Index

A
Acute GvHD, 9–10
diagnosis, 10
management, 260–268
blockade of inflammatory stimulation and effectors, 266
graft-engineering reducing T-cell numbers, 263–264
prophylaxis strategies, 261–262
single agent CSP, 265
sirolimus, 265
T-cell activation and function, inhibition, 265–266
T-cell proliferation inhibition, 262–263
risk factors for development of, 9
therapy for, 10, 266–268
etanercept, 267–268
primary therapy, 267
steroid-resistant acute GvHD, 267
Acute leukemia, 220–221
adult patients, HSC source for, 245–246
pediatric patients, HSC source for, 242–243
Acute lymphoblastic leukemia (ALL), 458–465, 502–503
allogeneic HSCT for, indications, 12
DLI for, 502–503
HSCT in children and adolescents
allogeneic donor sources, 458
with Philadelphia chromosome positive, 459, 462
See also Adult ALL
Acute myelogenous leukemia (AML), role of HSCT in, 415–426, 500–502
allogeneic HSCT, 422–426
bone marrow versus peripheral blood stem cells, 424
cord blood transplantation, 426
haploidentical donor HSCT, 425–426
matched-unrelated donor HSCT, 425
role of conditioning regimen, 423
role of consolidation chemotherapy, 424
role of donor lymphocyte infusions, 425
T-cell depletion of the allograft, 424
autologous HSCT, 419–421
bone marrow versus peripheral blood, 421
consolidation therapy, role of, 420–421
purging stem cell products, role of, 420
in children and adolescents, 466–470
risk factors, 469
DLI for, 500–502
risk stratification of patients, 417–419
based on cytogentic markers, 418
prognostic markers, 418
Acute renal failure, 8
Acyclovir, 559
Adenovirus, 561
Adoptive T cell therapy
targeting leukemia associated antigens, 198–199
using gene-modified T cells, 199–200
Adriamycin, 331
Adult ALL, 441–449
allogeneic HSCT
alternative donor transplantation, 445–447
in first complete remission, 443–444
Philadelphia chromosome-positive, 444–445
575
Adult ALL (cont.)
- umbilical cord blood HSCT, 446
- unrelated donor HSCT, 445
- epidemiology and biology of, 441–442
- graft-versus-leukemia, 447
- opportunities for improving transplantation, 448
- treatment strategy, 449
Adults/Adult patients
- with acute leukemia, HSC source for, 245–246
- autotransplantation for multiple myeloma, 324–325
- with nonmalignant disease, HSC source for, 246–247
- unrelated donor UCB transplantation outcomes, 239–247
Alemtuzumab, 33, 217
Allele frequencies, HLA, 77–78
Allogeneic BM transplantation (BMT), 234
Allogeneic HSCT, 409–410
- for acute myelogenous leukemia, 422–426
- adult acute lymphoblastic leukemia, 443–446
in autologous HSCT treatment of NHL, 371–373
clinical indications for, 2
- distinctive characteristics of, 2
- GvT effect in, 2–3
for Hodgkin lymphoma
- with myeloablative conditioning, 409
- with reduced intensity conditioning, 410
historical perspectives, 1–3
HLA matching, 80–81
HLA typing in, 71–88,
See also Human leukocyte antigen (HLA)
- IPSS score, 428
for malignant patients, indications, 11–15
in multiple myeloma, 334–335
younger patients, 336
in NHL treatment, 359–360, 377–379
‘alternative donors’ instead of HLA-related siblings, 360
nonmyeloablative (NMA) conditioning regimens, 359
reduced-intensity conditioning (RIC) regimens, 359
for NonHodgkin Lymphoma
- RIT and, 309
nonrelapse complications, cellular therapy for, 506–511
principles, 1–15
technical aspects, 3–11
- conditioning, 6–7
- donor selection, 3–5
- stem cell acquisition, 5–6
- treatment-related toxicities, 7–11
umbilical cord blood transplantation, 86–87
unrelated donors, 83–86
See also Alternative conditioning regimens
Allogeneic NK cell therapy, 518–522
adoptive NK cell transfer with in vivo expansion, 520–521
determination of alloreactivity, 519–520
rationale, 518–519
strategies, 519
therapeutic limitations and future directions, 521–522
Allogeneic transplantation, 24
Allografting
- after myeloablative conditioning regimens, 334–339
- after nonmyeloablative/reduced intensity conditioning regimens, 339–343
Alloreactive T cells from HSCT, depletion, 196–197
depletion of Naı̈ve T cells, 196–197
immunotoxins, 196
monoclonal antibodies, 196
Allorcognition, 73–75
B Lymphocytes, 75
minor histocompatibility antigens, 73–75
by natural killer (NK) lymphocytes, 74
by T Lymphocytes, 73
direct allorecognition, 73
indirect HLA allorecognition, 73
mechanisms for, 73
semi-direct HLA allorecognition, 73
Alternative conditioning regimens for allogeneic HSCT, 209–218
See also Nonmyeloablative conditioning regimens; Reduced-intensity conditioning regimens
Alternative transplants, immune reconstitution following, 138–140
Amphotericin B, 551
Ancillary therapy, of chronic GvHD in humans, 289
Antibiotic lock prophylaxis, 548
Antin, J. H., 257
Anti-thymocyte globulin (ATG), 10
Aspergillosis, 8
Autologous HSCT, 399–409
for acute myelogenous leukemia, 419–421
chemotherapy sensitivity, 26–27
Hodgkin lymphoma HL, 26
non-Hodgkin’s lymphoma (NHL), 26
complications following, 35–37
AML incidence, 36
early complications, 35–36
engraftment syndrome, 35
hypogonadism, 36
immune system depression, 36
infertility in women, 36
late complications, 36–37
MDS incidence, 36–37
mucositis, 35
organ toxicity, 36
pancytopenia, 35
peri-transplant period infections, 35
pulmonary complications relating to TBI, 36
spermatozoa damage, 36
current concepts, 25–37
evolving rationale for, 25–37
GvHD, 24
hematopoietic progenitor cells (HPC), 29–33
indications for, 27
intensive therapy regimens in, 33–35
in multiple myeloma, 318–333
14q32 translocations, 327
bortezomib, 319
for elderly patients, 324–325
lenalidomide, 319
melphalan, 318–321
prognostic factors, 326–328
single versus tandem autologous transplants, 322–323
thalidomide, 319
in NHL treatment, 358–387, See also Diffuse large B-cell/aggressive lymphoma
allogeneic HSCT, 377–379, 381–383
follicular lymphoma, 374–377
mantle cell lymphoma, 379–383
peripheral T-cell lymphoma (PTCL), 383–387
transformed lymphoma, 377
transplant in first remission, 375–377, 380–381
patient selection, 25–26
post-autologous HSCT therapy, 37
preparative regimen for, 321
for primary refractory myeloma, 324
principles, 23–38
prognostic factors for Hodgkin lymphoma, 404–408
chemotherapy-sensitive disease role to salvage therapy, 406–408
presalvage therapy risk factors, 404–406
radioimmunotherapy (RIT) for, 300–303
high-dose 131I-RIT plus chemotherapy, 303
timing of, 27–28
MCL, 27
NHL, 27
tumor biology, 28
Autologous transplantation, 25
Autosomal encoded minor H antigens, GvL effect and, 192–193
Autotransplantation
for elderly patients, 324–325
prognostic factors, 326–328
for relapsed/refractory myeloma, 328–333
in renal failure patients, 325–326
B Baxter-Lowe, L. A., 71
B cells
in chronic GvHD, 285–286
enhanced CD86 expression after TLR9 stimulation, 285
improvement after CD20-specific antibody administration, 285
PDGFR phosphorylation, 287–286
HPE of, 134–135
immune reconstitution following HSCT, 135–140
regeneration, principles, 132
BCR-ABL specific T cells, GvL effect and, 193
B Lymphocytes, 75
Benign hematologic disorders, 223–224
nonmyeloablative transplantation
Besien, K. v., 209
Bierman, P. J., 357
Bishop, M. R., 1
Bone marrow stem cell acquisition, in allogeneic HSCT, 5–6
Bone marrow transplantation, natural Treg cells evaluation, 160–162
Bortezomib, 319
Bruno, B., 317
Brunstein, C., 233
Busulfan, 211–214, 217, 322–323, 339, 341, 420

