34. P. A. García-Sánchez, J. C. Rosales, Every positive integer is the Frobenius number of an irreducible numerical semigroup with at most four generators, Arkiv Mat. 42 (2004), 301–306.
64. J. C. Rosales, Fundamental gaps of numerical semigroups generated by two elements, Linear Algebra Appl. 405 (2005), 200–208.
68. J. C. Rosales, Numerical semigroups that differ from a symmetric numerical semigroup in one element, Algebra Colloquium 15 (2008), 23–32.
83. J. C. Rosales, P. A. García-Sánchez, Every numerical semigroup is one half of infinitely many symmetric numerical semigroups, Comm. Algebra 36 (2008), 2910–2916.
100. J. D. Sally, Cohen-Macaulay local rings of maximal embedding dimension, J. Algebra 56 (1979), 168–183.
103. T. Tamura, Nonpotent Archimedean semigroups with cancellative law, I, J. Gakugei Tokushima Univ. 8 (1957), 5–11.
List of symbols

\[\langle n_1, \ldots, n_p \rangle \] - submonoid generated by \(\{n_1, \ldots, n_p\} \), p. 1.

\(\text{Arf}(S) \) - Arf closure of the numerical semigroup \(S \), p. 25.

\(\text{Ap}(S,m) \) - Apéry set of the element \(m \neq 0 \) in \(S \), p. 8.

\(\text{Ch}(S) \) - chain associated to the numerical semigroup \(S \), p. 92.

\(\text{Ch}(X) \) - union of the chains associated to the numerical semigroups in \(X \), p. 98.

\(\text{Cong}(\rho) \) - congruence generated by \(\rho \), p. 108.

\(d_A(a) \) - greatest common divisor of the elements in \(A \) less than or equal to \(a \in A \), p. 28.

\(D(X) \) - set of all positive divisors of the elements of \(X \), p. 51.

\(\Delta(X) = \{(x,x) \mid x \in X\} \) - the diagonal of \(X \times X \), p. 108.

\(e(S) \) - embedding dimension of the numerical semigroup \(S \), p. 9.

\(F(S) \) - Frobenius number of the numerical semigroup \(S \), p. 9.

\(\text{FG}(S) \) - set of fundamental gaps of \(S \), p. 52.

\(\text{Free}(X) \) - free monoid on \(X \), p. 107.

\(\mathcal{F}(X) \) - Frobenius variety generated by the set of numerical semigroups \(X \), p. 98.

\(g(S) \) - genus (or degree of singularity) of the numerical semigroup \(S \), p. 9.

\(\mathcal{G}(\mathcal{Y}) \) - graph associated to the Frobenius variety \(\mathcal{Y} \), pp. 92, 101.

\(\mathcal{I}(S) \) - set of irreducible numerical semigroups containing the numerical semigroup \(S \), p. 47.

\(\text{im}(f) \) - image of the homomorphism \(f \), p. 106.

\(\text{Irr}(\sigma) \) - set of irreducible elements of \(\sigma \), p. 109.

\(J(S) \) - for a numerical semigroup minimally generated by \(n_1 < \cdots < n_e \) is the set \(\{\lambda_2x_2 + \cdots + \lambda_ex_e \mid \lambda_2n_2 + \cdots + \lambda_en_e \not\in \text{Ap}(S,n_1)\} \), p. 138.

\(\text{ker}(f) \) the kernel congruence of the monoid homomorphism \(f \), p. 106.

\(m(S) \) - multiplicity of the numerical semigroup \(S \), p. 9.

\(M(f) \) - monoid associated to the subadditive function \(f \), p. 58.

Maximals_{\leq}(X) - maximal elements of \(X \) with respect to the ordering \(\leq \), p. 13.

Minimals_{\leq}(X) - minimal elements of \(X \) with respect to the ordering \(\leq \), p. 13.

\(a \mod b \) - is the quotient of the division of \(a \) by \(b \);

\(a \equiv b \mod m \) means \((a - b) \mod m = 0\), p. 20.

\(n(S) \) - cardinality of the set of elements in \(S \) less than its Frobenius number, p. 15.
N(S) - set of elements in S less than its Frobenius number, p. 15.
N - set of nonnegative integers, p. 1.
o(g) - order of an element g in a group G, p. 167.
O(S) - set of numerical semigroups containing the numerical semigroup S, p. 44.
PF(S) - set of pseudo-Frobenius numbers of the numerical semigroup S, p. 13.
Q_0^+ - set of nonnegative rational numbers, p. 59.
Q(S) - quotient group of S, p. 163.
\$\mathcal{S}\$ - set of all numerical semigroups, p. 47.
\$\mathcal{S}_m\$ - set of numerical semigroups with multiplicity m, p. 58.
\$\mathcal{S}(g_1,\ldots,g_t)\$ - set of numerical semigroups not cutting \{g_1,\ldots,g_t\}, p. 47.
\$\mathcal{S}(P)\$ - set of numerical semigroups admitting a pattern P, p. 96.
S(a,b,c) - set of integer solutions to \(ax \mod b \leq cx\), p. 58.
S(A) - with \(A \subset Q_0^+\), the set of integers of the submonoid \(\langle A \rangle\), p. 59.
Sat(S) - saturated closure of the numerical semigroup S, p. 30.
\$\mathcal{S}\mathcal{F}_m\$ - set of \(m\)-periodic subadditive functions, p. 58.
SG(S) - set of special gaps of S, p. 44.
R - relation defining the R-classes of the expressions of a given element in a numerical semigroup, p. 111.
t(S) - type of the numerical semigroup S, p. 13.
\$\mathcal{V}\$ - a Frobenius variety, p. 99.
\$\mathcal{V}(A)\$ - \$\mathcal{V}\$-monoid generated by A, p. 99. Used also as a prefix to denote systems of generators and monoids relative to this variety; see Chapter 6.
Z(n) - set of factorizations or expression of n in a numerical semigroup S, p. 111.
Z_B(n) - set of factorizations or expression of n in a numerical semigroup S relative to the set of generators B, p. 111.
Index

