REFERENCES

Allen, H.E. (2002a) (Ed.) Bioavailability of Metals in Terrestrial Ecosystems: Importance of partitioning for bioavailability to invertebrates, microbes, and plants, 158 pp., SETAC.

References

Di Toro, D.M., McGrath, J.A., Hansen, D.J. and Berry, W.J (2002) Predicting the acute and chronic toxicity of metals in sediments using organic carbon normalized SEM and AVS. HydroQual, Inc., USA

FAMEST (Fundamental Aspects of Metal Speciation and Transport in Metal-Contaminated Soils and Aquifers) (2000) EU FP4 project reference ENV4-CT97-0554

and ways following DIN EN ISO 14024. German Environmental Protection Agency, Report No. FKZ 200 95 308/04, 121 pp. (in German)

References

References

Ruby, M.V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., Mosby, D.E., Casteel, S.W., Berti, W., Carpenter, M., Edwards, D., Cragin,

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS</td>
<td>Atomic Absorption Spectrometry</td>
</tr>
<tr>
<td>ACC</td>
<td>Acid Consuming Capacity</td>
</tr>
<tr>
<td>ACR</td>
<td>Acute-Chronic Ratio</td>
</tr>
<tr>
<td>AE</td>
<td>Assimilation Efficiency</td>
</tr>
<tr>
<td>AES</td>
<td>Atomic Emission Spectrometry</td>
</tr>
<tr>
<td>APP</td>
<td>Acid Producing Potential</td>
</tr>
<tr>
<td>ASV</td>
<td>Anodic Stripping Voltametry</td>
</tr>
<tr>
<td>AVS</td>
<td>Acid Volatile Sulphide</td>
</tr>
<tr>
<td>BAF</td>
<td>Bioaccumulation Factor</td>
</tr>
<tr>
<td>BCR</td>
<td>EC Bureau for Chemical Reference Materials</td>
</tr>
<tr>
<td>BET-method</td>
<td>method to assess the specific surface area of solids by nitrogen absorption</td>
</tr>
<tr>
<td>BIOMET</td>
<td>Bacterial Metal-lux Biosensor</td>
</tr>
<tr>
<td>BLM</td>
<td>Biotic Ligand Model</td>
</tr>
<tr>
<td>C&D</td>
<td>Construction and Demolition Waste</td>
</tr>
<tr>
<td>CA</td>
<td>Component Additivity approach</td>
</tr>
<tr>
<td>CBC</td>
<td>Copper Binding Compound (co-factor protein)</td>
</tr>
<tr>
<td>CCM</td>
<td>Capacitance Model</td>
</tr>
<tr>
<td>C_E</td>
<td>effective concentration</td>
</tr>
<tr>
<td>CEC</td>
<td>Cation Exchange Capacity</td>
</tr>
<tr>
<td>CEN TC</td>
<td>European Committee for Standardization Technical Committee</td>
</tr>
<tr>
<td>CRM</td>
<td>Certified Reference Material</td>
</tr>
<tr>
<td>CSV</td>
<td>Cathodic Stripping Voltametry</td>
</tr>
<tr>
<td>DDL</td>
<td>Diffused Doubler-Layer model</td>
</tr>
<tr>
<td>DGT</td>
<td>Diffusive Gradients in Thin Films method</td>
</tr>
<tr>
<td>DIN</td>
<td>Deutsche IndustrieNorm</td>
</tr>
<tr>
<td>DLM</td>
<td>Diffusive Layer Model</td>
</tr>
<tr>
<td>DM</td>
<td>Dry Matter</td>
</tr>
<tr>
<td>DOC</td>
<td>Dissolved Organic Carbon</td>
</tr>
<tr>
<td>DOM</td>
<td>Dossolved Organic Matter</td>
</tr>
<tr>
<td>DPV/SV</td>
<td>Differential Pulse Voltametry/Stripping Voltametry</td>
</tr>
<tr>
<td>DS</td>
<td>Dry Substance</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>DTMP</td>
<td>Degree of Trace Metal Pyritization</td>
</tr>
<tr>
<td>DTPA</td>
<td>DiethyleneTriaminePentaAcetic acid</td>
</tr>
<tr>
<td>dw</td>
<td>dry weight</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>EC50</td>
<td>Effect Concentration to 50% of organisms</td>
</tr>
<tr>
<td>EDS</td>
<td>Energy Dispersive Spectroscopy</td>
</tr>
<tr>
<td>EDTA</td>
<td>EthyleneDiaminetetraAcetic acid</td>
</tr>
<tr>
<td>EDXA</td>
<td>Energy Dispersive X-ray Analysis</td>
</tr>
<tr>
<td>E_h</td>
<td>redox potential</td>
</tr>
<tr>
<td>ELV</td>
<td>End-of-Life Vehicles</td>
</tr>
<tr>
<td>EM</td>
<td>Electrophoretic Mobility</td>
</tr>
<tr>
<td>EqP</td>
<td>Equilibrium Partitioning</td>
</tr>
<tr>
<td>ERM</td>
<td>Effective Range Mean Concentration</td>
</tr>
<tr>
<td>ESR</td>
<td>Electron Spin Resonance</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>EXAFS</td>
<td>Extended X-ray Absorption Fine Structure analysis</td>
</tr>
<tr>
<td>FIAM</td>
<td>Free Ion Activity Model</td>
</tr>
<tr>
<td>f_{oc}</td>
<td>Organic Carbon fraction in the sediment</td>
</tr>
<tr>
<td>GC</td>
<td>Generalized Composite approach</td>
</tr>
<tr>
<td>GEMS</td>
<td>Guidelines for Environmental Monitoring Systems</td>
</tr>
<tr>
<td>GSIM</td>
<td>Gill Surface Interaction Model</td>
</tr>
<tr>
<td>HC50</td>
<td>Hazardous Concentration to 50% of organisms</td>
</tr>
<tr>
<td>HDMT</td>
<td>Helmke-Donnan Membrane Technique</td>
</tr>
<tr>
<td>HMW</td>
<td>High Molecular Weight</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>HW</td>
<td>Hazardous Waste</td>
</tr>
<tr>
<td>ICA</td>
<td>International Copper Association</td>
</tr>
<tr>
<td>ICMM</td>
<td>International Council on Mining and Metals</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>Inductively Coupled Plasma - Mass Spectrometry</td>
</tr>
<tr>
<td>ICSG</td>
<td>International Copper Study Group</td>
</tr>
<tr>
<td>IPCS</td>
<td>International Programme on Chemical Safety</td>
</tr>
<tr>
<td>IRB</td>
<td>Iron Reducing Bacteria</td>
</tr>
<tr>
<td>ISE</td>
<td>Ion-Selective Electrode</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>IW</td>
<td>Industrial Waste</td>
</tr>
<tr>
<td>IW</td>
<td>Interstitial Water</td>
</tr>
<tr>
<td>IWTU</td>
<td>Interstitial Water Toxic Unit</td>
</tr>
<tr>