C
Cairo, M. S., 455
Capillary electrophoresis (CE) separation tools
in HSCT proteomics, 108, 117
with mass spectrometry (CE-MS), in HSCT proteomics, 113–116
limitation of, 114–115
Caspofungin, 551–552
Catheter site dressing, 548
Catheter-associated bloodstream infections, 546
CD34+ stem cells, 421
CD4+CD25+ regulatory T cells (Treg cells), 155–158
CD94/NKG2 heterodimeric C-type lectin receptors, 52–53
Cell dose augmentation, UCB transplantation, 249–250
Cellular adoptive immunotherapy, 497–524
allogeneic HSCT, cellular therapy after, 506–511
depletion of GvHD effector cells, 508
ex-vivo costimulation and expansion for activated DLI, 510–511
genetic modification of donor T cells, 508
inactivation of GvHD effector cells, 508
low dose DLI and dose escalation, 507–508
lymphodepletion prior to DLI, 510 tumor-specific DLI, 509–510
autologous HSCT, activated T cell therapy after, 511–512
Central nervous system tumors, 478–480
DLI, see Donor leukocyte infusions
high-grade astrocytoma, 478
natural killer cell therapy, see Natural killer (NK) cell therapy
neuroectodermal tumors, 478–480
regulation of immune function, 522–524
mesenchymal stromal cells, 523–524
regulatory T cell therapy, 522–523
Chemokines and chemokine receptors, in graft-versus-host disease, 104
Chemotherapy sensitivity, autologous HSCT, 26–27

