Index

A
Acoustic emission, 15
Acoustic tomography, 12
Activation function
 bi-polar sigmoidal function, 486
 piecewise linear function, 480
 sigmoid function, 481
 threshold function, 480
 types, 480
Active sensors
 piezoelectric, 21
 PVDF, 5
 PZT, 5
 TERFENOL-D, 5
Actuator
 circular, 355, 362, 385
directivity, 355
piezoceramic, 126, 426
rectangular, 364
 surface bonded, 350
Actuator array
 plate response, 388
Aliasing, 112, 117, 178
Artificial Neural Network
 (ANN), 478
 back propagation error, 487
effect of noise, 489
 multiple layer feed forward networks, 479, 481
 single layer feed forward networks, 479
Artificial dispersion, 117, 125
Averaged degraded model, 260
Axial–Flexural coupling, 85

B
b-splines, 432
Beam forming algorithms, 373
Beam steering
 2D phased arrays, 372
 frequency based steering, 370
 linear phase delay, 369
 strategies, 368
Beltrami–Mitchell equations, 58
Bessel function, 322, 356
Boundary element method, 33, 157, 349
 fundamental solutions, 34
Bragg wavelength, 28
Bridging scale method, 314
1D rod time domain formulation, 321
2D elastic medium, 332
 bi-material rod with imperfections, 325
 bridging matrices, 315
 energy based time integration scheme, 331
 frequency domain formulation, 319
 reduction of degrees of freedom, 317
 shape functions, 316
time domain formulation, 318
time domain spectral element, 339
Bulk waves, 431

C
Cauchy’s stress tensor, 49
Christoffel symbol, 75
Circulant matrix, 120, 124
Classical plate theory, 79, 264
Companion matrix, 82, 91
Compatibility equations, 58
C (cont.)
Composites
material property determination, 61
micromechanics, 61
Computational efficiency of FSFEM, 247
Condition based monitoring, 6
Constitutive relations, 50, 69
elastic symmetry, 52
Hooke’s law, 51
isotropic system, 53
monoclinic system, 52
orthotropic system, 53
piezoelectric material, 362
triclinic system, 52
Contractional mode, 87
Corrosion pit, 248, 250
Curvature mode, 281–282, 284, 286–287, 413
Cut-off frequency, 74, 88, 195, 386

D
Damage detection
vibration based, 407
wave propagation based, 407
Damage force indicator, 450, 452, 457
multiple delaminations detection, 453
single delamination detection, 452
variation in delamination depth, 457
variation in delamination size, 454
Damage force vector, 451, 452
Damage localization, 448
phase gradient, 436, 437, 441
Daubechies basis function, 110
Daubechies wavelets, 106, 109, 110
Decimation factor, 416, 432
Deformation gradient, 42, 43
Description of motion, 41
Differential equation
weak form, 32
Dirac delta function, 32, 99, 132, 198, 267, 276, 280, 298, 363, 441
Directional sensing, 391
Dispersion relation, 70, 74, 81
composite plate, 89
elementary beam, 84
higher order beam, 86
Dispersive wave, 70, 81
Distributed dynamic contact, 167
Doppler shift, 29
Duplicate node method, 164–165
Dynamic stiffness matrix, 179, 454
2D composite layer, 196
beams, 186
rods, 183
E
Eigen solvers
Jacobi–Davidson Method, 83
Krylov method, 83
QZ algorithm, 83, 91
Eigenfunctions
orthogonal property, 279
Energy functional, 41
Energy harvesting systems, 12
Energy method, 41
Engineering strain, 44
Equations of motion, 54
Equivalent single layer theory, 220
Eulerian coordinates, 46
Evanescent mode, 71, 74

F
FEM, 8, 31, 33, 157, 349
coarse scale, 317
damage models, 164
direct time integration, 34
fine scale, 317
interface stresses evaluation, 359
mode superposition, 34
modeling issues, 159
modeling pitfalls, 173
modeling suggestions, 172
plane strain model, 451
Fiber optic sensors, 5, 7, 11, 21, 25
bio-medical, 26
chemical, 26
EPFI, 27
extinsic, 26–27
FBG, 27–28
interferometric, 26
intrinsic, 26
modulation, 26
physical, 26
Finite difference, 32, 157
central difference, 32
explicit method, 32, 35
implicit method, 33, 35
First order shear deformation theory, 77, 184, 249, 289
Flexibility function, 263, 266
Force boundary condition, 197
Fourier transform, 70, 97, 109–110, 438
2D, 129, 132, 364, 376–377
3D, 19, 129, 354
Continuous, 97, 110, 177, 178
DFT, 70, 97, 99, 101, 111, 178, 319
FFT, 35, 101, 99, 110, 177, 356
Fourier series, 99, 110, 179, 198
Index

higher dimensional, 19
inverse FFT, 321
multidimensional, 144
short time, 19
windowed, 104
Frequency response function, 31, 35, 310
Frequency/wavenumber domain, 179–180
Frequency/wavenumber filtering
1D, 130
2D, 132
mode separation, 144
FSFEM
general procedure, 178

