References

Apostol, T. [1962], *Calculus*, Blaisdell Publ. Co., Waltham, MA.

Bartle, R. G. and L. M. Graves [1952], Mappings between function spaces, Transactions of the American Mathematical Society, 72, 400–413.
References

Dini, U. [1877/78], *Analisi infinitesimale*, Lezioni dettate nella R. Università di Pisa.

Eckart, C. and G. Young [1936], The approximation of one matrix by another of lower rank, Psychometrika, 1, 211–218.
References

Goursat, Ed. [1904], A course in mathematical analysis, English translation by E. R. Hedrick, Ginn Co., Boston.

Halkin, H. [1974], Implicit functions and optimization problems without continuous differentiability of the data, SIAM Journal on Control, 12, 229–236.

Hurwicz, L. and M. K. Richter [2003], Implicit functions and diffeomorphisms without C^1, Advances in mathematical economics, 5, 65–96.

Ioffe, A. D. [2003a], On robustness of the regularity property of maps, Control and Cybernetics, 32, 543–554.

References

Kummer, B. [1991], An implicit-function theorem for $C^{0,1}$-equations and parametric $C^{1,1}$-optimization, Journal of Mathematical Analysis and Applications, 158, 35–46.

Levitin, E. S. [1992], *Perturbation theory in mathematical programming and its applications*, Nauka, Moscow (Russian).

Lewis A. S. [2001], Ill-conditioned inclusions, Set-Valued Analysis, 9, 375–381.

Rockafellar, R. T. [1967], Monotone processes of convex and concave type, Memoirs of the American Mathematical Society, 77, Providence, RI.

Rockafellar, R. T. [1976a], Monotone operators and the proximal point algorithm, SIAM Journal on Control and Optimization, 14, 877–898.

Ursescu, C. [1975], Multifunctions with convex closed graph, Czechoslovak Mathematical Journal, 25 (100), 438–441.

Notation

2C(4): formula (4) in Section 2C
\(\mathbb{R}\): the real numbers
\(\mathbb{N}\): the natural numbers
\(\mathcal{N}\): the collection of all subsets \(N\) of \(\mathbb{N}\) such that \(\mathbb{N}\ \setminus N\) is finite
\(\mathcal{N}^\infty\): the collection of all infinite subsets of \(\mathbb{N}\)
\(\{x^k\}\): a sequence with elements \(x^k\)
\(\varepsilon_k \downarrow 0\): a sequence of positive numbers \(\varepsilon_k\) tending to 0
\(\limsup_k C^k\): outer limit
\(\liminf_k C^k\): inner limit
\(|x|\): Euclidean norm
\(\|x\|\): any norm
\((x,y)\): canonical inner product, bilinear form
\(|H|\): outer norm
\(|H|^\infty\): inner norm
\(\mathcal{B}_{a}(x)\): closed ball with center \(x\) and radius \(r\)
\(\mathcal{B}\): closed unit ball
\(\text{cl } C\): closure
\(\text{int } C\): interior
core \(C\): core
\(\text{rc } C\): recession cone
\(P_C\): projection mapping
\(T_C(x)\): tangent cone
\(N_C(x)\): normal cone
\(K^*\): polar to cone \(K\), mapping adjoint to \(K\), space dual to \(K\)
\(K_C(x,v)\): critical cone
\(A^\top\): transposition
\(\text{rank } A\): rank
\(\ker A\): kernel
\(\det A\): determinant
\(d_C(x), d(x,C)\): distance from \(x\) to \(C\)
\(e(C,D)\): the excess of \(C\) beyond \(D\)
\(h(C,D)\): Pompeiu-Hausdorff distance
\(\text{dom } F\): domain
\(\text{rge } F\): range
\(\text{gph } F\): graph
\(\nabla f(x)\): Jacobian
\(Df(x)\): derivative
\mathcal{C}^k: the space of k-times continuously differentiable functions
$DF(x|y)$: graphical derivative
$D^*F(x|y)$: coderivative
$\text{clm}(f;x), \text{clm}(S;y|x)$: calmness modulus
$\text{lip}(f;x), \text{lip}(S;y|x)$: Lipschitz modulus
$\text{clm}_p(f;p;x)$: partial calmness modulus
$\text{lip}_p(f;p;x)$: partial Lipschitz modulus
$\text{reg}(F;x|y)$: regularity modulus
$\text{subreg}(F;x|y)$: subregularity modulus
Index

adjoint
 equation, 356
 upper and lower, 269
ample parameterization, 85
Aubin property, 159
 partial, 167

calmness
 isolated, 186
 partial, 25
Cauchy formula, 353
complementarity problem, 64
cone, 62
 critical, 98
 normal, 62
 polar, 64
 recession, 267
 tangent, 65
constraint qualification, 70
contraction mapping principle, 15
 for set-valued mappings, 284
convergence
 linear, 329
 of iterations under metric regularity, 328
 Painlevé–Kuratowski, 135
 Pompeiu–Hausdorff, 140
 quadratic, 331
 set, 134
 superlinear, 329
convex programming, 73

strict partial, 34
discretization, 359
distance, 28
 Pompeiu–Hausdorff, 138
to infeasibility, 322