Children
sibling donor UCB transplantation outcomes in, 235–236
unrelated donor UCB transplantation outcomes in, 236–238
Chronic GvHD, 10–11, 277–291
biology, 277–291
categories of, 279
classification, 279–280
clinical presentation, 277–278
diagnosis, 278–279
requirements for, 278
experimental studies, 281–286
failure of negative selection in thymus, 281–286
immunobiology, 280–286
management of, 277–291
pathophysiology, 280–286
significance, 277–278
staging, 279–280
See also Humans, chronic GvHD in
Chronic Lymphocytic Leukemia (CLL), nonmyeloablative transplantation in, 222–223
Chronic Myelogenous Leukemia (CML), 219–220, 470–471
allogeneic HSCT for, indications, 12–13
DLI for, 498–499
disease-free survival after, 499
Cidofovir, 558
Cisplatin, 331
Cladribine, 221
Clinical significance of NK cell activity in unrelated donor hematopoietic stem cell transplantation, 60–62
Clostridium difficile, 541–542
diagnosis of, 542
treatment, 542
Common lymphoid progenitor (CLP), 142
Complications following autologous HSCT, 35–37
Conditioning, in allogeneic HSCT, 6–7
chemotherapy, 6
total body irradiation (TBI), 6
myeloablative conditioning, 6
nonmyeloablative conditioning, 7
radiation, 6
Cooley, S., 497
Cord blood transplantation, 426
Cyclophosphamide, 210–215, 303, 331, 420, 430
Cyclosporine, 10, 210, 287
Cytokine genes
 in graft-versus-host disease, 100–104
 Interferon gamma (IFNγ), 102
 Interleukin-1 (IL-1) family, 103
 Interleukin-10 (IL-10), 101–102
 Interleukin-6 (IL-6), 103
 Transforming growth factor β (TGFβ), 103–104
 Tumour necrosis factor alpha (TNFα), 100–101
 Tumour necrosis factor receptor II (TNFRII), 101
 in immune reconstitution following HSCT, 141–143
Cytomegalovirus (CMV), 559–561

D
 Dapsone, 557
 Daptomycin, 543
 Dendritic cells and reduced-intensity regimens, 218
 Dexamethasone, 330–331
 Dickinson Anne, M., 95
 Diffuse large B-cell/aggressive lymphoma (DLBCL), 358
 in autologous HSCT treatment of NHL, 367–373
 allogeneic HSCT, 371–373
 Donor activating KIR, in haploidentical transplantation, 59
 Donor leukocyte infusions (DLI), 145, 425
 for ALL, 502–503
 for AML, 500–502
 for CML, 498–499
 relapse after allogeneic bone marrow transplantation, 498
 complications of, 505–506
 graft-versus-host disease, 505
 marrow aplasia, 505–506
 Hodgkin’s lymphoma, 503–504
 for myelodysplasia, 502
 myeloma, 503
 non-Hodgkin’s lymphoma, 503
 to promote GvL effect, 188–189
 unrelated DLI, 504–505
 Donor selection for HSCT, 87–88
 killer immunoglobulin (Ig)-like receptors (KIR), 87–88
 Donor selection, in allogeneic HSCT, 3–5
 HLA matching, 3–4
 molecular typing techniques, 4
 umbilical cord stem cells advantages, 4
 disadvantage, 4
 from haploidentical family member, 4–5
 Durie-Salmon staging system, 326
E
 Edinger, M., 155
 Electrospray ionization (ESI), in HSCT proteomics, 108–109
 Engraftment syndrome, following autologous HSCT, 35
 Epstein–Barr Virus (EBV), 506
 Etanercept, 267–268
 Etoposide, 331
 Ewing’s Sarcoma, 481
 Exit site infection, 545
 Extracorporeal photopheresis (ECP), 218
F
 Failure of negative selection in thymus study using chronic GvHD, 281–286
 B cells role in, 285–286
 TGF-β role in, 283–285
 Farag, S. S., 47
 First complete remission (CR1), 28
 Fluconazole, 8, 550, 552
 Fludarabine, 211–215, 217, 339, 341, 520
 fludarabine-idarubicin-cytosine arabinoside, 221
 fludarabine-low dose busulfan, 213
 fludarabine plus busulfan, 215
 fludarabine plus melphalan, 211–212, 221
 Follicular lymphoma, 374–377
 Forman, S., 441
 Foss, F., 209
 Fourier transform ion cyclotron resonance (FT-ICR) analyzers, in HSCT proteomics, 108–109
 Fowler, D., 155
 Functionally defined T cell subsets, 155–177
G
 Ganciclovir, 560
 Gea-Banacloche, J. C., 539
 Gemtuzumab ozogamycin, 221
Gene-modified T cells, adoptive T cell therapy using, 199–200

Genetics, HLA, 76–78
 major histocompatibility complex (MHC), 76

Genito-urinary toxicities, in allogeneic HSCT, 8

Giralt, S., 1

Gopal, A. K., 299

Graft contamination with myeloma cells, 321–322

Graft-engineering, reducing T-cell numbers, 263–264

Graft failure, in allogeneic HSCT, 7

Graft rejection, in allogeneic HSCT, 7

Graft-versus-host disease (GvHD), 2, 209
 augmenting GvL responses without, 195–200
 biology, 257–268
 cytokine involvement in, 97–106
 See also Chemokines; Cytokine genes; Innate immunity
 management, 257–268
to miHA, 258–259
 modulation, recipient and donor genotypes in, 98
 prevention, Th2 cells for, 167–169
 reduced-intensity regimens reducing, 216–217
 T cell subsets in, 259–260
 regulatory T cells, 260
 T-cell responses in, 257–260
 Th2 cells to balance, 169–170
 Th2 cells to promote engraftment with reduced GvHD, 171–172
 See also Acute GvHD; Chronic GvHD

