Publications of Michael K. Sain

Theses, Dissertations Directed

R.W. Diersing, Ph.D. Dissertation, H_∞, Cumulants, and Games, 2006
C.-H. Won, Ph.D. Dissertation, Cost Cumulants in Risk-Sensitive and Minimal Cost Variance Control, 1995
D.P. Newell, M.S. Thesis, Modelling and Control of a Nonlinear, Hydraulic Based Seismic Simulator, 1993
L.H. McWilliams, Ph.D. Dissertation, Qualitative Features of Linear Time-Invariant System Transient Responses, 1993
Volumes Edited, Partially Edited, Books

Guest Co-Editor, with J.J. Uhran, Jr., IEEE Communications Magazine Special Issue on “Engineering Education: Where Are We?,” December 1990.

Publications

334. Publications of Michael K. Sain

Publications of Michael K. Sain

304. Michael K. Sain, 35 Years of Cost Cumulant Surprises, *Workshop on Advances in Systems and Control*, in honor of Professor William R. Perkins on the occasion of his 65th birthyear, Computer & Systems Research Laboratory, University of Illinois at Urbana-Champaign, September 25, 1999

340 Publications of Michael K. Sain

248. Michael K. Sain, Humility in Academic Life: Over the Rainbow?, *Faculty Upper Room Dinner and Discussion Series on Faith and the Professional Life*, September 27, 1994

245. P. Quast, S.J. Dyke, B.F. Spencer, Jr., A.E. Belknap, K.J. Ferrell, and M.K. Sain, Acceleration Feedback Control Strategies for the Active Mass Driver (AMD), Video Presentation of Experimental Results in the SDC/EEL Facility, University of Notre Dame, August 1994

342 Publications of Michael K. Sain

226. S.J. Dyke, P. Quast, B.F. Spencer, Jr., M.K. Sain, and J.C. Kantor, Acceleration Feedback Control Strategies for Aseismic Protection, Video Presentation of Experimental Results in the SDC/EEL Facility, University of Notre Dame, June 1993

344 Publications of Michael K. Sain

177. B.F. Spencer, Jr., M.K. Sain, and J. Suhardjo, On the Adequacy of Linearized Methods for Control of Nonlinear Bridge Oscillations, Proceedings Fifth International Conference on Structural Safety and Reliability, Pages 1435–1442, August 1989

346 Publications of Michael K. Sain

82. Michael K. Sain, Miniaturization of Large Criminal Justice Systems by Generalized Linear Signal Flow Graphs, *Journal of Interdisciplinary Modeling and Simulation*, Volume 1, Number 2, Pages 97–122, April 1978
352 Publications of Michael K. Sain

49. James L. Massey, Michael K. Sain, and John M. Geist, Certain Infinite Markov Chains and Sequential Decoding, *Discrete Mathematics*, Volume 3, Numbers 1, 2, 3, Pages 163–175, September 1972

Publications of Michael K. Sain

Index

(A, B)-invariant sub-semimodule, 135
(A, B)-invariant sub-semimodule of feedback type, 135
Γ-zero semimodule, 138
i-regular, 131
jth moment, 107
k cost cumulant, 99
k-regular, 132

ABET, 315
admissible mean cost, 103
admissible mean cost function, 105
algebraic Riccati equation, 206
algebraic transfer functions, 155
approximate decentralized fixed modes, 223, 228
approximate dynamic programming, 202
associated DDS, 185
asymptotically stable, 176
attractive, 176

bilinearization, 283
Bourne relation, 131
Brownian motion, 4
certainty equivalence principle, 94
process noise characteristics, 94
classical Lyapunov stability results, 177
cohomology of sheaves, 155
comparison theorem, 182
complete filtered probability space, 44, 67
Borel measurable, 68, 70
Borel sets, 67, 68
experiment, 67
filtration, 67
independent increments, 44
probability measure, 67
realizations, 43
separable metric space, 67
sigma field, 44, 67, 68
stationary Wiener process, 44
composition of motions, 191
continuous dynamical system, 174
continuous with respect to the initial conditions, 195
continuous-time dynamical system, 174
controllability Gramian, 232
controllability sub-semimodule, 137
controllable sub-semimodule, 137
converse theorem, 190
cost moment control, 5
Critic, 202
cumulant
third cumulant, 109, 111
two cumulant, 103
cumulant games, 14
cumulants, 4, 102
curse of dimensionality, 202