<td>kBq</td>
<td>kilo Bequerel (measure of radioactivity)</td>
</tr>
<tr>
<td>k_d</td>
<td>distribution coefficient</td>
</tr>
<tr>
<td>k_{OC}</td>
<td>Organic Carbon based partition coefficient</td>
</tr>
<tr>
<td>kt</td>
<td>kilo (thousand) tons</td>
</tr>
<tr>
<td>KTH</td>
<td>Royal Technical University, Stockholm</td>
</tr>
<tr>
<td>LA_{50}</td>
<td>Lethal Activity to 50% of organisms</td>
</tr>
<tr>
<td>LBRL</td>
<td>Lowest Biological Risk Level</td>
</tr>
<tr>
<td>LC50</td>
<td>Lethal Concentration to 50% of organisms</td>
</tr>
<tr>
<td>LOEC</td>
<td>Lowest-Observed-Effect Concentration</td>
</tr>
<tr>
<td>LOI</td>
<td>Loss On Ignition</td>
</tr>
<tr>
<td>Me^{n+}</td>
<td>free metal ion concentration</td>
</tr>
<tr>
<td>MFA</td>
<td>Material Flow Analysis</td>
</tr>
<tr>
<td>MFG</td>
<td>MiljöforskarGruppen</td>
</tr>
<tr>
<td>MINTEQA2</td>
<td>Water-Ligand Geochemical Computer</td>
</tr>
<tr>
<td>MINTEQ</td>
<td>Models</td>
</tr>
<tr>
<td>MITF</td>
<td>Metal Information Task Force</td>
</tr>
<tr>
<td>MSW</td>
<td>Municipal Solid Waste</td>
</tr>
<tr>
<td>Mt</td>
<td>Million tons</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular Weight</td>
</tr>
<tr>
<td>NEM</td>
<td>Non-Electrostatic Model</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organisation</td>
</tr>
<tr>
<td>NOEC</td>
<td>No-Observed-Effect Concentration</td>
</tr>
<tr>
<td>NOM</td>
<td>Natural Organic Matter</td>
</tr>
<tr>
<td>NPK</td>
<td>Nitrogen-Phosphorus-Pottasium mineral fertilizer</td>
</tr>
<tr>
<td>OC</td>
<td>Organic Carbon</td>
</tr>
<tr>
<td>OCEE</td>
<td>Optimal Concentration Range for Essential Elements</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Cooperation and Development</td>
</tr>
<tr>
<td>OM</td>
<td>Organic Matter</td>
</tr>
<tr>
<td>PAH</td>
<td>PolyAromated Hydrocarbons</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>PCB</td>
<td>PolyCyclic Biphenolic Compounds</td>
</tr>
<tr>
<td>PDI</td>
<td>Predicted Daily Intake</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PEC</td>
<td>Predicted Environmental Concentration</td>
</tr>
<tr>
<td>pH<sub>IEP</sub></td>
<td>isoelectric point</td>
</tr>
<tr>
<td>pH<sub>PZC</sub></td>
<td>point-of-zero-charge</td>
</tr>
<tr>
<td>pK</td>
<td>dissociation constant</td>
</tr>
<tr>
<td>PLS</td>
<td>Partial Least Squares projection</td>
</tr>
<tr>
<td>PNEC</td>
<td>Predicted No-Effect Concentration</td>
</tr>
<tr>
<td>POM</td>
<td>Particulate Organic Matter</td>
</tr>
<tr>
<td>PW</td>
<td>Pore Water</td>
</tr>
<tr>
<td>ROS</td>
<td>Refractory Organic Substances</td>
</tr>
<tr>
<td>RT</td>
<td>Residence Time</td>
</tr>
<tr>
<td>SC</td>
<td>Surface Complexation</td>
</tr>
<tr>
<td>SCDA</td>
<td>Scandinavian Copper Development Association</td>
</tr>
<tr>
<td>SEC</td>
<td>Size Exclusion Chromatography</td>
</tr>
<tr>
<td>SEK</td>
<td>Swedish Crowns</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>SEM</td>
<td>Simultaneously Extracted Metals</td>
</tr>
<tr>
<td>SEP</td>
<td>Sequential Extraction Procedure</td>
</tr>
<tr>
<td>SEPA</td>
<td>Swedish Environmental Protection Agency</td>
</tr>
<tr>
<td>SFA</td>
<td>Substance Flow Analysis</td>
</tr>
<tr>
<td>SGU</td>
<td>Swedish Geological Survey</td>
</tr>
<tr>
<td>SIMS</td>
<td>Selective Ion Mass Spectroscopy</td>
</tr>
<tr>
<td>SMAV</td>
<td>Species Mean Acute Value (geometric mean of LC<sub>50</sub> values for a given species)</td>
</tr>
<tr>
<td>SOFIE</td>
<td>Sediment Or Fauna Incubation Experimental systems</td>
</tr>
<tr>
<td>SOM</td>
<td>Soil Organic Matter</td>
</tr>
<tr>
<td>SQC</td>
<td>Sediment Quality Criteria</td>
</tr>
<tr>
<td>SQG</td>
<td>Sediment Quality Guideline</td>
</tr>
<tr>
<td>SQV</td>
<td>Sediment Quality Value</td>
</tr>
<tr>
<td>SRB</td>
<td>Sulphate Reducing Bacteria</td>
</tr>
<tr>
<td>SS</td>
<td>Sewage Sludge</td>
</tr>
<tr>
<td>SSD</td>
<td>Species Sensitivity Distribution</td>
</tr>
<tr>
<td>STAF-Europe</td>
<td>Stocks and Flows Europe</td>
</tr>
<tr>
<td>STP</td>
<td>Sewage Treatment Plant</td>
</tr>
<tr>
<td>SWAMP</td>
<td>Sediment Water Algorithm for Metal Partitioning</td>
</tr>
<tr>
<td>Tc</td>
<td>soil-plant transfer coefficient</td>
</tr>
<tr>
<td>TDI</td>
<td>Tolerable Daily Intake</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>TI</td>
<td>Toxicity Index</td>
</tr>
<tr>
<td>TLM</td>
<td>Triple Layer Model</td>
</tr>
<tr>
<td>TOC</td>
<td>Total Organic Carbon</td>
</tr>
<tr>
<td>TRS</td>
<td>Total Reducible Sulphide</td>
</tr>
<tr>
<td>TSS</td>
<td>Total Suspended Solids</td>
</tr>
<tr>
<td>TU</td>
<td>Toxic Unit (1 TU = 100/EC50)</td>
</tr>
<tr>
<td>UNESCO</td>
<td>United Nations Educational Programme</td>
</tr>
<tr>
<td>USD</td>
<td>US Dollar</td>
</tr>
<tr>
<td>USEPA</td>
<td>US Environmental Protection Agency</td>
</tr>
<tr>
<td>WEEE</td>
<td>Waste from Electrical and Electronic Equipment</td>
</tr>
<tr>
<td>WHAM</td>
<td>Windermere Humic-Aqueous Model</td>
</tr>
<tr>
<td>WHAM-SCAMP</td>
<td>geochemical speciation code</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>XANES</td>
<td>X-ray Absorption Near-Edge Structure analysis</td>
</tr>
<tr>
<td>XAS</td>
<td>X-ray Absorption Spectrometry</td>
</tr>
</tbody>
</table>
Index