Graft-versus-leukemia (GvL) effect, 2, 209

after HSCT, 187–200
 adoptive T cell therapy, 198–199
 alloreactive T cells from HSCT, depletion, 196–197
 augmenting without GvHD, strategies for, 195–200
 donor lymphocyte infusions to promote, 188–189
 effector mechanisms, 189–195
 molecular targets of, 189–195
 T cells specific for minor histocompatibility antigens, 191–193
 vaccination for, 197–198

Graft-versus-myeloma effects and graft-versus-host disease, 343–345

Gross, T. G., 455

H

Haploidentical donor HSCT, 425

Haploidentical family member, donor selection from, 4–5

Haploidentical transplantation
 donor activating KIR in, 59
 NK cell alloreactivity in, 55–56

Haplo-mismatch KIR epitope match, 54–55

Haplo-mismatch KIR epitope mismatch, 54–55

Haplotypemismatched HSCT
 NK cell activity in, clinical significance, 56–59

Hedgehog signaling, 318

Hematologic malignancies, allogeneic HSCT for, 2

Hematopoietic progenitor cells (HPC), autologous HSCT using, 29–33

HPC grafts, purging, 32–33

HPC storage, 32
 mobilization, 29–30
 by chemotherapy, 29
 by cyclophosphamide, 30
 factors affecting, 30–31
 from peripheral blood, 31

Hematopoietic stem cells (HSC), 233–252
 for adult patients
 with acute leukemia, 245–246
 with nonmalignant disease, 246–247
 for pediatric patients
 with acute leukemia, 242–243
 with nonmalignant disease, 244–245

Hepatic toxicities, in allogeneic HSCT, 8–9

Herpes viruses, 558
 adenovirus, 561–562
 BK virus, 562
 cytomegalovirus, 559–561
 herpes simplex virus (HSV), 558–559
 human herpesvirus-6, 561
 human metapneumovirus, 564–565
 respiratory viruses, 563–564
 varicella-zoster virus, 559

Heterodimeric C-type lectin receptors, 49

Hexner, E. O., 497

High Performance Liquid Chromatography (HPLC), in HSCT proteomics, 108

High-dose ¹³¹I-RIT plus chemotherapy and autologous HSCT, 303

High-dose sequential therapy (HDS), 403
Index

High-grade astrocytoma, 478
Hodgkin lymphoma (HL), role of HSCT in, 26, 399–410
allogeneic HSCT, 409–410
indications, 14
in children and adolescents, 471–473
DLI for, 503
autologous HSCT in, 399–408
in first remission, 408
prognostic factors, 404–408
refractory disease, 401–404
relapsed disease, 399–401
Hodgkin’s lymphoma, nonmyeloablative transplantation in, 222–223
Hoffmann, P., 155
Homeostatic peripheral expansion (HPE), immunobiology, 144–146, 132–135
Human herpesvirus-6, 561
Human HSCT, treg cells evaluation in, 162–164
Human leukocyte antigen (HLA)/HLA typing, 78–80
allele frequencies, 77–78
diversity, 77
DNA-based typing, 79
expression, 72
functions, 72
HLA genetics, 76–78
HLA matching, allogeneic HSCT, 80–81
evaluation factors, 80
HLA loci, 80
level of resolution of the match, 80
HLA mismatches, allogeneic HSCT, see Unrelated donor typing, allogeneic HSCT
linkage disequilibrium, 77–78
nomenclature, 77–78, 79
related donors, 81–82
genetics, 81
tolerance to non-inherited maternal antigens, 82
transplant outcomes, 81–82
sequencing-based typing (SBT), 79
structure, 72
typing in allogeneic HSCT, 71–88
advancement, 71–88
clinical implications, 71–88
typing methods, 78–79
typing recommendations, 82
typing resolution, 79–80
See also Allorecognition
Human metapneumovirus, 564–565
Human NK cells, 48–53
CD94/NKG2 heterodimeric C-type lectin receptors, 52–53
heterodimeric C-type lectin receptors, 49
killer Ig-like receptors (KIR), 49–52
natural cytotoxicity receptors (NCR), 49
non-MHC class I specific activating receptors, 53
target cells, biology and recognition, 48–53
Humans, chronic GvHD in management, 286–290
outcomes, 290
prevention, 286–287
prognosis, 290
treatment, 287–289
ancillary therapy, 289
primary therapy, 287–288
secondary therapy, 288–289
supportive care, 289
Hurley, C. K., 71
Hypogonadism, following autologous HSCT, 36