Ekeland variational principle, 207
estimator, 38
 partial, 45
excess, 138

first-order approximation, 36
 partial, 45
function
 calm, 22
 convex, 66
 Lipschitz continuous, 5
 monotone, 106
 piecewise smooth, 93
 positively homogeneous, 88
 semidifferentiable, 89
 strictly differentiable, 31
 upper semicontinuous, 4

Galerkin method, 348
generalized equation, 62
generalized Jacobian, 238

homogenization, 323

implicit function theorem
 classical (Dini), 17
 for generalized equations, 79
 for local minima, 125
 for Newton iteration, 341
 for optimal control, 355
 for stationary points, 123
Goursat, 20
Robinson, 75
utilizing semiderivatives, 92
with first-order approximations, 79
with strong metric regularity, 180
with strong metric regularity in metric spaces, 294
implicit mapping theorem
for a constraint system, 221
with graphical derivatives, 211
with metric regularity, 172
with metric regularity in metric spaces, 286
with strong metric subregularity, 192
inner and outer limits, 134
inverse function theorem
beyond differentiability, 38
Clarke, 238
classical, 10
for local diffeomorphism, 48
Kummer, 240
symmetric, 24
with strong metric regularity in metric spaces, 292
with strong metric regularity, 179
inverse mapping theorem
with continuous and calm local selections, 300
with metric regularity, 169
with metric regularity in metric spaces, 280
with strong metric subregularity, 190
Karush–Kuhn–Tucker conditions, 72

Lagrange multiplier rule, 70
lemma
critical face, 229
discrete Gronwall, 360
Hoffman, 150
reduction, 98

Mangasarian–Fromovitz constraint qualification, 176
mapping
adjoint, 252
calm, 182
feasible set, 145
horizon, 323
inner semicontinuous, 142
linear, 5
Lipschitz continuous, 148
locally monotone, 181
maximal monotone, 335
optimal set, 145
optimal value, 145

outer Lipschitz continuous, 154
outer semicontinuous, 142
Painlevé–Kuratowski continuous, 142
polyhedral, 155
polyhedral convex, 150
Pompeiu–Hausdorff continuous, 142
positively homogeneous, 200
stationary point, 115
sublinear, 265
with closed convex graph, 259
metric regularity, 164
coderivative criterion, 246
derivative criterion, 205
of sublinear mappings, 265
strong, 179
metric subregularity, 182
derivative criterion for strong, 218
strong, 186
modulus
calmness, 22
Lipschitz, 26
metric regularity, 164
metric subregularity, 183
partial calmness, 25
partial uniform Lipschitz, 34
Nash equilibrium, 73
necessary condition for optimality, 69
Newton method, 11
uniform convergence, 337
for generalized equations, 327
nonlinear programming, 72
norm
duality, 270
outer and inner, 202
operator, 6
openness, 56
linear, 166
optimal control, 352
optimization, 67
parametric robustness, 88
projection, 28
proximal point method, 327
saddle point, 73
second-order optimality, 113
selection, 49
seminorm, 22
set
adsorbing, 259
convex, 27
locally closed, 169
polyhedral convex, 97
space
dual, 252
metric, 251
SQP method, 334

theorem
Baire category, 260
Banach open mapping, 253
Bartle–Graves, 298
Brouwer fixed point, 52
Brouwer invariance of domain, 47
correction function, 19
Graves, 276
Hahn–Banach, 270
Hildebrand–Graves, 58

Lyusternik, 275
Michael selection, 298
Minkowski–Weyl, 97
Nadler, 291
Nash–Moser, 310
radius for metric regularity, 317
radius for strong metric regularity, 319
radius for strong metric subregularity, 319
Robinson–Ursescu, 263
two-person zero-sum game, 73

variational inequality, 62
for a Nash equilibrium, 73
affine polyhedral, 100
Lagrangian, 71
monotone, 110