A

absence of metal bioavailability and toxicity to benthic biota 210
absorption spectroscopic approaches 202
acclimation 332-336, 363
acclimation-induced sensitivity 336
accumulation bottoms 65-67
accumulation of copper in soils 119
acid digestion 166, 171, 199, 239
acid neutralizing capacity 164, 167
acid production 256
acid sulfate soils 254
acid-consuming capacity 170
acid-producing potential 169
acid-volatile sulphide (AVS) 170-196
activation and repression of gene transcription 336
acute Cu toxicity for D. magna 284
acute Cu-BLM for D. magna 283
acute toxicity 9, 186, 275, 278, 280, 285-286, 291, 293, 297-303, 312, 329, 349-350, 360-361, 368
acute toxicity of nickel 302
acute Zn-BLM for rainbow trout, fathead minnow and Daphnia magna 283
acute-chronic ratio (ACR) 296
adaptive physiological regulation mechanisms 223, 226
adaptive uptake mechanism 270
additivity of single observed toxic effects 241
adenosine triphosphate (ATPase) 266
adsorption edge 218, 222
adsorption experiments 159, 218, 221, 257, 286
adsorption isotherms 221, 249, 262
adsorption kinetics between Cu and surface hydroxyl sites on soil oxides and clay minerals 247
adsorption sites 158
adsorption to surface membranes 194
aerobic sediments 170, 311, 318
Ag 97, 163, 185, 223, 224, 275-277, 286, 300
age distribution of perch 130
aging 11-12, 196, 204, 224-225, 236, 254-256, 320-324, 329, 359
alabandite 203
alfalfa Medicago sativa 239-240, 258
algal cells 205, 286, 301
Algal Growth Inhibition Test 78
alkalinity 78, 98, 101, 102, 104, 253-254, 278, 284, 299, 302
alloy metals 16
American oysters Crassostrea virginica 287
ammonia 204
amorphous FeS 188, 190, 210
amphipod Ampelisca abdita 179, 186
amphipod Hyalella azteca 180
amphipods 174, 178, 292, 308-311, 314-320
anaemia 336
anaerobic sediments 170, 308, 318
animal behaviour 172, 194
animal manure 44
anode mud 30
anodic stripping voltametry 161, 168
antagonistic effects 17, 121-222, 279
antagonistic effects of Ca$^{2+}$ and Mg$^{2+}$ on metal toxicity 279
antagonistic interaction between Cd and Zn 226
anthroposphere 2, 4, 15, 18, 49, 52-55, 60-61, 67, 71, 95, 98, 136, 372
antifouling treatments 43
antimony 86, 89, 96
application rate 8, 99, 112-120, 259, 262
aquatic macrophyte (crop) Euryale ferox Salisb. 268
aquatic sediments food source 215
aqueous speciation 150-152, 158
aqueous speciation and bioavailability of Zn 152
aquifer 49, 60-162, 347
Arenicola marina (deposit feeder) 228
artefact of the used SEM/AVS procedure 208
artefactual oxidation 210
asselids cadmium concentration 215
assimilation efficiency (AE) 222, 223
association and dissociation rate constant of the ML complex 156
atamcane 76
atmospheric deposition 52, 56, 66, 81, 193, 261
Auger spectroscopy 220
authigenic minerals 197
availability of Zn, Ni and Cd to ryegrass (Lolium perenne) in sewage-sludge treated soils 262
AVS normalisation 176, 180, 318
AVS oxidation 196
AVS variations with sediment depth 195
AVS-approach 187
Aznalcollar mine tailing spill 161
azuurite 102
back-flow 42
background concentration 132, 272, 296, 327, 336
background level 12, 64, 137, 274, 322
background levels 5, 62, 124, 126, 173, 271-274, 298, 332
bacterial biosensors, i. e. *Escherichia coli* and *Pseudomonas fluorescens* 245
bacterial cell walls 205-206
bacterial reduction of Fe and Mn oxides in a Ferrasol 253
bacterial strain (*Ralstonia eutropha* AE2515) as highly selective for Ni 271
bacterial surfaces 206
benthic colonisation 182
benthic fauna 11, 127-128, 307, 313, 316, 319
benthic invertebrates 178, 180, 187, 194, 230, 311, 320, 347, 363
bidentate inner-sphere complex 256
binding capacities of Cu 175
binding characteristics of BLs 286
binding constants for metal-gill interactions for one species can be generalised to other fish species 299
binding constants, log K_{MeBL}, for metal-gill interactions 300
binding phases 158, 163, 174, 176-177, 180, 187, 189, 191, 197, 228
bioaccessibility 141, 229
bioaccessible fraction 267
bioaccumulation 91, 94, 141-142, 163, 194, 213, 215, 222-223, 227, 310, 312, 317-318, 350, 353, 377
bioaccumulation factor 91, 96
bioassay 175, 282, 294, 327, 331, 348
bioavailability concept 289
bioavailability modifying factors 305
bioavailability of sediment-bound trace metals 310, 319
bioavailability parameters 287, 305
bioavailability parameters for chronic toxicity of zinc to rainbow trout, daphnids and algae 287
bioavailability profiles 200
bioavailability-modifying parameters in soils 324
bioavailable fraction 12, 17, 83, 133, 138, 276, 321-325, 328-229
bioavailable zinc 329
bioconcentration factors 330, 345
bioindicator 271
biological factors 142, 222, 225, 309
biological kinetics 207, 211
biological surfaces 201, 287
biological templates 206
biomimetic approach 228
biomonitoring 269
biosensor 78, 83, 152, 271, 373
biotic ligand 9, 186, 275, 280-281, 297-303, 341, 348-349, 361, 368
Biotic Ligand Model 3, 9, 17, 186, 275, 279, 281, 289, 291, 349, 354, 375, 379
bioturbation 170, 183, 206-208, 211, 231, 271, 308-320
biouptake 156-157, 216-217, 223
bivalve Corbicula fluminea as an indicator of uptake of metals from the water column 320
bivalve Mytilus edulis 224
bivalves 172, 194, 225-226, 269-271, 287, 310-312, 320, 344, 347, 351, 373, 376
BL binding constants 285-286, 299-300
BLM can explicitly account for variation in toxicity 299
BLMs for crustaceans (Daphnia magna, Ceriodaphnia dubia) and fathead minnow 283
bluntnose minnows 296
body concentrations 213, 270, 336
bottom currents 183
bottom-dwelling fauna 127
brochantite 76, 102
buffering capacity 81, 256, 265
building and demolition waste 45
building applications 73
burrowing mode 194
burrowing organisms 11, 172, 183, 195, 206-207, 213