I
Idarubicin, 215, 420
Immune reconstitution following HSCT augmenting, 140–146
clinical implications, 131–147
directing, 140–146
following alternative transplants, 138–140
homeostatic peripheral expansion, 144–146
T and B cell regeneration,
principles, 132
homeostatic peripheral expansion of regulatory T cells, 133–134
HPE, immunobiology, 132–135
See also B cells; T cells
thymic microenvironment, targeting, 143–144
Thymopoiesis, 140–144
Immune system depression, following autologous HSCT, 36
Immunogenomics in HSCT, 95–119
See also Post-HSCT complications, predicting
In vitro skin explant assay for GvHD prediction, 96
Indirect HLA allorecognition, 73
Infections, in allogeneic HSCT, 8
Infectious complications after HSCT, 539–565
bacterial infections caused by specific pathogens, 541–544
Clostridium difficile, 541–542
resistant gram-negative bacilli, 543–544
vancomycin-resistant enterococcus, 543
bacterial infections, prevention of, 539–541
antibacterial prophylaxis during neutropenia, 539–540
prophylaxis of pneumococcal disease, 540–541
fever management during neutropenia, 541
herpesviruses, see Herpesviruses
infectious complications of venous access devices, 544–549
antimicrobial impregnated catheters, 547
appropriate approach for obtaining blood cultures, 548–549
catheter-associated bloodstream infections, 546
catheter-associated infections, 544–545
exit site infections, 545
important approaches for prevention of, 547–548
safer catheter type, 547
surgically implanted central or peripheral venous port’s safety, 547
tunnel infections, 546
invasive fungal infections, diagnosis and management of, 552–556
empirical management of positive blood cultures with yeast, 552–553
invasive fungal infections, prevention of, 550–552
during neutropenia, 550
empirical addition of antifungal therapy, 551
GvHD, during treatment of, 551–552
pneumocystis infection, 556–557
viral infections, 557–565
Influenza, 564
Innate immunity, in graft-versus-host disease, 104–105

Intensive therapy regimens, in
HPC, 33–35
AML, 33
HL, 33
MCL, 33
NHL, 33
Interferon gamma (IFNγ), in graft-versus-host disease, 102
Interleukin-1 (IL-1) family, in graft-versus-host disease, 103
Interleukin-10 (IL-10), in graft-versus-host disease, 101–102
Interleukin-18 (IL-18) family, in graft-versus-host disease, 104
Interleukin-2 (IL-2) family, in graft-versus-host disease, 104
Interleukin-6 (IL-6), in graft-versus-host disease, 103
Interleukin-7 (IL-7) in graft-versus-host disease, 104
immunorestorative effects, 143
International Bone Marrow Transplant Registry (IBMTR), 222
International Prognostic Scoring System (IPSS), 426–428
Interval of immunodeficiency, UCB transplantation, 251–252
Iodine-131 (I-131) in HSCT therapy, 300
iodine-131 tositumomab/carmustine, etoposide, cytarabine, and melphalan (BEAM) transplantation program, 304–305
maximally tolerated dose (MTD) of, 302
131I tositumomab tiuxetan, 34
in autologous HSCT treatment of NHL, 364
Itraconazole, 8, 550