DDS, see also discontinuous dynamical system, 174
decentralized fixed modes, 223
digital pre-distortion, 247
discontinuous dynamical system, 174
discrete-time dynamical system, 174
divided will of Saint Augustine, 322
dynamic programming, 50, 51, 53, 54, 80, 81, 84
boundary condition, 54, 59, 83, 87
HJB equation, 53–55, 83–85
necessary conditions, 82
reachable set, 53, 55, 83
sufficient condition, 57, 82, 83, 89
value function, 53, 55, 56, 82–84, 88, 91
verification theorem, 81, 83, 84, 89
dynamical system, 174
Dynkin formula, 101
enhanced iterative flipping algorithm, 251
feedback information structure, 80, 89, 93
finite dimensional dynamical system, 174
finite relative degree, 165
first characteristic function, 71, 72
moment-generating function, 71
first professional degree, 313
flexibility, 224
game theory, 67
prediction and prevention, 67
courses of action, 66, 94
decision making, 67
intelligent and irregular, 67
generalized homogeneous domination approach, 265
global inverses, 155
greedy iteration, 210
H-minimum phase, 163
higher level, 66
minimax strategies, 66, 92
multi-cumulant, Pareto and minimax strategy, 92–94
multi-cumulant, Pareto and Nash strategy, 89, 94
pessimistic situations, 67
self-enforcing Nash solutions, 66
Hilbert space, 44, 67, 68
square integrable processes, 44, 67, 68
history of engineering education, 314
homogeneous domination approach, 263
image, 131
image regular, 131
infinite dimensional dynamical system, 174
integral output feedback, 44, 49
invariant, 176
invertible system, 162
kth cost cumulant control, 13
Kalman, R. E., 29
Kalman, Rudy, 145
Lagrange multiplier, 31
left inverse, 162
linear-exponential-quadratic-Gaussian, 16
linear-quadratic-Gaussian, 4
linear-quadratic-regulator, 205
lower level, 66
Pareto parameterization, 69, 94
permissible Pareto decisions, 69, 70
team cooperative profiles, 69
team Pareto decisions, 69
Masclaurin series, 48, 74
Master of Engineering, 313, 314, 317
Mayer problem, 53
initial cost, 53, 80
Mayer form, 81, 84
minimal cost variance, 4, 7
minimal cost variance control, 7
feedback MCV control, 10
open loop MCV control, 9
minimum cost variance, 38
minimum mean, 38
mixed H_2/H_∞, 99
module of poles, 147
global, 149
module of poles at infinity, 148
module of zeros, 149
generic, 151
global, 150
module of zeros at infinity, 150
moment
jth moment, 107
monoid, 130
morphism, 131
image, 131
kernel, 131
proper image, 131
motion, 174
Nash equilibrium, 66, 80, 81, 102
feedback Nash equilibrium, 65, 81, 83, 89, 92, 94
informational nonuniqueness, 80, 81
nonlinear decentralized output feedback control
 linear integrator systems, 272
 power integrator systems, 277
nonlinear Volterra control, 281
observability Gramian, 233
orthogonal frequency division multiplexing, 245
partial motion, 190
partial transmit sequence, 250
peak-to-average power ratio, 246
performance measure, 43–46, 48, 60, 68–71, 75, 76, 93, 94
 chi-squared type, 46, 66, 71, 77, 79
cost cumulants, 49
 information statistics, 75, 79, 93, 94
 integral-quadratic form, 68
 non negative and monotone, 75
performance cumulants, 74, 75, 80
performance distribution, 46, 47, 52, 66
 performance measure statistics, 43, 44, 49, 61
pole semimodule of input type, 134
pole semimodule of output type, 133
poles, fixed, 152
policy iteration algorithm, 207
pre-controllability sub-semimodule, 137
probability density function, 65, 66, 80, 94
product space, 68
 Cartesian product, 83
 product mappings, 79
proper image, 131
proportional-integral controllers, 43
 steady-state tracking error, 43
quadratic decision problems, 65
 large-scale distributed systems, 65
quotient fixed modes, 226
quotient system, 227
recursion equation, 31
relative degree, 165
risk-sensitive control, 5, 7, 16
relationship between risk-sensitive and MCV control, 8
second characteristic function, 71
cumulant-generating equations, 75
cumulant-generating function, 71
natural logarithmic transformation, 71
terminal-value condition, 72, 74
time-backward differential equation, 72, 74
semigroup, 130
semimodule, 131
 sub-semimodule, 131
semiring, 131
sequence
 exact, 131
 proper exact, 131
sheaves, 155
short exact sequence, 131
situation awareness, 75
 comprehension, 75
 perception, 75
 projection of future status, 75
 relevant attributes, 75
 state of knowledge, 75
solid state power amplifier, 247
stable, 176
state semimodule, 133
state space, 174
statistical approximation, 43
statistical control, 4, 43, 44, 49–54, 62, 66, 67
 admissible feedback gains, 71, 79, 80, 92
 affine input, 45, 46, 60, 62
 cumulant-generating function, 46
decision laws, 68, 71, 80, 92, 93
decision process, 67, 70
decision states, 67, 68, 70, 71, 93
degrees of freedom, 52
design freedom, 65
feedback gain, 46, 52, 53, 58, 60–62
finite linear combination, 65, 79, 93
levels of influence, 79, 89, 93
moment-generating function, 46
multi-performance objectives, 62
optimization, 71, 81
performance distribution, 75, 89, 93
performance index, 43, 45, 50, 52, 55, 60, 71, 79, 80, 84, 89, 92
performance uncertainty, 43
process noise, 44, 50
product mappings, 51
quadratic performance measure, 43
regulating performance, 48
stationary Wiener process, 67
stochastic uncertainty, 44
terminal-value conditions, 47, 48, 50, 53, 59, 61, 76, 77, 79, 81, 82, 88
time-backward differential equations, 47
time-backward evolutions, 50
time-backward histories, 61
time-backward matrix differential equations, 76, 77, 89, 93
time-backward trajectories, 51
tracking performance, 43
steady, 132
stochastic difference equation, 30
stochastic differential equation, 100
stochastic multi-team games, 65
conflicts of interests, 66
hierarchical structure, 66
informational decentralization, 66
simultaneous order, 66
stochastic regulator systems, 43
strongly connected, 227
sub-semimodule, 131