C

Ca and Mg competition 159

CaCl$_2$-extractable zinc from artificial soils 329
cadmium 5-6, 11, 16, 27, 41-42, 47-51, 117, 123, 170, 174-176, 182, 272, 277, 280, 301, 310, 317, 330, 343, 346-352, 357, 360, 365-369, 371, 375-377
calcite 197
capacitance model 218, 221
capacity of organisms to adapt to certain trace metal levels 269
Capitella capitata 186
cathode copper 30
cathodic stripping voltametry 160
Cd fluxes in the soil solution 262
CdS 177, 188-202, 207-210, 317
CEC 260, 268, 325, 329, 332, 379
cellular iron metabolism 336
cellular respiration 336
chalcopyrite 189
chemical equilibrium models 280
chemical equilibrium models 167
chemical extractability 310
chemical extraction 161-168, 198-202, 223, 241, 261-264, 347
chemical sorption 169
Chironimus riparius 186, 320
Chironomus tentans 186
chloro-complexes 160
Index

chromium speciation 151
chronic Cu BLM 297
chronic effects 186, 287, 326, 372
chronic toxicity of zinc to the mottled sculpin (Cottus bairdi) in soft water 304
chronic toxicity to copper 295
chronic toxicity to D. magna of copper and zinc 283
cinnabar 189
cladoceran taxonomic group 296
clam Ruditapes philippinarium 269
cobalt 280, 301
coho salmon (Oncorhynchus kisutch) 296
colloidal complexation 269, 270
colloidal metal-bearing particles 205-206, 270
colloidal bound metals 140
colloid-bound metals 159, 270
community sensitivities 336
competition between metal ions and cations and hydrogen for binding sites on the biological surface 285
competitive adsorption 11, 158, 234, 236, 333
competitive ligand exchange 159
complex stability constants 154
Complexation 156, 169, 382
complexation equilibria 150, 159, 214
complexation of metal ions 157
complexation of metals with colloidal organic matter 269
component additivity’ (CA) approach 219
compost 249, 261-265
concentrations of nickel in gills 285
concept of additivity 150, 158
concrete 7, 45, 49, 58, 73, 75, 79, 80, 87, 344
conditional binding constants of cupric ions to the biotic ligands (BL) in gill tissue of both fish and daphnids 291
conditional complex formation constant (log K_{cond}) 162
conditional stability constants 150, 157, 301, 304
connective tissue biosynthesis 336
construction and demolition waste 33, 351
consumption of nickel 22
copper accumulation in these soils 119
copper complexation capacity 294
copper cycles 28, 38, 352
copper deficiencies 109-110
copper exposure 301-302, 371, 376
copper loading 8, 118-119
copper ores 29-30
copper pipes 51, 101, 105
copper production 3, 21-22, 28, 35
copper roofs 7, 58, 77-79, 364
copper sensitivity in aquatic organisms 292
copper solid waste categories 33
copper solubility 102-104
copper speciation in the drinking-water 104
copper toxicity 276-278, 282, 285, 288-290, 293-294, 297-300, 326-327, 348-349, 353, 368
copper waste 37
copper(II)oxide 102
coprecipitation 248, 255-257
coprecipitation with Fe
(hydr)oxides 256
corrosion 4, 7, 19, 43-44, 58, 71-
76, 80-85, 100-105, 132-133,
148, 333, 343-344, 353-361,
364-365, 370
corrosion products 72, 75-76, 80
corrosion rate 73, 81
coulombic effects 219
coupled diffusion of free and
complexed Zn 157
covellite 189
Cr(III)/HS complexes 154
Cr(III)-ROS fractions 153
critical biotic ligand concentration
186, 276, 280, 286, 299, 300
critical fraction of BL sites 286
critical leaf tissue concentration of
zinc 328
critical total Cu levels in soils
259
critical copper concentration in
plant tissue 326
critical metal concentrations 324
crop yields 8, 99, 110, 115, 119,
261
crops 111, 326
crustacean (Mysidopsis intii) 303
crustaceans (Daphnia magna,
Ceriodaphnia dubia) 283
Cryogenic Scanning Electron
Microscopy 197
Cs-137 inventories 66
Cu accumulation in fish gills 269
Cu adsorption affinity constants
269
Cu binding compound/cofactor
CBC 248
Cu binding sites (ligands) 284
Cu bioavailability 200, 228, 244,
294
Cu deficiency 261
Cu exposure 229, 320
Cu phytotoxicity 244
Cu regulation capacity 271
Cu toxicity 228, 264, 275, 278,
284, 294, 325-326
Cu(II)-ROS complexes 153
Cu/HS complexes 154
Cu-binding constants of the
sulphide 229
CuCO3 9, 98, 102, 285, 291, 300
Cu-deficient soils 261
CuOH+ 9, 284-285, 291, 300
CuOH+ toxicity 285
cupric ion 72, 78, 79, 98, 102-
105, 258, 260, 275, 291, 300,
323, 327
cupric sulfate 261
cupric-ion-specific electrode 323
cuprite 76
cyanobacteria 260

d
Daphnia magna 9, 276, 283-291,
294-295, 297-307, 344, 348,
354, 363, 368, 376
daphnids 9, 178, 276, 285, 287,
288, 291, 294, 295, 305, 306,
349
deficiency 2, 12, 13, 18, 99, 109,
110, 120, 237, 242, 261, 324,
333, 334, 338, 339
dehydratation rate constant k_W 157
denitrification 118, 259, 261
depletion of metals 237
deposit- and suspension feeding
animals 215
deposit-feeding lugworm
Arenicola marina 319
deposit-feeding peanut worm
Sipuncula nudus 227
desorption from surfaces 207, 213
desorption of metals 225
desorption rates 321
DGT 12, 152, 172, 196, 216, 238, 242-244, 365, 379
DGT metal flux 243
DGT-labile species 152, 238, 244
diagenetic processes 183
dialysis 150, 168, 183, 216
diatom frustules 205
dietary copper 288
dietary routes 330
dietary uptake 9, 194, 225, 276, 329
Differential Pulse Voltametry / Stripping Voltametry 156
diffuse double-layer model 218, 219, 221
diffusion and stability coefficients 216, 157
diffusional and consecutive transport to roots 242
diffusional transport of metals 217
digestion methods 199
digestive physiology 223, 228, 229
digestive protease activities 319
digestive systems 310, 319
disappearance of herbivorous insects on zinc-tolerant plants 328
discrete metal or ligand species of solid surfaces 201
dissociation of complexes 214, 216
dissociation of precipitated ligands 213
dissolution kinetics 171, 192
dissolution of Fe and Mn oxyhydroxides 213
dissolved metal pool 207, 213, 234
dissolved metal species 140
dissolved metal sulphide complex stabilities 155
dissolved organic matter (DOM) 11, 159, 216, 234, 235, 236
dissolved sulfides 317
dissolved sulphide (HS⁻) 204
distribution coefficients 150, 221, 232, 236, 347
dose-response curves 333
dose-response relationships 280
dredging 200, 207
drinking water 7, 52, 98, 100-105, 160
Dutch Maximum Permissible Concentration 47
dystrophic lagoon sediment 232