K
Kaplan-Meier method, 331–332
Keating, A., 23
Killer immunoglobulin (Ig)-like receptors (KIR), 49–52, 514
in HSCT donor selection, 87–88
in HSCT, 47–63
KIR-ligand mismatching
NK cell alloreactivity importance with, 60–61
Korngold, R., 257
Krauss, A. C., 131
Late complications, 387–389
 in allogeneic HSCT treatment of NHL, 388–389
 in autologous HSCT treatment of NHL, 387–389
Laughlin, M., 233
Lenalidomide, 319
Leukemia associated antigens, adoptive T cell therapy targeting, 198–199
Linezolid, 543
Linkage disequilibrium, HLA, 77–78
Liquid Chromatography (LC) coupled to MS, in HSCT proteomics, 111–112, 115
Ludarabine–Melphalan–Alemtuzumab, 212
Lymphoma, nonmyeloablative transplantation in, 222–223
Mackall C. L., 131
Major histocompatibility complex (MHC), 76
Malignant disease, HSCT in children and adolescents with, 455–486
 allogeneic HSCT for, 2
 hematologic malignancies, 458–474
 ALL, 458–465
 AML, 466–470
 CML, 470–471
 Hodgkin’s lymphoma, 471–474
 non-Hodgkin’s lymphoma, 471–474
 late effects, 485
 nonhematologic malignancies, 474–484
 central nervous system tumors, see Central nervous system tumors, 481
 miscellaneous tumors, 483–484
 neuroblastoma, 475–478
 sarcoma, see Sarcoma
 Wilms’ tumor, 483
 psychosocial issues, 484–485
 reduced intensity alloSCT, 457
Malignant patients
 allogeneic HSCT for, indications, 11–15
 ALL, 12
 AML, 12
 CML, 12–13
 hodgkin lymphoma, 14
 MDS, 13–14
 multiple myeloma, 14
 non-hodgkin lymphoma, 14
 solid tumors, 15
Mantle cell lymphoma (MCL), 379–383
 autologous HSCT for, 27–28
Maribavir, 561
Marrow aplasia, 505–506
Martin, P. J., 277
Matrix-assisted laser desorption/ ionization (MALDI), in HSCT proteomics, 108–109
Mathews, V., 415
Membranous nephropathy, 8
Mesenchymal stromal cells, 523–524
methotrexate, 10, 211
Methylprednisolone, 10
Metronidazole, 542
Micafungin, 550
Miller, J. S., 497
Minor histocompatibility antigen (miHA), 73–75, 257
 GvHD to, 258–259
 T cells specific for, 191–193
 autosomal encoded minor H antigens, 192–193
 HY encoded minor H antigens, 192
 ‘Missing ligand’ algorithm, in alloreactive donors, 61
Missing ligand model, 58
Molldrem J., 187
Moskowitz, C., 399
Mucositis complication following autologous HSCT, 35
Multiple myeloma
 allogeneic HSCT for, indications, 14
 allogeneic HSCT in, 334–335
 allografting after myeloablative conditioning regimens, 334–339
 autologous HSCT in, 318–333
 for recently diagnosed myeloma patients, 318–320
 graft-versus-myeloma effects and graft-versus-host disease, 343–345
 HSCT indications in, 317–345
 myeloablative allogeneic HSCT in, 338
 nonmyeloablative transplantation in, 223
Mycophenolate mofetil (MMF), 210
Myeloablative conditioning regimens
 allografting after, 334–339
 in allogeneic HSCT, 6
Myelodysplastic syndrome, role of HSCT in, 220–221, 426–432
 allogeneic HSCT for, indications, 13–14
 IPSS in, 427
Myelodysplastic syndrome (cont.)
transplantation outcomes, effect of age on, 427–432
conditioning regimens, 430
effect of IPSS on outcome, 427–428
effect of time to transplant from diagnosis, 429
myeloablative conditioning regimens, 430
nonmyeloablative conditioning regimens, 430–431
peripheral blood versus bone marrow, 432
role of alternate donor sources, 432
role of induction chemotherapy, 429
Myeloma, 503
graft contamination with myeloma cells, 321–322
HSCT indications in, 317–345
See also Multiple myeloma; Relapsed/Refractory myeloma
Myeloproliferative disorders, 219–220
N
Naïve T cells, 196–197
Natural cytotoxicity receptors (NCR), 49
Natural killer (NK) cell activity in HSCT, 47–63, 74, 512–513
alloreactivity
in haploidentical transplantation, 55–56
in HSCT, KIR ligands, mismatching, 53–55
clinical applications, 518
early autologous NK cell-based therapy, 518
donor activating KIR in haploidentical transplantation, 59
functions, 513–518
alloreactivity, 515
class I recognizing NK cell receptors, 54–515
cytokine production, 513–514
cytotoxicity, 514
development, 517
role of activating NK cell receptors, 515–517
self-tolerance, development of, 517
GvL effect and, 190–191
haplo-mismatch KIR epitope match, 54
haplo-mismatch KIR epitope mismatch, 54
in haplotype-mismatched HSCT, clinical significance, 56–59
NK cell alloreactivity in HSCT
KIR ligands, mismatching, 53–55
in unrelated donor HSCT, clinical significance, 60–62
See also Human NK cells; NK cell alloreactivity
Natural killer cell therapy, 512–522
allogeneic NK cell therapy, see Allogeneic NK cell therapy
immunologic principles, 513
NK cell functions, see Natural killer (NK) cells
Nephrotic syndrome, 8
Neuroblastoma, 475–478
Neuroectodermal tumors, 478
Neutropenia
antibacterial prophylaxis, 539–540
empirical addition of antifungal therapy, 551
fungal infections, 550
Nitazoxanide, 542
Non-Hodgkin’s lymphoma (NHL) treatment, 26, 471–474
allogeneic HSCT for, 359–360
indications, 14
autologous HSCT in, 358–359
peripheral blood as a source of, 359
See also Diffuse large B-cell/aggressive lymphoma
DLI for, 503
HSCT role in, 357–389
patient selection, 360–361
peri-transplant irradiation, 361
pretransplant considerations, 360–363
pretransplant cytoreduction, 361–362
stem cell mobilization and collection, 362–363
late complications, 387–389
transplant considerations, 363–367
See also under Transplant considerations
Nonmalignant disease
in adults, HSC source for, 246–247
allogeneic HSCT for, 2
pediatric patients with, HSC source for, 244–245
Non-MHC class I specific activating receptors, 53
Nonmyeloablative conditioning regimens, for allogeneic HSCT, 7, 210–214
Seattle nonmyeloablative transplant protocol, 211
Nonmyeloablative transplantation, 219–224
- acute leukemias, 220–221
- benign hematologic disorders, 223–224
- CLL, 222–223
- CML, 219–220
- Hodgkin’s lymphoma, 222
- Lymphoma, 222–223
- MDS, 220–221
- multiple myeloma, 223
- Nonmyeloablative/reduced intensity conditioning regimens, allografting after, 339–343
- Nonpolymorphic leukemia associated antigens, T cells specific for, 193
- Nonspecific tissue injury reduction in acute GvHD, 261–262
- Norton–Simon model, 33

O
- Optimal UCB graft, identification, 247–249
- Organ toxicity, following autologous HSCT, 36
- Osteosarcoma, 483