theology and engineering, 321, 329
third cumulant, 109, 111
time set, 174
total synthesis design, 151
total synthesis problem, 282
traveling wave tube amplifier, 247
two cumulant, 103

uncertainty analysis, 67
adversary tactics, 66, 67

performance uncertainty, 94
surprise attacks, 66
threat prediction, 65, 67
uniformly asymptotically stable, 176
uniformly asymptotically stable in the large, 177
uniformly exponentially stable, 44, 45, 70
state transition matrix, 44, 70
uniformly detectable, 46, 49, 60
uniformly stabilizable, 46, 49, 50, 60, 75–77, 89, 93
uniformly stable, 176
utility function, 20
verification theorem, 108
vibration suppression, 43
Volterra Kernel, 286
Volterra operators, 288
Volterra Representation, 282, 284

Wedderburn–Forney construction, 146, 154
weighted homogeneity, 259
will
first model, 324
fourth model, 326
second model, 324
third model, 325
wind benchmark, 118

zero, 159
zero dynamics, 161
zero module, 161
zero semimodule, 138
zeros, 146, 149, 229
generic, 146
distance from transmission zeros, 229
transmission zero, 149
zero module, 149
Systems & Control: Foundations & Applications

Series Editor
Tamer Başar
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
1308 W. Main St.
Urbana, IL 61801-2307
U.S.A.

Systems & Control: Foundations & Applications

Aims and Scope

The aim of this series is to publish top quality state-of-the-art books and research monographs at the graduate and post-graduate levels in systems, control, and related fields. Both foundations and applications will be covered, with the latter spanning the gamut of areas from information technology (particularly communication networks) to biotechnology (particularly mathematical biology) and economics.

Readership

The books in this series are intended primarily for mathematically oriented engineers, scientists, and economists at the graduate and post-graduate levels.

Types of Books

Advanced books, graduate-level textbooks, and research monographs on current and emerging topics in systems, control and related fields.

Preparation of manuscripts is preferable in \LaTeX. The publisher will supply a macro package and examples of implementation for all types of manuscripts.

Proposals should be sent directly to the editor or to:
Birkhäuser Boston, 675 Massachusetts Avenue, Cambridge, MA 02139, U.S.A.
or to Birkhäuser Publishers, 40-44 Viadukstrasse, CH-4051 Basel, Switzerland

A Partial Listing of Books Published in the Series

Representation and Control of Infinite Dimensional Systems, Vol. I
A. Bensoussan, G. Da Prato, M. C. Delfour, and S. K. Mitter

Representation and Control of Infinite Dimensional Systems, Vol. II
A. Bensoussan, G. Da Prato, M. C. Delfour, and S. K. Mitter

Mathematical Control Theory: An Introduction
Jerzy Zabczyk
H$_\infty$-Control for Distributed Parameter Systems: A State-Space Approach
Bert van Keulen

