrication techniques
- controlled shrinking, e-beam/laser heating
Laplace’s law, surface tension, 179–180
Laplace–Young equation, 181
mechanically punched hole, 181
pore radius, 180, 182
SiO2/Si3N4 membranes, 179
surface-tension model, 180, 181
time-lapsed TEM images, SiO2 nanopore, 179
feedback chemical etching
current vs. time, 183
invert pyramid shapes, 184
KCl and KOH, 184, 185
post-etch pore ionic resistance, 185
silicon wafer, 183
zero-bias electric current, 184
ion-beam technique, 178
TEM “drilling”
e-beam removal, 183
surface-tension model, 182
Fibrinogen, 207
Fokker–Planck equation
mean-first-passage time, 190
probability, 190
Force spectroscopy
force curve, dsDNA, 42–43
performance, 38
protein-coated molecule, 46
Force spectroscopy, nanopore
DNA
effective charge calculation, 353
electro-osmotic flow, 351
external electric field, 345
membrane thickness, 352
experiments, 337–339
hairpin DNA unfolding, 346–350
MD simulation, 339–340
protein–DNA assemblies, 340–344
Functionalization, DNA translocation
atomic layer deposition (ALD), 119
cell salination, 120
EDC and NHS ratio, 120
homobifunctional agent,
amide terminal, 120
polymer deposition, 118
restriction enzyme, 121
selective sensing, 121
single nucleotide polymorphism, 121
SiO2 nanopores, 119
soft lithography technique, 120
translocation velocity, 119
wetability, nanopore, 121
G
Genome
DNA sequencing, 257
structural and functional
organization, 284
G-quadruplex aptamers
folding/unfolding kinetics
ion-regulated, 59–60
linear TBA molecules, 59
principle, 60
signature block, duration, 57
G-tetrads, 55, 56
nanocavity
encapsulation, nanopore, 57–58
spontaneous unfolding, 58
synthetic, 57
thrombin-binding aptamer (TBA), 57
trapped G-quadruplex, 58
Gramicidin
countactance, 218, 219
PLD and PLC enzyme activity, 219
H
Hairpin DNA unfolding
constant velocity, 349–350
duplex dissociation, 350
helical secondary structure, 345
α-hemolysin systems, 349
MD simulations, 346–347
microscopic arrangement, 349
modes, translocation, 348
sequencing methods, 346
translocation probability, 346
Hairpin loop DNA
model, nanopore, 122, 124
PC DNA target, 123
“transporter”, 122
HANS. See Hybridization-assisted nanopore sequencing
α-Hemolysin
apoxtosis, 5
description, 5
DNA sequencing, 6–7
in vitro studies, DNA transport,
5–6
primer extensions and base selectivity, 7
protease activity detection, 219
single nucleotides addition,
DNA template, 218
solid-state nanopores, 215
ssDNA and ssRNA molecules
detection, 6
Hybridization-assisted nanopore sequencing (HANS)

DNA probes, 186
sequencing, 191
α-hemolysin pores, 195
positional accuracy, 189
sequencing-by-hybridization (SBH)
technique, 188, 189
ssDNA, 188

Hybridization-assisted sequencing. See
Hybridization-assisted nanopore sequencing

Hydrodynamic focusing
molecule trapping, 295
nanofluidic circuits, 293

IgE. See Immunoglobulin E

Immunoglobulin E (IgE)
aptamer-modified nanopore
abnormal levels, 66
sensing zone, 67
immobilized aptamers, 217

Immunoglobulin G (IgG), 125, 212, 217

Integrated optical tweezer system, molecular
detection and force spectroscopy
biopolymers, 35
DNA
delay time, 40
dsDNA capture events, 39, 40
retraction, dsDNA, 41, 42
translocation comparison, 41
dsDNA force curves, 42–43
electrophoretic translocation, 36
experimental methods
bead motion, 38, 39
hydrophilic surface, 36–37
I–V characteristics, 37, 38
microfabrication techniques, 36
nanopore flow cell, 37
voltage, 38
modeling, electrophoresis and
electroosmotic shear
charged ions, 43
net electrical force, captured dsDNA, 44
Poisson–Boltzmann relation, 43, 44
size and salt dependences, 44
protein-coated DNA molecules, measurements

conductance blockades, 45, 46
RecA-dsDNA force curves, 46–47
stationary charges, nanopore surface, 47