P
- Pancytopenia complication following autologous HSCT, 35
- PARMA trial, in autologous HSCT treatment of NHL, 367–368
- Patient selection, autologous HSCT, 25–26
- Pavletic, S. Z., 277
- Pediatric patients
 - HSC source for acute leukemia in, 242–243
 - HSC source for nonmalignant disease, 244–245
- Peggs, K. S., 131
- Pentostatin, 211, 218, 267
- Peripheral blood stem cell acquisition, 25, 195
 - in allogeneic HSCT, 5–6
- Peripheral blood, HPC collection from, 31
- Peripheral T-cell lymphoma (PTCL)
 - in allogeneic HSCT, 386–387
 - in autologous HSCT treatment of NHL, 383–387
 - transplant in first remission, 385–386
- Peri-transplant irradiation, in autologous HSCT treatment of NHL, 361–362
- Peri-transplant period infections, following autologous HSCT, 35
- Phillips, G. L., 357
- Plasma cell disorders, HSCT indications in, 317–345
- Pneumocystis pneumonia, 556
- Pneumocystis, 556
- Polymerase chain reaction (PCR), for predicting post-HSCT complications, 96
- Polymorphisms associated with HSCT, 105–106
 - restriction fragment length polymorphisms (RFLPs), 105
- Porter, D. L., 497
- Port-pocket infections, 545
- Posaconazole, 552
- Post-autologous HSCT therapy, 37
- Post-HSCT complications, predicting, 95–119
 - cytokine involvement in graft-versus-host disease, 97–106
 - See also under Graft-versus-host disease GvHD
 - PCR, 96
 - SSOP, 96
 - SSP amplification, 96
- Post-transplant considerations, in autologous HSCT treatment of NHL, 366–367
- Povidone iodine, 548
- Prednisone, 287
- Preparative regimen for autologous HSCT, 321
- Pretransplant cytoreduction, in autologous HSCT treatment of NHL, 361–362
- Primary refractory myeloma, autologous HSCT for, 324
- Primary therapy of chronic GvHD in humans, 287–288
 - Cyclosporine, 287
 - Prednisone, 287
 - Tacrolimus, 287
- Prophylaxis strategies, for acute GvHD, 261–262
- Proteomics in HSCT, 106–119
 - 2DE-MS, 110
 - basic considerations, 107–116
 - body fluids examination, 115
 - capillary electrophoresis (CE) separation tools, 108
 - CE-MS, 113–116
 - data evaluation, 108
 - ESI in, 108
Proteomics in HSCT (cont.)
FT-ICR analyzers in, 108
HPLC in, 108
ionization, 108
LC coupled to MS, 111–112, 115
MALDI in, 108
mass spectrometry, 108
sample preparation, 108
SDS-PAGE, 110–111
SELDI-MS, 112–113
separation, 108
SVM tools, 108, 117
tissue examination, 115
urine testing, 116
See also Post-HSCT complications, predicting

Purging, in autologous HSCT treatment of NHL, 365–366

R
Radioimmunotherapy (RIT)/
Radioimmunoconjugates in HSCT, 299–312
allogeneic HSCT for nonhodgkin lymphoma, 309
for autologous HSCT, 300–303
high-dose 131I-RIT, 300–303
high-dose 131I-RIT plus chemotherapy, 303
iodine-131 (I-131), 300
RIT based transplant conditioning regimens transplants for leukemia, 309–311
standard-dose 131I-RIT plus high-dose chemotherapy, 303–305
Yttrium-90 (Y-90), 300
Rapamycin, 173–174
Receptor for hyaluronic acid (HA) mediated motility (RHAMM/CD168), 195
Reduced-intensity conditioning regimens for allogeneic HSCT, 209–224
Fludarabine plus Melphalan, 211–212
fludarabine plus busulfan, 215
melphalan, 211–214
dendritic cells and, 218
outcomes of, 219–224
reducing GvHD in, 216–217
Alemtuzumab, 217
Busulfan, 217
Fludarabine, 217
Refactory disease, 401–404
HDS therapy, 403
tandem autologous transplantation, 403
Regulatory T cells (Treg cells), 155–166
CD4 $^+$ CD25 $^+$ regulatory T cells (Treg cells), 155–158
differential development, 159
Foxp3 for Treg cell generation, 156
in human HSCT, evaluation, 162–164
human Treg cell isolation strategies, 157
natural treg cells, evaluation, 160–162
peripheral induction of, 158–160
regenerating Treg cells after allogeneic HSCT, 164
research and therapy strategies and challenges in, 164–166
therapy, 522–523
See also Regulatory T cells