E

early sediment diagenesis 163, 193, 218
earthworm *Eisenia fetida* 241, 328
EC₅₀ 78, 200, 245, 284, 288, 297-298, 305-306, 328, 333, 380, 383
ecological relevance and effectiveness of the test procedures 336
ecological risk analysis 94
ecotoxicity tests 324
ecotoxicological risk 47, 323
EDTA-extractable Cu 244
effect of sludge processing 263
effect of variation in water chemistry on the toxicity of metals to aquatic organisms 282
effective concentration (C_E) concept 238, 242
E_p profiles 231
Eisenia fetida 331
electrical double layers 221
electrochemically labile 237
electrolytic refining 30
Electron Microscopy 205
Electron Spin Resonance (ESR) 248, 256
Electrophoretic Mobility 256
electrostatic effects 220
electrostatically weakly bound metals 239
element-specific detectors 150
embryonic malformations 308, 318
end-of-life vehicles 34
Energy Dispersive Spectroscopy 197, 201, 205, 380
environmental risk 1-2, 13, 97, 123, 133-134, 144, 199, 236, 276-277, 290, 309, 319, 356
enzyme function 319
EqP approach 173, 174, 176, 178 equilibrium partitioning (EqP) 173, 177, 194, 205, 223, 325
ERM ratio 184
essentiality of copper 336
estuarine water 159
EU permitted metal loading rates 106
European copper cycle 27, 33
European limit values established for agricultural soils 260
eutrophication 319
EXAFS 202-203, 249, 256, 369, 380
exchangeable metals 162, 268
exposure of soil and sediment organisms 266
exposure time 224-225
Extended X-ray Absorption Fine Structure’ (EXAFS) 202
extracellular adsorption 301
extracellular structures 201, 206
extractability/leachability 200
extractants 227
extraction efficiency 168, 171, 189, 192, 197
exudates 242, 301, 326

F

Falun Copper Mine 4, 5, 120, 121, 125, 126
fathead minnow (Pimephales promelas) 282-283
Fe and Mn oxyhydroxides 140, 145, 231, 254
Fe and S redox cycle 252
Fe oxyhydroxide 158, 192, 206, 253
feces 268
feed additives 236
feeding behaviour 10, 194, 266, 270, 307, 309, 310
ferrihydrite 219-220, 361
ferromanganese oxide 268
fertilisers 110, 114-115, 236, 261
FIAM 213-216, 242, 278, 280, 284, 380
fibrils 205, 206
filter feeders 207, 287-288
Index

fine-scale sampling 196
fine-tuned vertical distribution of bio-available metals 182
fish (Atherinopsis affinis) 303
fish fauna 129
fish gills 265, 278, 280, 283, 304, 362, 366
fish species (Pimephales promelas) 297
flash smelting 30
flows and stocks 26, 40, 41, 42
flows of copper 37
flux-determining 149, 156-157, 214-216
fluxes 2-4, 12, 16-18, 49-60, 65-67, 71, 76, 98, 120, 123, 133, 238, 243, 262, 312, 341
fodder 45, 47
Folsomia candida 331
food route 310, 319
formation of insoluble sulphide coatings 209
formation of surface coatings 211
fraction of binding sites in gills 291
fraction of binding sites occupied by zinc to produce 50% mortality 306
franklinite 203, 257
free and exchangeable Cu and Ni pool 242
free Cu²⁺ activity 236, 244
free Cu²⁺ levels in rivers 155
free ion activity model 214-215
free metal pools 235
free nickel and zinc ions 330
free radical defence 336
free sulphides 155, 232
free, hydrated Zn(II) ions 72, 83
free, labile and nonlabile pools of Cu in soils 245
freshwater ciliates 271, 302, 360
functional groups on the cell surface 247-249

G
galena 189
galvanized steel 7, 72, 75, 82
galvanized transmission towers 331
gammarid amphipod Paramoera walkeri 292
gastro-intestinal tract 223
GEMS database 307
generalized composite’ (GC) approach 219
genes producing proteins involved in ionoregulation and/or accumulation and sequestering of Cu 296
genetic adaptation 129, 333-335
genetic adaptation of freshwater ciliates 228
gill background in fathead minnow 299
gill copper binding as a constant predictor of toxicity 283
gill copper concentration 299
gill route 320
goethite 192, 219, 220, 229, 247, 248, 253-256
gold 89, 96, 121
green alga (Pseudokirchneriella subcapitata) 283, 287, 294, 305, 394
Metals in Society and in the Environment

increased metal adsorption and decreased extractabilities with time 256
indicator elements 272
industrial waste 34, 45
influence of pH 235, 327
ingestion 172, 194, 227, 270, 287, 310
inhibitory effects of copper 296
inner hydration shell 157
inner-sphere complexes 204, 247-248
inorganic ion pairs 235
insect larvae 178
insects 226, 296, 328
interactions at the site of toxic action 279
interactions between fish gill and metals, hydrogen, and cations 280
inter-metallic interactions 264
internal metal load 270
internal regulation 318
interstitial (pore-)water concentrations 173
interstitial water toxic units” (IWTUs) 176
intracellular uptake 301
in-vitro extraction tests 267
ion-exchange 169, 212, 244, 256
ion-selective electrodes 166, 168, 216
iron reducing bacteria 253
irreversible adsorption 254, 255
irrigation 226
isoelectric point (pHIEP) of minerals 220
isotope dilution technique 153
IW-to-LC50 ratio 179
IWTUs 176, 179, 180

greigite 188-190, 210
Guadíamar river (Spain) 161
gut fluids 225, 228, 229, 310, 319
gut juice extraction 222-223, 227
gut ligand concentration 230
gut residence time 225

H

haemocyanin 337
haemoglobin 336, 337

hard clam (Mercenaria mercenaria) 310
hardness 159, 277-279, 283-284, 287, 290-294, 299, 302, 354
hardness normalisation 295
hazardous concentration 324
hazardous waste 34
HCl extraction efficiency 188
heat exchangers 7, 57, 101

Helisoma spp 186
Henriksdal 56-59

heterotrophic nitrogen fixation 117
Hexagenia spp 320
high affinity binding site on the oxide surface 257
high affinity Zn1 sites 250
high-affinity Cu binding site 247
histidine
Cu binding ligand 228-229
homeostasis 109, 278, 333-335
humic substances 140, 147, 153, 205, 222, 224, 248, 262, 361
Hyalella azteca 186, 320, 344
hydrolysis constants 221

I

immission 43-44, 48
immobilization of metals 125
J
jarosite (K-Fe-SO₄-OH mineral) 254

K
kₐ-approach 236
kₐ-values 150, 162, 232, 235, 236, 262
kinetic stability 153-154, 361
kinetically labile solid phase pool of metals 244
kinetically stable metal complexes 149