G
GA
alleles, 467
chromosome, 464, 466
crossover, 465
crossover probability, 465
damage location & size identification, 475
damage location identification, 473
damage location, size & depth
identification, 476
damage size identification, 474
genes, 467
genotype, 467
introduction, 463
locus, 467
mutation, 465
objective function, 464
phenotype, 467
population, 464
probability of mutation, 465
process, 466
Galerkin approximation, 273
Gauss–Lobatto–Legendre point, 339
Governing equation
composite plate, 79
electro-mechanical system, 362
elementary beam, 76
higher order beam, 77
isotropic damaged plate, 274
lamb wave modeling, 350
notched beam, 289
SV waves, 374
weak form, 300
Green’s function, 378
Group speed, 70, 72, 89
Guided ultrasonic waves, 429
Guided wave, 11, 16, 18, 21, 24
thin plates, 383
tomography, 21

H
Haar wavelet, 103
Hamilton’s principle, 75, 77–78, 80,
290, 293, 298
Hankel function, 357, 379
Harmonic far field response, 353
Heaviside function, 276–277, 293
Helmholtz equation, 109
Helmholtz decomposition, 75, 198, 351
Hilbert transform, 137, 143
Hilbert–Huang transform, 19

I
Integral transforms, 97
Interdigitated electrodes, 22
Inverse problem, 463

J
Jacobian, 44

K
Kinematics based method, 164, 166,
220, 254
material degradation, 260
modeling of delaminations, 166
modeling of fiber breakage, 167
Kirchoff plate theory, 418

L
Lagrange equations, 316
Lagrange multiplier, 361–362
Lagrange polynomials, 339
Lamb wave, 220, 241, 429, 437
antisymmetric, 22, 352, 355, 358, 386, 436
composites, 190
directional excitation, 384
dispersion, 211, 443
experimental validation, 358
modeling, 350
modes determination, 198
non-linear optimization, 211
propagation, 211
reflection/conversion coefficients,
440, 441, 452
symmetric, 22, 352, 355, 358, 386,
436–437, 447
Lamb waves, 440
Lambda matrix, 91
Laminated composite, 61
theory, 60
Laser vibrometer, 5, 7, 14, 18–19, 29, 129, 144, 274, 358, 410, 412, 415, 422–423, 429, 448
Latent eigenvector, 82
Layerwise theories, 220
Legendre polynomial, 339
Line damage
 modal properties, 287
Linear combiner output, 479
Linearization of PEP, 83
Loading
 broad band, 127, 162, 226, 239, 246, 263, 269, 443, 455, 473, 479
Logarithmic strain, 44
Love–Kirkchoff layered theory, 360

M
Macro fiber composite, 22
Mass spring lattice model, 143, 435
Material degradation, 219
Matrix crack, 254, 260
Matrix cracking, 219
Matrix debonding, 254
Mean squared error, 486
MEMS, 7
Modal analysis
 damaged plates, 274
Modal assurance criterion, 412
Mode conversion, 220, 407, 436–437, 448–449
 estimation, 443, 448
Mode-II fracture, 242
Molecular dynamics, 316
Multi-layer perceptron, 19, 482
Multiscale lagrangian, 316

N
Navier’s equation, 57
Neuron, 478
 activation function, 479
 adder, 479
 simple model, 478
 synapses, 478
Newmark method, 139, 239
Non destructive evaluation, 6, 12, 14–15, 20, 249, 313, 368, 372
Non-dispersive wave, 70
Nonlinear ultrasound, 20
Normal stress, 49
Notch damage
 modal properties, 283
Notch type damage, 274, 408, 411, 436
Nyquist frequency, 103, 110, 117, 182, 184, 247, 452, 469, 483, 487

O
Objective functions, 463, 468, 470
 displacement based, 468
 power flow based, 470
Operational deflection shape, 408, 414–416, 420, 423, 429, 433
Orthotropic material, 65

P
P wave, 351, 366
Partial wave technique, 190, 198
Penalty parameter, 238
Permittivity matrix, 360
Perturbation analysis, 283, 410
Perturbation solution, 277
 Fourier series solution, 278, 284
Perturbation technique, 36, 273
Phase speed, 72
Phased arrays
 1D, 364
 2D quadrilateral, 379
 2D rectangular, 375
Piezocomposite, 362
Piezocomposites, 22
Piezoelectric coupling matrix, 360
Piezoelectric discs array, 383–384
Piezoelectric patches, 349
Piezoelectric transducers, 431
Pitting corrosion, 248
Plane strain, 59, 260, 366, 440
Plane stress, 59, 65–66, 260, 262
Polynomial eigenvalue problem, 82, 87, 185
Preface, v
Principal direction, 69
Propagating mode, 71, 74, 87

