Computing Tail Length from Two Points of Right Ascension and Declination

One degree of declination is the same regardless of where it is measured in the sky, but this is not the case for right ascension. One hour of right ascension equals an angle of 15°, but this is not necessarily equal to 15° of declination because, as one approaches the celestial pole, the right ascension circles get progressively smaller. Declination, however, is measured always along a great circle. At the north celestial pole, 1° of declination equals 1°, but 360° of right ascension equals zero. As a result, if any part of a tail is more than 20° from the celestial equator, and one desires to determine its length from its right ascension and declination, he/she must use (A.1)

\[\ell = \text{inv cos}\left[\sin(\delta_1)\sin(\delta_2) + \cos(\delta_1)\cos(\delta_2)\cos(a_1 - a_2)\right] \]

(A.1)

In this equation, \(\ell \) is the tail length in degrees; \(a_1 \) and \(\delta_1 \) are the respective right ascension and declination of the central condensation (one end of the tail); and \(a_2 \) and \(\delta_2 \) are the respective right ascension and declination of the other end of the tail. If the entire tail lies close to the celestial equator, there would be no need to use (A.1).

By way of example, let’s say that the right ascension (RA) and declinations (Dec.) are: central condensation (RA = 02 h 05 min 21 s or 2.089 h or 31.3°, Dec. = 44.0°N); tip of tail (RA = 0 h 43 min 12 s or 0.72 h or 10.8°, Dec. = 40.0°N). In both cases, the RA is converted to degrees where each hour of RA equals 15°, each minute = 0.25° and each second = 15/3,600 = 0.004167°. In this example, the declination is already in degrees. Since the comet is north of 20°N, one uses (A.1) to determine \(\ell \).

\[\ell = \text{inv cos}\left[\sin(44.0^\circ)\sin(40.0^\circ) + \cos(44.0^\circ)\cos(40.0^\circ)\cos(31.3^\circ - 10.8^\circ)\right] \]
\[\ell = \text{inv cos}[0.6947(0.6428) + (0.7193)(0.7660)\cos(20.5^\circ)] \]
\[\ell = \text{inv cos}[0.4465 + (0.7193)(0.7660)(0.9367)] \]
\[\ell = \text{inv cos}[0.4465 + 0.5161] \]
\[\ell = \text{inv cos}[0.9626] = 15.7^\circ \]
If I had determined the length of the tail from the Pythagorean Theorem and assumed that 1° of right ascension equaled 1° of declination, I would have wound up with a length of 20.9°. However, the true length, 15.7°, is the one that must be reported.
Bibliography

Eicher DJ (1986b) 'Halley brightens one last time,' Astronomy 14 (8): 38–42.

International Astronomical Union (IAU) Circulars; several hundred between number 2700 and 9000.

International Comet Quarterly, various issues listing visual data of Comets 1P/Halley, 9P/Temple 1, 1P/Borrelly and 81P/Wild 2.

Bibliography

Shanklin J ‘The Comet’s Tail,’ various issues of this newsletter.
Tele Vue Eyepieces Brochure, Chester, NY.
Wikipedia, the free encyclopedia.
Comet 1P/Halley (Continued)

<table>
<thead>
<tr>
<th>spacecraft studies</th>
<th>82</th>
</tr>
</thead>
<tbody>
<tr>
<td>tail</td>
<td></td>
</tr>
<tr>
<td>antitail characteristics</td>
<td>91</td>
</tr>
<tr>
<td>length vs. dates</td>
<td>90</td>
</tr>
<tr>
<td>photograph</td>
<td>89</td>
</tr>
<tr>
<td>velocities, orbital</td>
<td>10</td>
</tr>
<tr>
<td>visual observations</td>
<td></td>
</tr>
<tr>
<td>brightness, 76, 78, 79</td>
<td></td>
</tr>
<tr>
<td>dimming, 79–80</td>
<td></td>
</tr>
<tr>
<td>enhancement factor, 79</td>
<td></td>
</tr>
<tr>
<td>images, 82</td>
<td></td>
</tr>
<tr>
<td>location, 81–82</td>
<td></td>
</tr>
<tr>
<td>normalized magnitude, H_{10}</td>
<td>values, 75, 77, 80</td>
</tr>
<tr>
<td>nucleus, stellar magnitudes, 81</td>
<td></td>
</tr>
<tr>
<td>perihelion, 77</td>
<td></td>
</tr>
<tr>
<td>pre-exponent factor, 78</td>
<td></td>
</tr>
<tr>
<td>reflected light, 80</td>
<td></td>
</tr>
<tr>
<td>solar phase angle, 76, 77</td>
<td></td>
</tr>
</tbody>
</table>