Disease Dynamics
Alexander Asachenkov, Guri Marchuk, Ronald Mohler, and Serge Zuev

Theory of Chattering Control with Applications to Astronautics, Robotics, Economics, and Engineering
Mikhail I. Zelikin and Vladimir F. Borisov

Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures
J. E. Lagnese, Günter Leugering, and E. J. P. G. Schmidt

First-Order Representations of Linear Systems
Margreet Kuijper

Hierarchical Decision Making in Stochastic Manufacturing Systems
Suresh P. Sethi and Qing Zhang

Optimal Control Theory for Infinite Dimensional Systems
Xunjing Li and Jiongmin Yong

Generalized Solutions of First-Order PDEs: The Dynamical Optimization Perspective
Andrei I. Subbotin

Finite Horizon H_∞ and Related Control Problems
M. B. Subrahmanyam

Control Under Lack of Information
A. N. Krasovskii and N. N. Krasovskii

H$^\infty$-Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach
Tamer Başar and Pierre Bernhard

Control of Uncertain Sampled-Data Systems
Geir E. Dullerud

Robust Nonlinear Control Design: State-Space and Lyapunov Techniques
Randy A. Freeman and Petar V. Kokotović

Adaptive Systems: An Introduction
Iven Mareels and Jan Willem Polderman

Sampling in Digital Signal Processing and Control
Arie Feuer and Graham C. Goodwin
Ellipsoidal Calculus for Estimation and Control
Alexander Kurzhanski and István Vályi

Minimum Entropy Control for Time-Varying Systems
Marc A. Peters and Pablo A. Iglesias

Chain-Scattering Approach to H^∞-Control
Hidenori Kimura

Output Regulation of Uncertain Nonlinear Systems
Christopher I. Byrnes, Francesco Delli Priscoli, and Alberto Isidori

High Performance Control
Teng-Tiow Tay, Iven Mareels, and John B. Moore

Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations
Martino Bardi and Italo Capuzzo-Dolcetta

Stochastic Analysis, Control, Optimization and Applications: A Volume in Honor of W.H. Fleming
William M. McEneaney, G. George Yin, and Qing Zhang, Editors

Mutational and Morphological Analysis: Tools for Shape Evolution and Morphogenesis
Jean-Pierre Aubin

Stabilization of Linear Systems
Vasile Dragan and Aristide Halanay

The Dynamics of Control
Fritz Colonius and Wolfgang Kliemann

Optimal Control
Richard Vinter

Advances in Mathematical Systems Theory: A Volume in Honor of Diederich Hinrichsen
Fritz Colonius, Uwe Helmke, Dieter Prätzel-Wolters, and Fabian Wirth, Editors

Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes
Panagiotis D. Christofides

Foundations of Deterministic and Stochastic Control
Jon H. Davis

Partially Observable Linear Systems Under Dependent Noises
Agamirza E. Bashirov

Switching in Systems and Control
Daniel Liberzon
Matrix Riccati Equations in Control and Systems Theory
Hisham Abou-Kandil, Gerhard Freiling, Vlad Ionescu, and Gerhard Jank

The Mathematics of Internet Congestion Control
Rayadurgam Srikant

H^∞ Engineering and Amplifier Optimization
Jeffery C. Allen

Advances in Control, Communication Networks, and Transportation Systems:
In Honor of Pravin Varaiya
Eyad H. Abed

Convex Functional Analysis
Andrew J. Kurdila and Michael Zabarankin

Max-Plus Methods for Nonlinear Control and Estimation
William M. McEneaney

Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach
Alexey Pavlov, Nathan van de Wouw, and Henk Nijmeijer

Filtering Theory: With Applications to Fault Detection and Isolation
Ali Saberi, Anton A. Stoorvogel, and Peddapullaiah Sannuti

Representation and Control of Infinite-Dimensional Systems, Second Edition
Alain Bensoussan, Giuseppe Da Prato, Michel C. Delfour, and Sanjoy K. Mitter

Set-Theoretic Methods in Control
Franco Blanchini and Stefano Miani

Stability of Dynamical Systems: Continuous, Discontinuous, and Discrete Systems
Anthony N. Michel, Ling Hou, and Derong Liu

Control of Turbulent and Magnetohydrodynamic Channel Flows: Boundary Stabilization and State Estimation
Rafael Vazquez and Miroslav Krstic

Chang-Hee Won, Cheryl B. Schrader, and Anthony N. Michel

Numerical Methods for Controlled Stochastic Delay Systems
Harold J. Kushner