L
LA₅₀ value 286, 299-300, 303
labile fraction 224
labile metal complexes 149, 214
labile metal pool 12, 234, 238, 243, 245
labile metal species 11, 157, 217, 238
labile sulphides 169
lability of metals 236
laboratory bioassays 259, 324, 327
lack of selectivity 197
lack of toxicity 184
Lake Runn 122-131
Lake Siljan 128
landfill leachates 162
landfill sites 43-44
landfills 5, 26, 29-30, 38, 42, 53, 55, 87, 161
Langmuirian-type adsorption 217
LC₅₀ of copper 283
LC₅₀ sediment concentration 185
Lepidium heterophyllum (pepperwort) 244
lepidocrite 192
lipid permeation 266, 270
lipophilicity 266
London Metal Exchange 22
long-term mobility of Cu 261
low affinity Zn-sites 249
lowest biological risk xvi, 143
lowest observed no-effect concentration in field soils 259
Lumbriculus variegates 186

M
Macoma balthica 225
mackinawite 188, 189, 190, 193, 210
macrobenthic organisms 314
macrobenthic species assemblages 269
malachite 102
manure 44-47, 110, 236-237, 261, 264, 355
marine (Dunaliella sp.) and freshwater alga (Scenedesmus sp.) 301
marine alga Emiliania huxleyi 301
marine bivalves (green mussel) Perna viridis 269
mass balances 50, 261, 348
mass flow 56, 326
Materials Flow Analysis (MFA) 26
mathematical models 40
Maximum Tolerable Concentration (MTC) of zinc in soft inland waters 291, 304
maximum trace metal concentrations in sludges in the EU 107
mayfly species Hexagenia rigida 320
membrane permeability 292
membrane stability 338
membrane transport proteins 270
mercury 1, 27, 51, 117, 174, 191, 272, 310, 316, 362
metabolically available metal 336
metal accumulation in aquatic invertebrates 336
metal assimilation efficiencies 226
metal-contaminated anoxic sediments 314
metal cycles 3, 21, 25, 27
metal deposition pattern 66
metal dissolution 204, 249
metal loads 66-68, 106-107, 196, 259, 265
metal mobility 19, 152, 161, 235, 255, 263, 367
metal release rate 239
metal retention by ferric hydroxide 248
metal runoff 72, 74
metal sorption ‘continuum’ 256
metal speciation in sewage sludge or soils 264
metal speciation studies in groundwaters 160
metal stock 51, 52, 55, 56
metal supply from solid phases 242
metal uptake in the crops 114
metal-biotic ligand (metal-BL) complex 280
metal-EDTA complex 160
metal-fulvic acid complexes 322, 330
metallic Zn dust 263
metals adsorbed to the surface of AVS minerals possess different reaction kinetics than metals coprecipitated within the AVS matrix 193
metals in soils 232
metastable Fe oxihydroxides 192
microbial assays 322, 330, 333
microbial biosensors 271
microbial community 259
microenvironment 194, 285, 366, 373
microhabitats 172, 194
microorganisms 108-110, 117, 142, 161, 205, 244, 254, 260, 264, 323-327, 331-332, 338, 377
micropores 325
microscale 206
midge larvae 89, 95, 127, 180, 370
millerite 189
milling 28, 29, 30
mine water 121-127, 131
mineralization 118, 163, 165, 255, 327
mining 3, 5, 19, 21, 24, 28-29, 50, 120-125, 132-134, 178, 232, 251, 369
MINTEQ 158, 381
MINTEQA2 78, 83, 152, 162, 240, 269, 342, 381
mixed phosphoryl-Zn-carboxyl complexes 250
mixture toxicity 241
Mn oxide (birnessite) 245
mobility of sulphide 232
mobility of trace metals in a sludge treated soil 261
mobilization of chromium 265
moderately strong complexes 157
mold *Penicillium chrysogonium* 249
mollusk (*Halioitls rufescens* – the red abalone) 303
monitoring 106, 124, 127, 135, 141-142, 148, 269, 307
Monoporeia affinis 310, 315, 318-319, 351
motile benthic macrofauna 231
motor vehicle brakes 49
motor vehicle tyres 49
multi-generation toxicity 324
multinuclear surface complexes 256
multiple binding site models 235
multiple classes of Cu binding sites 247
multiple solid phases 150, 159
municipal solid waste 33
mussels 86, 88, 90-97, 137, 223, 225, 270, 310, 353
mycorrhizae 326

N
N- and O-containing ligands 269
nantonkite 76
natural attenuation capacity 161
natural AVS minima 196
natural background concentrations 12-13, 17-18, 69, 272
natural organic colloids 269
natural organic matter 101, 104, 277, 282, 294, 298, 301-302, 367
natural selection 335
natural trace metal levels in soils 109
natural, background (bioavailable) concentrations 333
Neanthes arenaceodentata 186, 365
neurotransmitter function 336
new metals 96
N-fixation in soils 260
nickel exposure 291, 302
nickel runoff 85
nickel use 22
NiS 171, 188-192, 204, 208, 210
nitrification 54, 118, 259-261, 264, 322, 330-331, 346
nitrification inhibition 261
nitrogen cycling 331
nitrogenase activity 260
NOEC 286, 288, 290, 295-297, 304-307, 328, 332, 381
NOM 101-102, 104, 277, 282, 301-302, 381
non-electrostatic model’ (NEM) 220
non-equilibrium conditions 161
normal copper concentrations in soils 326
normal levels of zinc in most crops and pastures 328
normalised LC$_{50}$ values 295
normalization of the k_d-values 236
nutrients 88, 105-106, 109, 119, 128, 151, 165, 258-259

O

O$_2$-respiration 194
O-containing ligands 269
occurrence of toxicity 184
oligochaetes 178, 180, 211, 226
oligotrophic lakes 127-128
operational drawbacks of SEM/AVS-based approaches 187
operationally defined geochemical phases 178, 227
optimal range of trace metal concentrations 333
oral bioavailability of metals from soils 267
ore grass 127
organic carbon normalisation 183
organic carbon normalized excess SEM 185-186, 312
organic complexes 98, 145, 146, 242, 246, 248-249, 323
organic copper complexes 294
organic matter binding sites 159
organic matter decomposition 258, 263
organic substances commonly found in sludge 264
organism-water interface 9, 275, 278, 280
outflows 52, 53
oxic sediments 172, 176, 224-226, 230
oxidation capacity 191
oxidation gradients 194
oxidation kinetics of these metal sulphides 155
oxidation of sulphide precipitates 213
oxidation of sulphides 316
oxidative dissolution 193
oxidised marine or freshwater sediments 177
oxidized sediments 222, 230, 309, 363
oxygen conditions in metal-polluted sediments 319

P

Partial Least Squares Projection to Latent Structures 329
particulate metal forms 140
partitioning coefficients 11, 159, 196, 234-235
patina 76-77, 80, 364
patinated copper 76-78, 357, 364
Index