Ion channel, 80
Ion channel, terrorist agents and biomolecule
detection. See Stochastic sensing,
terrorist agents and biomolecules

Ionic conduction, solid-state
nanopore sensors
asymmetric current-voltage characteristics, 16
conductance, measurement, 15
electrical characterization, 16
geometric models, 15
surface charge
manipulation, 17–18
pore conductance, 16–17
SiO₂ pores, 17
zeta potentials, 17

Ionic current
blockages, 261
DNA events, 278
measurement, 278
nanopore, 277
nucleotide event distributions, 271
oligonucleotides, 269
patch-clamp electronics, 260
sequence reconstruction, 270
trace, 269

Ion-regulated switching, aptamer structure
G-quadruplexes
encapsulation, 57–58
folding/unfolding kinetics, 58, 59
spontaneous unfolding, 58
synthetic, 57
trapped, interaction, 58
G-tetrads, 55, 56
TBA, 57

Isoelectric point (pI)
BSA, 139
pH solution, 209
proteins, 209

K
Kinetics
enzyme, 204
protease, 218
protein-ligand binding, 214
Knotek-Feibelman electron-stimulated
desorption mechanism, 13
L

β-Lactoglobulin (βLGa), 210

Lectin, 211, 215

Ligand affinity, 213, 217

Lipid bilayer

- fragility and stability, 317
- Montal–Mueller method, 318
- sealing resistance, 318–319

Liposomes

- dehydration–hydration method, 82
- direct incubation, connector, 84
- stock solution, 84

M

Mean first-passage time

- Fokker–Planck equation, 190
- temporal signals, 191

Membrane-active enzyme, 218, 220

Membrane channel, 83, 229

Michaelis constant, 204, 218

Molecular dynamics (MD) simulation. See also

- Force spectroscopy, nanopore
- AMBER and CHARMM force fields, 339
- description, 339
- DNA-nanopore interactions (see DNA-nanopore interactions, molecular dynamics)
- DNA sequences, 343
- force determination, 343
- restriction enzyme–DNA complex, 342
- simulations
 - DNA, affecting forces, 297–298
 - nanopore trap, 304
 - pore constriction, 293
 - steered molecular dynamics (SMD), 343
 - van der Waals forces, 340

Molecular rupture, protein–DNA assemblies

- biological process, 340
- EcoRI–DNA bond, 345
- mimicked experimental conditions, 343
- pore opening, 342–343
- quantitative polymerase chain reaction, 341
- restriction enzyme, 341–342
- SMD simulations, 344
- transmembrane voltage approaches, 343
- type II restriction enzyme, 341

Multi-scale approach, 170–171

electronic devices, 177

semiconductor, 291

techniques, 177

Nanomedicine, 100

Nanomotor, phi29 DNA-packaging motor

- DNA translocation, 79
- lipid-embedded channel, 79–80
- one-way DNA traffic mechanism, 95–99
- 12-subunit gp10 connector, 78

Nanopore-based DNA sequencing and

- motion control
- fluorescent in situ sequencing, 258–259
- hybridization-assisted, 269–270

KBBD proposal

- blockades, 262
- horizontal bilayer experiments, 260–261
- ionic current blockages, 261
- polyadenylic and polycytoclyclic acids, 262
- polycytidylic acid, 260
- sequencing method, 260

- Teflon tube, 260
- magnetic tweezers, 276–279
- optical tweezers approach, 274–276
- oxford nanopore, 271–272
- pyrosequencing, 259–260

Sanger’s sequencing method, 256–258

- semiconductor nanopore-capacitor, 265–268
- transverse electronic transport, 264
- unzipping designed DNAs, 268–269
- viscosity, voltage, ionic concentration and temperature control, 272–274