Symbols

0-matrix 150

A

adjacent fractions 66
Apéry set 8
with respect to a set 124
Archimedean element 155
Arf closure
of a semigroup 25
of a set 25

B

Bézout sequence 61
end of a 61
length of a 61
proper 65
binary relation 106
equivalence 106
inverse relation 108

C

chain associated to a numerical semigroup 92
complete intersection 129
conductor 9
congruence
cancellative 109
diagonal congruence 108
finitely generated 108
generated by a set 108
minimal relation 110
monoid 106

D

degree of singularity 9
Dickson’s Lemma 109
directed graph 91
of all numerical semigroups 92
edges 91
path 91
vertex 91
dominant 17

E

embedding dimension 9

F

factorization 122
catenary degree 122
distance 122
greatest common divisor 122
length 122
Frobenius number 9
Frobenius variety 93
generated by a family of numerical semigroups 98

G

gap 9
fundamental 52
special 44
genus 9
gluing 124
of numerical semigroups 130
Index

graph 111
 associated to an element in a numerical semigroup 113
 connected 111
 generating tree 111
 connected component 113
directed 91
directed 111
path 111
vertices 111

I

ideal 17
 canonical 18
 maximal 17
 principal 23
 relative 17
idempotent element 155
irreducible element of a congruence 108

M

minimal presentation 111
minimal system of generators 8
modular Diophantine inequality 69
monoid 6
cancellative 109
epimorphism 6
finitely generated 6
finitely presented 108
free 107
free of units 159
half-factorial 122
hereditarily finitely generated 161
homomorphism 6
 image 106
 kernel congruence 106
 isomorphism 6
 monomorphism 6
 N-monoid 163
quasi-Archimedean 159
quotient 106
weakly cancellative 161
multiplicity 9

N

numerical semigroup 6
 acute 17
 admitting a pattern 96
 almost symmetric 55
 Arf 23
 arithmetic 88
 associated to a set of rational numbers 59
 free 133
 half-line 17
 irreducible 33
 maximal embedding dimension 20
 modular 69
 ordinary 17
 proportionally modular 59
 pseudo-symmetric 34
 saturated 28
 simple 154
 symmetric 34
 telescopic 136
 with Apéry set of unique expression 138

O

order 167
oversemigroup 44

P

pattern 96
 admissible 97
 strongly admissible 97
 presentation 108
 proportionally modular Diophantine inequality 59
 factor of a 59
 modulus of a 59
 proportion 59
 pseudo-Frobenius number 13

Q

quotient group 163
quotient of a numerical semigroup by an integer 78
quotient set 106

R

ratio 17
R-class 111

S

Saturated closure 30
semigroup 5
 Archimedean 155
 epimorphism 6
 finitely generated 6
 homomorphism 6
 isomorphism 6
 monomorphism 6
 multiple joined 155
 quotient 157
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>system of generators of a torsion free</td>
<td>6</td>
</tr>
<tr>
<td>set of expressions</td>
<td>111</td>
</tr>
<tr>
<td>strongly positive sequence</td>
<td>150</td>
</tr>
<tr>
<td>subadditive function period of a</td>
<td>58</td>
</tr>
<tr>
<td>submonoid</td>
<td>6</td>
</tr>
<tr>
<td>trivial</td>
<td>6</td>
</tr>
<tr>
<td>subsemigroup</td>
<td>5</td>
</tr>
<tr>
<td>subsemigroup generated by a set</td>
<td>6</td>
</tr>
<tr>
<td>system of generators system of a congruence</td>
<td>108</td>
</tr>
<tr>
<td>of a monoid</td>
<td>6</td>
</tr>
<tr>
<td>root</td>
<td>91</td>
</tr>
<tr>
<td>son</td>
<td>92</td>
</tr>
<tr>
<td>undirected</td>
<td>111</td>
</tr>
<tr>
<td>type</td>
<td>13</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>unique expression element</td>
<td>138</td>
</tr>
<tr>
<td>unit</td>
<td>159</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(\gamma)-monoid</td>
<td>99</td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>weight</td>
<td></td>
</tr>
<tr>
<td>modular Diophantine inequality</td>
<td>75</td>
</tr>
</tbody>
</table>