Comet 17P/Holmes

image, 159	
short exposures, 158	
spectrum, 200–201	

Comet 9P/Tempel 1

analysis, 133	
coma and tail	
jets, 72	
outbursts, 73	
photometric constants, 71, 72	
production rate, gas, 72–73	
deep impact (DI) mission, 2005	
coma and tail, 71	
craters, 70–71	
discovery program, NASA, 68–69	
dust plume, 70, 71	
impact flash, 70	
instruments, spacecraft/observatories, 60, 61	
nucleus, 69	
projectile, 60	
geological features and erosion	
depressions, 64, 65	
high-energy radiation, 65	
meteoroid impacts, 64–65	
scarps, 66	
nucleus	
icy dirtball, 67–68	
images, 60, 62	
layers, 68	
mass, density and color, 63	
physical and photometric constants, 61	
porosity and permeability, 62–63	
shape, 62	
orbital period, 54	
positions, 55	
projection, 2013–2019	
right ascension and declination values, 73	
opposition surge, 74	

surface temperature and coma development, 67
visual observations
apparitions, 56–57
brightness, 57–58
DC, 54
dimming, 58
enhancement factor, 59
H_1 values, 57
H_10' values, 55–56
radius, 60
volatile substances release
nature, amount and spin axis, 66
permeability, 67
slope and thermal characteristics, surface, 66–67
Comet 81P/Wild 2
analysis, 133
aperture, 45
coma
active jets, 113
dust grains, chemical make-up, 113–114
elements, 114
photometric values, 111–112
solar phase angle, 111, 113
discoverer, 105
linear fit, H_{10}' values, 47
nucleus
axis, 110–111
close-up image, 110, 111
depressions, 111
map, 112
physical and photometric constants, 109–110
size and H_1 value, 35–36
projected events, 2012–2017, 115
Stardust spacecraft, 106
tail, 114
visual observations
brightness, 107
coma radius, DC value, 107–108
enhancement factor, 109
normalized magnitude, H_{10} values, 106–107, 108
pre-exponential factor, 108
Comets
brightness (see Comet brightness)
classification
families, 10, 11
Jupiter and, 12, 13
long-period, 16–21
short-period, 12–16
Tisserand parameter (T), 10–11
definition, 1
elements, orbital (see Orbital elements)
gravity
Jupiter, 23
non-gravitational forces, 25–26
planetary perturbation, 23–24
impacts
dark spots, 49–51
spot movement, 52
Tunguska, 49
inclination, orbital
distribution, 27–29
low, 28–29
technology, 27
Kepler’s second and third laws
average comet-sun distance, 10
perturbations, 9
naming
discoverer, 3
minor planets, 4
observatory, 2–3
position measurement, 4
steps, 2
time intervals and letter designations, 1, 3
orbits
eccentricity, ellipses, 4–5
group, 6
major axis, 5, 6
orbital elements, 4
path modes, 5
uncertainty, 5–6
parameters, 26–27
parts
central condensation, 37–40
coma, 40–42
dust tail, 42–44
gas tail, 44
visible, 2
19P/Borrelly (see Comet 19P/Borrelly)
perihelion distance, 30
1P/Halley (see Comet 1P/Halley)
9P/Tempel 1 (see Comet 9P/Tempel 1)
81P/Wild 2 (see Comet 81P/Wild 2)
sources and movement
Neptune and Pluto, 21–22
Newton’s Law of Universal Gravitation, 22
Oort cloud, 22

D
Degree of condensation (DC), coma
characteristics, 142
imaging, 191
values, 143
Dust tail
comet Lulin, 43–44
comet McNaught, 43
curvature, 42
synchrones, 43
Index

E
Equinox point, 7–8

F
Field-of-view (FOV)
angular scale, 181
finders, 173
prime focus images, 176
short tails, 197
Full-width at half transmission (FWHT), 167–168

G
Gas tail length
affecting factors
scattered light, 205–206
sky transparency, 205
comet types
19P/Borrelly, 104
1P/Halley, 89–91
9P/Tempel 1, 71–73
81P/Wild 2, 114
computing in astronomical units, 199–200
graphy, dust tail
angular spread, 196
calibrated extended protractor, 197
measurements, 193–194
separation, angular, 194
times and processing techniques, 198
structure
drawing and imaging, 191–192
hydrogen changes, 193
piggy-back arrangement, 192
Gas-to-dust ratio
filters, 201–202
photoelectric photometer, 202
production rates, 200

H
Hale-Bopp approach
coma stage, 222
lightcurves, 219
Halley's comet. See Comet 1P/ Halley