Nanopore-capacitor

- external voltage bias, 265
- remote electrodes, 153

Nanopore device modeling

- capacitor response, 3D self-consistent
 - modeling
 - buffer solution, charge model, 156–157
 - molecular dynamics, 156
 - self-consistent scheme, 158–159
 - semiconductor charge model, 157–158
 - virtual solid-state parameters, 156
 - computational approach, 156
 - idealized device geometry, 155

Nanopore DNA sequencing

- error analysis, positional measurement, 189–192

- fabrication techniques
 - controlled shrinking, e-beam/laser heating, 179–182
Nanopore DNA sequencing (cont.)
 feedback chemical etching, 183–185
 ion-beam technique, 178
 TEM drilling, 182–183
HANS (see Hybridization-assisted nanopore sequencing)
 integration strategy, multiple nanopores
 EANA device, 186
 HANS, 186
 inhomogeneous wafer thickness, 187
 silicon chip, V-grooves, 187
translocation and hybridization detection
 melting transitions, 197
 12-mer hybridization, 195
 reverse, 192–195
 ssDNA trimer complex, 197
 TEM “drilling”, 197
 trimer events, 198, 199
 Watson-Crick pairing, 196
 Zucker mfold software, 195–196
Nanopore, thin Al_2O_3 membranes
 electron beam based decompositional sputtering processes, 11–12
 electron beam induced crystallization
 irregular charge distribution, 14
 structural phase transformations, 13
 nucleation and expansion kinetics
 metal halides/oxides, 12
 pore contraction mechanisms, 13
 probes, 13
 sputtering process, 13
 variations, stoichiometry, 14–15
Nanostructure
 modified gp10, 81
 phi29 connector, 79
Next-generation-sequencing (NGS), 288, 289
Nucleic acids capture and translocation application, 230
biopolymer
 ‘blockades’, 230
 capture, 229
 “cis” and “trans” chamber, 229–230
 nanopores, research, 229
 resistive sensing, 228
 transport, 228–229
DNA
 biased diffusion, 234
 capture enhancement, manipulated fields, 238–241
 capture rate, 235–238
 coil approach, 232
 Debye screening length, 233
 dynamics determination, 235
 enhancement mechanisms, 234–235
 independent length, 234, 235
 Kramers theory, 234
 negatively-biased chamber, 233
 rate-limiting step, 232
 solid-state pore, 231–232
 voltage driven, 2241–250
 electrical potential, 230
 genomic profiling, 228
 impacts, 229
 molecule’s progress, 230
 nanopores, research, 229
 resistive sensing, 228
 translocation, 228
 ultra-thin solid-state membranes, 229
Nucleotide
 bases, 2
 capillary electrophoresis, 257
 polymorphisms, 25, 121
 primer extensions, 7
O
 Off-rate, 204, 214–217
 On-rate, 204, 214–217
 Ovalbumin (OA), 207
P
 Parameters affecting translocation, 143
 PC. See Perfect complementary
 Peptides
 A-ß (10–20) cleavage monitoring, 324–325
 amino acid components, 323
 length and structure, 323, 324
 Perfect complementary (PC) and mismatch DNA discrimination
 applied electric field, 124
 average translocation time, 123
 hairpin-loop probe, 122
 α-HL ion channels, 122–123
 mismatch DNA discrimination, 121
 PNA molecules, 122
 repulsive potential, 124
 sensitivity and selectivity, nanopores, 121
 translocation kinetics, 124
 Phi29 connector, bacteriophage, 7
 Phi29 DNA-packaging. See DNA packaging
 Phospholipase, 218–220
 Phospholipase C (PLC), 218, 219
 Phospholipase D (PLD), 218–220
 Phosphotidylcholine (PC), 218
Selective sensing
biological applications
antibody-based recognition element, 125
galactose/glucose receptor (GGR), 125
immunoglobulin G (IgG), 125
NCAMs, 124–125
SSNs, 125
bio-protein channel, 108
DNA-nanopore interactions, molecular dynamics
applied voltage dependant, 116–118
CHARMM force field, 114
diameter dependant, 115–116
translocation dynamics, 114
DNA translocation
functionalization, 118–121
PC and mismatch DNA discrimination, 121–124
surface charges and hydrophobicity control, 118
fabrication process, 108–114
PPF deposition, 125
Self-assembled monolayer (SAM), 25–26, 120, 124
Semiconductor charge model, nanopore device
etching process, 158
Fermi-Dirac distribution, 157
Sequencing DNA. See DNA sequencing
Sequencing method
chain termination methods, 284
dideoxynucleotides triphosphates, 256
nanopore DNA, 263
pyrosequencing, 259–260
Single base mismatch (SBM) comparison, PC DNA target, 123, 124
DNA sequence, 108
Single channel conductance calculation, 86, 88
GP–10 connector, 90
Single-channel recording
A-β (10–20) cleavage monitoring, 325
nucleotide event distributions, 271
Single-molecule analysis, 335, 337, 338
Single molecule detection, aptamer-integrated nanopore
advantages, 69
binding, 63–64
bio-nanopores and artificial nanopores, 54
fabrication and properties, glass nanopore, 64–66
G-quadruplex aptamers (see G-quadruplex aptamers)
heptameric α-hemolysin pore, lipid bilayer, 55
IgE molecules (see Immunoglobulin E)
integration, synthetic nanopores, 64
molecular folding, interaction and biosensing, 52–53
nanometer-scaled pore, 53
ricin, bioterrorist agent, 68–69
selection, 55
single molecule biosensing, robust nanopore biochip
construction, 61
portable, durable, modular ion channel chip, 62
protein pore-incorporated lipid membrane, 63
thrombin detection, 60–61
transition rate constants, 54
Single nucleotide polymorphism (SNP), 121
Single protein molecules sensing
correlation, protein primary charge sequence, 147
event classification, 132–133
experimental setup, 136–137
laminin, 148
linear amino acid chain translocation
excluded volume, stall points, 142–143
parameters, 143
stall point potential well model, 142
nanopore protein mixture screening
electrostatic potential, 147
staphylococcal nuclease (SNase), 146
native state proteins measurement
current blockage amplitude, 137–138
relative charge, 139–141
sizing, 138–139
parameters, nanopore
laminin protein, 131–132
silicon nitride membrane, 131
translocation process, 131
physiochemical properties, 130
polypeptides, protein pores, 130
solid-state nanopore, 131, 137
time histograms
BSA, 144
Hpr and βLGa, 144
Kramers reaction rate theory, 144
unfolded proteins, 145
Index 367