PbS 188-190, 207-210, 317
PDI/TDI ratios 47
PEC/PNEC ratios 47
peepers 183
periphyton 225, 268, 343, 352
periphyton metal accumulation 268
pH dependence test 265
phosphate 197, 211, 232, 292, 325, 338
phosphorus 99, 105, 107, 111, 117, 120, 128-129, 206, 265
phosphoryl groups 250
physical sorption 169
physiological adaptive mechanism 262
physiological strategies 292
physiological surveys 130
phytoplankton 129, 151, 216, 277, 287, 337
phytotoxicity 245, 248, 325, 328, 361
plant copper 326
plant tissue concentrations 260, 322
plant uptake 234, 237-239, 242-244, 248, 264
plant-available Cu species 239
plant-uptake and bioavailability of certain trace elements 233
plumbing materials 57, 100-101
PNEC 41, 47, 296, 304, 324, 336, 382
point-of-zero-charge (pH_{PZC}) 220
pollution control 314
polychaete worm Capitella capitata 175, 179
polychaetes 178, 182, 194
polymerization of Cu^{2+} hydroxy species 257
polysaccharides 205
pools and fluxes 49
posnjakite 76
pot experiments 262-263, 322, 330, 239
precipitation 7, 61, 73-77, 80, 84, 101, 110, 125, 145, 167, 169, 171, 191, 193, 206, 236, 241, 247-248, 251-256, 318, 325
precipitation artifacts 191
Predicted Daily Intake 41, 381
Predicted Environmental Concentration 41, 381
Predicted No-Effect Concentration 41, 382
predicting non-toxicity 180, 310, 313
predicting the reactivity of trace metals in aquatic sediments 193
predicting the toxicity of sediment-associated metals 172
prediction of chronic effect concentrations 304
predictor of soil Cu toxicity 326
predictors of acute toxicity 285
pre-exposure 320
preextraction spikes 191
preindustrial sediments 136, 200, 274
primary Zn species in wetland soils 251
production and consumption of refined zinc 24
production of nickel 22
protection levels for agricultural crops 326
pulse-feeding radioactive metal-labeled particles 223
pyrite 122, 146, 170, 188, 192-193, 197, 203, 207-210, 252-255
pyrite oxidation 208, 253, 256
pyritization 208, 252
pyrophyllite 256
pyrrothite 189

R

radioisotope tracers 241
radiotracer pulse-chase feeding technique 226
rainbow trout 9, 178, 275-277, 283, 286-287, 290-293, 298-306, 353, 360-361, 367-368, 371, 376
transfer rates of contaminants from soils and sediments to biota 266
rate-determining step in uptake processes 156-157
rates of sludge application 111
ratio of reactive Fe to AVS 193
reactive Fe pool 232
reactive sulphide 188, 190, 210
reactive specific surface area 219
readsorption 197
readsorption in the gut of the initially desorbed metal ions 225

Receiver Operating Characteristics Curves (ROC) 186
receptor sites on the organism 280
recycling 3-5, 25-29, 32, 36-37, 41, 43, 51, 53, 105-106, 117, 119, 258-259
recycling of copper 36
redistribution effects 241
redox buffering capacity 232
redox conditions 196, 229, 231, 252, 309
redox stable metals 251
redox-active trace metals 251
reference material 62, 97
reference values 41, 50, 65
refined copper usage 28
refractory (less degradable) organic substances (ROS) 152
regional background level 274
rehabilitation of metal-contaminated sites 161
relative affinity of metals for AVS 176
relative bioavailability 234, 236, 266, 267
relative mobilities of metals 68, 232
remobilization 143, 198, 377
reproducibility 141, 150, 163
reproduction and growth of earthworms 116
reproduction of amphipods 317
resistance to oxidation 210
Index

respiration 118, 253, 278, 322, 327, 330-331, 336
respiratory membranes 186, 223, 310
restoration 198
resuspension 86, 97, 170-171, 190, 206-210, 213, 271-272, 311, 321, 341, 370-371
retention via sorption, precipitation/coprecipitation processes, occlusion and incorporation into reservoir minerals 255
rhizosphere 241-243, 326, 376
risk assessment of metal-contaminated soils 329
River Dalälven 120-130
rivers Rhine and Meuse 43
road pavements 49
road sediments 199
road traffic 53-54, 62, 76, 87-89, 91-93, 96-97, 132-134
roadside soils 54, 62
root microenvironments 242
routes of exposure 172, 194, 330
runoff from roofs 7, 54, 133
runoff rate 7, 72-77, 80-85, 364
runoff rates of chromium and nickel from abraded metal surfaces 85
rutile 219
ryegrass (Lolium perenne) 262

S

salinity 149, 160, 268
salt marsh soils 252
Scanning Force Microscopy 256
S-containing ligands 269
scrap 30-38, 53, 368
seasonal and spatial variations 8, 160, 183, 252, 254
seasonal and vertical variability in AVS 311
seasonal variability of the flux of total dissolved Cu from the sediment 192
secondary minerals 163, 218, 255
sedentary suspension-feeding organisms 231
sediment cores 138, 181, 273, 308, 311-316, 320-321, 371
sediment deposition rates 65
sediment dweller 211
sediment elutriates 213
sediment ingestion 227
Sediment Or Fauna Incubation Experimental system’ (SOFIE) 211
sediment oxidation 171, 191, 231
sediment partitioning phases 174
sediment quality 16, 139, 171, 173, 177-178, 187, 195, 201, 204, 269, 272, 309, 323, 342, 365, 370
sediment surface coatings 221
sediment TOC 224
sediment traps 135, 136, 137
sediment treatment techniques 200
sedimentary mesopores 225
sedimentation traps 92
selectivity 141, 146, 150, 163, 165, 171, 187-188, 197, 237
selenium 30
SEM/AVS concept 172, 187, 204-205, 289, 307-310, 318
SEM/AVS/fo model 313
SEM-to-AVS molar ratio 179
sensitivity of freshwater fish to nickel 291
sequential extraction 163, 165, 166, 168, 174, 197-200, 224-
sodium homeostasis 278
soil (CaCl₂) extractions 262
soil ameliorating substances in the
sludge 265
soil and sediment quality
guidelines 323
soil characteristics 62, 235, 251,
254, 258, 261, 265, 268, 324,
329, 332
soil conditioner 98, 101, 106
soil extraction procedures 233
soil factors 259, 333
soil flooding 250-251
soil invertebrates 323-327
soil metal retention capacity 257
soil microbiology 117, 263, 265,
325
soil micropores 262
soil properties 12, 236-238, 242-
245, 322, 328, 331-332
soil respiration 330
soil sensitivity factors 12, 322,
332
soil solution 11-12, 233-238,
242-246, 250, 254-263, 321,
323, 326-327, 330-355, 369,
377
soil solution free Cu²⁺ activity
326
soil types 62-63, 99, 118-119,
326, 351
soil-plant barrier 264
soil-plant transfer coefficients
(Tc) 262
soil-pollutant contact time 255
solid waste 6, 33, 49, 51-53, 263,
347
solid waste generation in Europe
and copper content 35
solubility of their sulphides 176,
182
solubility product constants 175
sorption experiments 249, 257
sorption models 235
sorption rates on cell walls 247
spaelerite 189
Spartina maritima 252-253
speciation of Fe 192
speciation techniques 139-140, 202
speciation of dissolved nickel 159
species sensitivity distribution 294, 297, 324, 328, 345
species-specific tolerances 328
spectroscopic analysis 164, 201-202, 206, 247, 249
spectroscopic data 204
sphalerite 203
spider Pirata piraticus 268
spiked sediments 174, 178, 180, 186, 196, 308, 311-312, 321, 344
springtail Folsomia candida 329
square wave voltammetric procedure 154
stability constants 9, 13, 149, 153, 156-159, 167, 219, 275, 280-286, 291, 206, 366
stainless scrap 23
stainless steel 2, 7, 15, 22-23, 51, 72-75, 84-85, 364-365
standard method of assessing metal bioavailability for regulatory purposes 239
stock of copper 32
stocks and fluxes 1, 6, 48
stoichiometrically different Cu sulphides 209
storm-waters 88
strong complexes 157
structural information 204
substance flow analysis 26, 41
substance risk assessments 279
sulfidization 190, 193, 209, 211
sulphate-reducing bacteria 10, 170, 174
sulphide coatings 190, 209, 211
sulphide oxidation 191, 207, 213, 231, 253
sulphide partitioning 174, 177
sulphide stability 155
supply of free metals 214, 216
surface area effects 188
surface binding sites 214
surface characteristics 76, 201
surface charge of minerals in natural waters 220
surface complexation 151, 158, 164, 214, 218, 247, 256-257, 348
surface complexation constants 257
surface complexation models 158, 164, 214, 218, 247, 257
surface hydroxyls 220, 247
surface reaction-controlled kinetics 267
surface sediments 138, 163, 181, 194, 196, 200
surface site density 214, 219-220
surface species 214, 218
surface-related mechanisms 247-248
suspension feeders 223, 310, 319
sustainability indicators 41
sustainable loading rate 119
synergistic biological-geochemical approach 202
synergistic effects 264
Metals in Society and in the Environment