Q
Quasi P wave, 75, 195
Quasi S wave, 75, 195

R
Random decrement technique, 15
Rayleigh Lamb wave dispersion, 354
Rayleigh–Ritz solution, 273
Recurrent networks, 479
Refractive index, 27, 28, 28
Representative volume, 62
Residue theorem, 356
Rigid links, 166, 221, 230
Rule of mixtures, 63, 325, 328, 330

S
S wave, 351, 366
Selection procedure, 465
deterministic selection, 466
enlarged sampling, 466
mixed selection, 466
regular sampling, 466
stochastic selection, 466
Semi analytical finite element, 349
Sensitivity
fiber break configuration, 240
SH waves, 353
Shear stress, 49
SHM
diagnosis, 5, 9
dynamics based, 14, 16, 407
elements, 5, 7
guided wave based, 25, 373
levels, 9
modeling, 31
need, 3
off-line, 10
on-line, 10
overview of SHM, 3
passive and active, 14
prognosis, 5, 9
sensing and actuation strategies, 21
vibration based, 17
Signal leakage, 117
Signal periodicity, 102
Signal processing issues, 110
Simplified damage models
review, 220
Sinc function, 98, 101
Singular value decomposition, 83
Spectral element, 157, 158
2D layer element, 191
2D layer throw-off element, 196
notched beam, 289
anisotropic plate, 199
anisotropic plate throw-off element, 201
average degraded model, 260, 483
beam throw-off element, 187
corroded region, 248
dynamic contact element, 234
experimental degraded model, 254
fiber breakage, 230
FSFEM for isotropic beams, 184
FSFEM for composite beams, 186
FSFEM for higher order beam, 188
FSFEM for isotropic rods, 182
higher order beam throw-off element, 190
material degradations, 253
multiple delamination, 241
need in SHM, 177, 219
notched beam, 289
plate, 221, 264
plate with vertical cracks, 263
rod throw-off element, 183
single delamination, 221
surface breaking crack, 235
WSFEM isotropic rods, 184
WSFEM procedure, 180
Spectral element method, 351
Spectral finite element, 8, 31, 34
dynamic stiffness matrix, 35
throw-off element, 35
Spectral power flow, 470
Spectrum relation, 70, 74, 81, 87
Spline basis function, 415
Spline function, 423
Spline interpolation, 414, 432
Stiffness reduction method, 164
Strain energy ratio, 281, 288, 413
cumulative, 282
damage index, 411
damage index-beams, 416
damage index-plates, 421
experiments on beam, 421
experiments on plates, 426
notch damage, 287
Strain tensors
Eulerian, 45, 47
Lagrangian, 46–47
Stress intensity factor, 10
Surface-breaking crack, 235
SV waves, 374, 384
membrane, 374
Synaptic weights, 478, 481, 483, 485–487
System identification, 157, 463

T
Theory of elasticity, 41
Time domain spectral element
2D waveguides, 344
analysis of a rod, 340
damaged Timoshenko beam, 340
shape functions, 339, 345
T (cont.)
Time frequency transforms, 19
Time integration
 central difference scheme, 440
 Newmark scheme, 323
Time kernel history function, 318
Time signal window
 rectangular, 117
 Gaussian, 117, 127
 Hanning, 117, 127, 132, 140, 149, 151, 161, 303, 358, 441, 447, 448
 Tukey, 148
Timoshenko beam theory, 225
Total internal reflection, 27
Transformation matrix, 68
Traveling salesman problem, 471
True strain, 44

U
Ultrasonic inspection, 20

V
Variational principles, 32
Visco-elasticity, 35

W
Wave amplitude, 180, 195
Wave matrix, 180
Wave propagation
 2D composite layer medium, 207
 2D portal frame, 205
degraded composites using ADM, 262
response due to corrosion pits, 251
angled joint, 202
composite plate with ply-drop, 214
damaged rod, 138
degraded composites using EDM, 258
delaminated beam, 226
delamination at ply-drop, 229
fiber breakage, 238
homogeneous medium, 143, 435
introduction, 69
notched beams, 302
plate with vertical crack, 267
single delamination using multiple
delamination model, 246
spectral analysis, 70
Wave propagation technique
damage index theoretical background, 430
time domain damage index, 430
Wavefield, 16, 25, 30
Wavefield data, 129
Waveguide, 70
Wavelet transform, 19, 70, 103, 177, 412
 non-periodic boundary conditions, 121
 periodic boundary conditions, 119
Wavenumber, 70, 73
Weighted residual technique, 32
Wigner–Ville distributions, 19
Wireless sensors, 8
Wraparound problem, 35, 110, 112, 120, 181, 188, 206, 246