translocation principles
capture, nanopores, 133
mean current drop amplitude, 134–135
shape/geometry, 133–134
time, 135–136

Single stranded DNA
complimentary, 269
fragment, 282
molecules, 260
sequencing, 269
trapping energy, 281

Size and length discrimination, 40, 45, 48
SNP. See Single nucleotide polymorphism
Sojourn time, 141, 144

Solid-state nanopore
bacteriophage phi29 connector, 7
chemically modified
drug screening and medicine, 25
nanopore functionalization, 26–27
self assembled monolayers (SAMs), 25–26
coulter counter development, 3
DNA sequencing
error analysis, positional measurement, 189–192
HANS, 188–189
nucleotides, 187

DNA translocation
buffer concentration, 20–21
deep current blockades, 20
polymer velocity, 22
surface enhanced DNA transport, Al₂O₃, 23–24
Zimm time, 22

fabrication
arrays, 11
electron beam induced oxide reflow, 8–9
ion-beam sculpting, 9–10
sputtering, electron beam induced, 10–11
track-etch method, 10
fabrication techniques
controlled shrinking, e-beam/laser
heating, 179–182
feedback chemical etching, 183–185
ion-beam technique, 178
TEM “drilling”, 182–183
gel electrophoresis, 2–3
α-hemolysin, 5–7
intercellular communication and signaling, 4–5
ionic conduction
conductance, measurement, 15–16
manipulation surface charge, 17–18
surface charge effects, 16–17
nanopore formation, thin Al₂O₃ membranes
electron beam based decompositional
sputtering processes, 11–12
electron beam induced crystallization, 13–14
nucleation and expansion kinetics, 12–13
variations, stoichiometry, 14–15

noise
dielectric, 19–21
electrical, 18
1/f noise, 18–19
reverse DNA translocation, 192–195
single-wall carbon nanotube, 276
sub–5nm (see Nucleic acids capture and translocation)
transmission electron microscope, 4
two-terminal electrophoresis, 3–4