I
International Comet Quarterly (ICQ), 129–130, 178

K
Kepler laws
average comet-sun distance, 10
perturbations, 9
Kirchhoff laws, 209–210

L
Light gathering power (LGP), 160

Long-period comets
comet C/2007 V13, 17, 18
families and sub-groups, 16–17
nearly isotropic (NI) family, 20–21
perihelion distances, distribution, 19
sungrazing
brightness, 20
orbital inclinations, 20
passage, 17–18
binoculars
advantages and types, 120
coatings, 126–127
exit pupil, 125
eye-relief, 123–125
FOV, 122–123
hand-held, size, 125–126
magnification and objective lens size, 121–122
roof prism and porro prism, 120–121
vignetting, 127–128
visibility factor, 125
brightness
conversion factors, 149
estimation, 148–149
characteristics, 140
color, light wavelength, 119–120
coma brightness estimation
Bobrovnikoff method, 132
goals, 133
magnitude source, 129
methods, 129–131
reverse-binocular method, 129–130
stellar magnitudes, 131
coma radius values, 142
DC value, 142, 144, 191
error sources, visual brightness, 136–137
extinction correction, 148–149
gas tail length
affecting factors, 205–206
computing in astronomical units, 199–200
geometry, 193–199
structure, 191–193
gas-to-dust ratio
filters, 201–202
photoelectric photometer, 202
production rates, 200
human eye, 117–118
images
intensity, 139
negative, 137–138
positive, 138–139
jet development, 193
lightcurve
brightness vs. time, 202
measurements, 203
photoelectric photometer, 204
nucleus
fragmentation, 189–191
rotation, 185–191
opacity measurement, 231
19P/Borrelly, 93–97
1P/Halley, 75–82
Observing comets (Continued)
photometry and lightcurves
coma and nuclear stage, 218
complete, nearly complete and
partial, 219–224
outburst stage, 219
polarization, 225
position measurement
filar micrometer and image, 184
right ascension and
declination, 182–183
stellar occultation, 185
9P/Tempel 1, 54–60
81P/Wild 2, 106–109
recovery, 231
searching
between 1780 and 1999, 226
naked-eye comet, 230
position, 228–229
sky surveys, 230–231
stellar magnitudes, 227
using binoculars, 228
shapes, 141
sky transparency
atmosphere, 145
limiting magnitudes, 145–146,
148, 149
star patterns, 146
stellar magnitudes, 146–147
spectroscopy
absorption, continuous and
emission spectra, 209–211
electronic, vibrational and
rotational transitions,
211–214
light emission and reflection,
comets, 208–209
spectra, 215–216
spectral resolution, 214–215
stellar magnitudes, 227
tail measurements, 144
value, comas, 142–143
websites, 217
Orbital elements
description, 6
determination and refinement
crash time, 9
Shoemaker-Levy 9
characteristics, 8
equinox point, 8
inclination, 8
quantities, 7–8
R
Reverse-binocular method,
129–130
S
Short-period comets
average orbital characteristics, 16
eccentricity vs. orbital period,
13, 16
families, 12
family
Chiron, 13–14
Encke, 12–13
Jupiter, 14
nearly isotropic (NI), 14–15
inclinations, 13
Solar and heliospheric observatory
(SOHO)
brightness, 18–19
naming, 3
orbital values, 21
stellar magnitude, 20
Spectroscopy
comets, light emission and
reflection, 208–209
description, 207
electronic, vibrational and
rotational transitions,
211–214
resolution, 214–215
spectra
absorption, continuous and
emission, 209–211
of comets, 215–216
T
Telescope, comet observation
atmospheric dispersion
corrector, 176
bino viewers
advantages, 175
product reviews, 175–176
eyepieces
apparent field, 167
coatings and weight, 163–164
comet magnification, 165
eye-relief, 166
focal length, 164
filters
comet magnification, 165–168
Lumicon Swan-Band, 173
minus-violet, 170
relative intensity vs.
wavelength, 170–171
transmission vs. wavelength,
172–173
finders
drawbacks, 175
types and limitations,
173–174
image scale
camera lenses, focal length,
176–177
description, 176
LGP, 159–160
telephoto lens, 178
magnification
characteristics, 158
range, 158–159
mounts
setting circles and finding
objects, 161–163
types, 160–161
Newtonian and Schmidt-
Cassegrain telescopes
lenses, 152
primary mirrors, 153
strengths and weaknesses, 154
observation/measurement
angular scale, 181–182
Cassini division, 180
observer’s contact
information, 178–179
resolution
angular separation, 154
capacity, 154–158