T

tailings 30
technosphere 26, 28, 64
tellurium 30
terrestrial toxicity 324, 329
Tessier method 165, 198, 226, 239
theoretical approaches to metal speciation 167
thermodynamic and kinetic stability of metal-ROS complexes 153
thermodynamic stability 149, 152, 154
threshold level for chronic effects 186
threshold level for copper toxicity to plants 326
time scales of the ligand exchange rate for kinetically stable metal-ROS complexes 153
tin 89, 96
tire debris 54
tissue body burden 223
TOC 82, 105, 118, 144-145, 147-148, 177, 222-226, 307, 383
Tolerable Daily Intake 41, 382
tolerance 3, 17, 131, 142, 279, 294, 333-338, 357
tolerance of Daphnia to dissolved copper 294
total binding site density of the biotic ligand 300
total metal concentration 91, 141, 166, 173, 179, 200, 206, 264
total metal pool in soils 239
total reducible sulphide (TRS) 208
toxic effects 78, 109, 118, 133, 171, 173, 178, 186, 213, 241, 263, 275, 278, 284, 288-289,
292, 300, 303, 313-315, 318, 374
toxic unit approach 241
toxicity index 200
toxicity of Cu to maize shoots 245
toxicity of the CuCO3 complex 285
toxicity of zinc 304
toxicity predictor 185, 310
toxicity threshold 186
toxicity threshold values for copper (and other trace metals) 326
toxicity variation 305-306
toxicity-modifying factors 290
traffic emissions 87
traffic sector 4, 53, 58, 71, 86, 134
transboundary inflow 43-44
Transmission Electron Microscopy (TEM) 198, 201, 205, 256, 382
transport ligands 266, 270
transport-controlled kinetics 267
triple layer model 218, 221
tungsten carbide 89
two-site models 214

U

ultrafiltration 154, 269
uncertainty range 184
uncharged metal complexes 266
uncoupling between desorption and assimilation in the gut 227
uptake experiments with Ni and Zn radioisotopes 268
uptake in plants 330
uptake of zinc in terrestrial plants 328
uptake route to biota 325
urban and road-side soils 84
urban atmosphere 72-73, 76, 80-81, 84-85, 364
urban metal flows 4, 50-51
urban soils 50, 61-64, 242, 322, 330, 359
urban soils 242
use categories of copper 31
UV-B radiation 292

V
vaesite 189
variability in toxic response to copper by aquatic organisms 298
variability in toxicity due to variation in water chemistry 297
variation in EC50 297-298
variation in toxicity due to differences in sensitivity between the biological species 299
vertical distribution of AVS 204
vivianite 197
voltametrically labile Zn(II) complexes 157

W
waste from electrical and electronic equipment 34
waste management 5, 26, 33-38, 45, 344, 351
waste-treatment residues 43
wastewater treatment plants 157, 160, 342
water pipes 6-7, 44, 49, 57, 59, 100-101, 105
water qualities 101, 282, 289, 291, 304, 306
water quality characteristics 9, 277, 284
water quality criteria (WQCs) 276
water-only exposure 320
weathering 122, 204, 220, 233-234, 254-255, 366
wetland sediments 198, 232, 350
wetland soil 251
WHAM 152, 159, 162, 282, 360, 383
wheat 111, 115-116, 239-240, 258, 331-332, 338
WQCs 276-280

X
XAFS spectroscopy 204
X-ray Absorption Near-Edge Structure’ (XANES) 202
X-ray absorption spectroscopic techniques 201-202, 248

Z
zebra mussels 86, 88, 92-97, 136-137, 286, 357
zinc accumulators 328
zinc and copper flows 45
zinc background values in soils 332
zinc bioavailability 287, 296, 305, 308, 312, 328, 347, 358, 375
zinc bioavailability and toxicity in freshwater sediments 312
zinc carbonate 80
zinc deficiency 109, 338-339
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>zinc ecotoxicity</td>
<td>304</td>
</tr>
<tr>
<td>zinc essentiality</td>
<td>338</td>
</tr>
<tr>
<td>zinc mining countries</td>
<td>24</td>
</tr>
<tr>
<td>zinc phytotoxicity</td>
<td>328</td>
</tr>
<tr>
<td>zinc production</td>
<td>21</td>
</tr>
<tr>
<td>zinc replaces other metals</td>
<td>328</td>
</tr>
<tr>
<td>zinc sensitivity of soil microbial</td>
<td>332</td>
</tr>
<tr>
<td>processes</td>
<td></td>
</tr>
<tr>
<td>zinc sulphates</td>
<td>80</td>
</tr>
<tr>
<td>zinc toxicity</td>
<td>12, 279, 283, 286-287, 291, 303-305, 328-333, 349, 354, 368</td>
</tr>
<tr>
<td>zinc-containing commercial building materials</td>
<td>82</td>
</tr>
<tr>
<td>Zn benchmark concentrations</td>
<td>328</td>
</tr>
<tr>
<td>Zn mobility</td>
<td>148, 263</td>
</tr>
<tr>
<td>Zn threshold for effects on benthic</td>
<td>313</td>
</tr>
<tr>
<td>communities</td>
<td></td>
</tr>
<tr>
<td>Zn(II) complexes</td>
<td>157</td>
</tr>
<tr>
<td>Zn-bearing colloids</td>
<td>205</td>
</tr>
<tr>
<td>ZnS</td>
<td>177, 180, 188-190, 193, 203, 206-210, 251-252, 263, 317</td>
</tr>
</tbody>
</table>