SPICE model
DNA strand translocation
electrical response, C3AC7 sequence, 169, 171
fragment simulation, 170
multiphysics simulations, 172
voltage trace vs. time, 170, 172
electric circuit domain, 173
Staphylococcal enterotoxin B (SEB), 208
Stochastic sensing, terrorist agents and biomolecules
artificial nanopores, 316–317
DNA, 325–328
explosive and chemical warfare
liquid, 320–321
nerve agent hydrolytes, 321–323
2,4,6-trinitrotolune (TNT), 319, 320
α-hemolysin, 314, 316
hybrid nanopore system, 317
ionic current, 313–314
lipid bilayer, 317
nanopore analysis
contaminated water samples, 329
pattern-recognition nanopore sensor
array technique, 330
PMPA recovery, 329
peptides
A-β (10–20) cleavage monitoring, 324–325
amino acid components, 323
length and structure, 323–324
mixture, 314, 315
Stochastic sensing (cont.)
planar bilayer recording
ionic current, 318–319
Montal–Mueller method, 318
nanopore, chamber device, 317–318
protein pore fragility, 316
Stoichiometry
antibody detection, virus particles, 210, 211
BSA, 212
dissociation constants determination
alamethicin, 213
binding isotherm, 213, 214
equilibrium association, 212
isotherm, 213, 214
Kₐ and Kₘ, P and L interaction, 213
protein–ligand interactions, 212
equilibrium dissociation constants and rates, 210, 211
nanopore-based techniques, 210
quantification, 79
Streptavidin (SA)
colloids functionalized
translocation, 213
pf, 209
Sulfonamide, 213
Surface charges, nanopores
distribution, hydrated Al₂O₃, 14
1/f noise, 18
manipulation, 17–18
pore conductance, 16–17
SiO₂ pores, 17
zeta potentials, 17
Surface composition, 113–114
Surface enhanced DNA transport
charge density, 24
detection capabilities, 23
fast translocations, 23
hydrated nanopore, 23
5 kbp dsDNA, 23, 24
polymer-pore interactions, 24

T
TEM. See Transmission electron microscope
Terrorist agents, stochastic sensing and biomolecules. See Stochastic sensing, terrorist agents and biomolecules
Third generation DNA sequencing
description, 293
dsDNA, 293–294
single molecule sequencing
conveyance to nanopore, 295–297
nanopore fabrication, 294–297
noise, nanopore, 305–307
prospects, 290–293
trapping, synthetic nanopore, 297–305
synthetic nanopores, 293–294
Translocation time
diffusion constant and electrophoretic drift velocity, 222
KCl concentration, 273
measurement, 208
protein charge, 208
protein–ligand complex, 212
vs. viscosity, 272, 273
Translocation velocity
DNA
diameter effect, 115
high voltages, 116, 117
linear dependence voltage, 116
Transmission electron microscope (TEM)
decompositional sputtering processes, 26
drilling technique
e-beam removal/“sputtering”, 183
surface-tension model, 182
electron probe, 11
imaging process, 179
nanopore formation kinetics, 10
shrinking, 8, 112–113
tomograms, 16
Transverse electronic transport, 264–265
Trapping DNA
base-pair sequence, 304
blockade duration, 301
dsDNA, 297–298
electromechanics, 298
Gaussian distributions, 305
low-noise measurements, 301
MD simulation, 303–304
membrane geometry, 301
molecule, nanopore, 302
nucleotides, 305
permeation, 298
qPCR analysis, 298–299
silicon nitride membrane, 300
stochastic forces, 303
X-ray diffraction and NMR, 299
Trapping energy, single-stranded DNA, 281
Trapping field
biasing electric field, 274
DNA transistor, 283
pulling force, 283
Trypsin, 218, 220
U
Unzipping DNA
 electronic detection approaches, 268
 fluorescence signal, 268
 nanopore DNA sequencing, 269–270

V
van der Waals force
 parabolic dependence voltage, 116, 117
 pore diameter, 115
Viruses
 antibody detection, 211
 protein binding, 207