Relapsed disease, 399–401
Relapsed/Refractory myeloma, autotransplantation for, 328–333
Renal failure patients, autotransplantation in, 325–326
Respiratory viruses, 564
Restriction fragment length polymorphisms (RFLPs), 105
Rhabdomyosarcoma, 483
Ribavirin, 564
Riddell, S., 187
Rituximab, 34, 358, 364
Ruggeri, L., 47
S
Sarcoma, 481–483
eWing’s sarcoma, 481
osteosarcoma, 483
rhabdomyosarcoma, 483
SDS-PAGE, in HSCT proteomics, 110–111
Secondary therapy, of chronic GvHD in humans, 288–289
Semi-direct HLA allorecognition, 73
Sequence specific oligonucleotide probes (SSOP), for predicting post-HSCT complications, 96
Sequence specific primers (SSP) amplification, for predicting post-HSCT complications, 96
Sequencing-based typing (SBT), HLA, 79
Seshadri, T., 23
Severe combined immunodeficiency syndrome (SCID), 57, 82
Sibling donor UCB transplantation, outcomes in children, 235–236
Single versus tandem autologous transplants, 322–323
Sirolimus, in acute GvHD management, 265
Solid tumors, allogeneic HSCT for, indications, 15
Sorasio, R., 317
Standard-dose 131I-RIT plus high-dose chemotherapy and autologous HSCT, 303–305
Stem cell acquisition, in allogeneic HSCT, 5–6
from bone marrow, 5
dimethylsulfoxide (DMSO) processing, 6
from peripheral blood, 5–6
from umbilical cord blood, 5–6
Streptococcus pneumonia, 540
Sulfamethoxazole, 557
Support vector machines SVM tools, in HSCT proteomics, 108, 117
Supportive care, of chronic GvHD in humans, 289
Supratentorial primitive neuroectodermal tumors (Spnet), 478–480
Surface-enhanced laser desorption ionization mass spectrometry (SELDI-MS), in HSCT proteomics, 112–113
Sweetenham, J., 399
Systemic antibiotic prophylaxis, 548
T
T cells
differential development, 159
graft-engineering reducing, in acute GvHD, 263–264
immune reconstitution following HSCT, 135–140
proliferation inhibition, in acute GvHD, 262–263
regeneration, principles, 132
regulatory T cells, HPE of, 133–134
responses in GvHD, 257–260
T cell subsets, 259–260
specific for minor histocompatibility antigens, 191–193
specific for nonpolymorphic leukemia associated antigens, 193
BCR-ABL, 193
PR1, 194–195
RHAMM/CD168, 195
Wilms tumor gene (WT-1), 194
See also Functionally defined T cell subsets; Regulatory T cells; Th2 cells
Tacrolimus, 10, 287
Tallman, M. S., 415
Target cells, human NK cells, 48–53
Th2 cells, 166–175
to balance GvHD and GvT effects, 169–170
for GvHD prevention, 167–169
to promote engraftment with reduced GvHD, 171–172
Th1/Th2 balance in transplantation biology, 167–175
Th1/Th2 cell biology, 166–167
Th2 cell research and therapy, 172–175
feasibility issues, 177
strategies and challenges, 175–177
therapeutic issues, 176–177
Th17 cells, peripheral induction of, 158–160
Thalidomide, 319, 331
Thrombotic microangiopathy, 8
Thymic-dependent immune reconstitution, 143–144
Thymic irradiation, 210
Thymopoiesis, 140–144
common progenitors re-defined, 140–141
cytokines, 141–143
IL-7, 143
Tigecycline, 543
Time-of-flight (TOF), in HSCT proteomics, 109
Timing of autologous HSCT, 27–28
T lymphocytes, allore cognition by, 73
foreign peptide activating, 74
Total body irradiation (TBI), 209–218, 423, 430
in autologous HSCT treatment of NHL, 364
conditioning, in allogeneic HSCT, 6–7
Transforming growth factor β (TGFβ)
in chronic GvHD, 283–285
in graft-versus-host disease, 103–104
Transplant considerations
in autologous HSCT treatment of NHL, 363–367
allogeneic HSCT, 365
conditioning regimens, 363–365
double (tandem) autologous HSCT, 364
post-transplant considerations, 366–367
purging, 365–366
total body irradiation (TBI), 364
Transplantation technology, 24–25
14q32 translocations, in myeloma patients, 327
Treatment-related mortality (TRM), 334
UCB transplantation, 250–251
Treatment-related toxicities, in allogeneic HSCT, 7–11
acute GvHD, 9–10
chronic GvHD, 10–11
genito-urinary toxicities, 8
graft failure, 7
graft rejection, 7
hepatic toxicities, 8–9
infections, 8
with cytomegalovirus (CMV), 8
late complications, 11
ursodiol, 8
venoocclusive disease (VOD), 8
Treg cells, see Regulatory T cells
Treosulfan, 221
Tricot, G., 317
Trimethoprim, 557
Tse, W., 233
Tumor biology, autologous HSCT and, 28
Tumour necrosis factor alpha (TNFA), in graft-versus-host disease, 100–101
Tumour necrosis factor receptor II (TNFRII), in graft-versus-host disease, 101
Tunnel infection, 545–546
Two dimensional gel electrophoresis followed by MS (2DE-MS), in HSCT proteomics, 110
Typing resolution, HLA, 79–80
Umblical cord blood (UCB) transplantation, 233–252
in allogeneic HSCT donor selection, 4–5
cell dose augmentation, 249–250
children
sibling donor UCB transplantation, 235–236
in HLA typing, 86–87
Hurler syndrome, 245
infantile Krabbe’s disease, 244
interval of immunodeficiency reduction, 251–252
Krabbe’s disease, 245
optimal UCB graft, identification, 247–249
research priorities, 249–252
risk reduction of TRM, 250–251
See also Unrelated donor UCB transplantation
Umbilical cord blood stem cell acquisition, in allogeneic HSCT, 5–6
Unrelated donors HSCT
NK cell activity in, clinical significance, 60–62
KIR-ligand mismatching, 60–61
Unrelated donor typing, allogeneic HSCT, 83–86
HLA loci, comparison, 83–84
HLA typing, 83
limitations, 85–86
molecular characteristics of, 85
non-HLA factors to consider, 85–86
number of mismatches, 84
transplant outcomes, 83
Unrelated donor UCB transplantation in adults, 239–247
in children, 236–238
Urine testing, in HSCT proteomics, 116
V
Vaccination to augment GvL effect, 197–198
Vancomycin, 542
Vancomycin-resistant enterococcus (VRE), 543
Varicella-Zoster Virus (VZV), 559
Vaughan, W., 23
Venoocclusive disease (VOD), 8–9
Vincristine, adriamycin, and dexamethasone (VAD), 328
Vincristine, carmustine, melphalan, cyclophosphamide, and prednisone (VBMCP) regimen, 328
Voriconazole, 551–552
W
Wade, J. C., 539
Wagner, J. E., 233
Weisdorf, D., 441
Weissinger, E. M., 95
Wilms’ tumor, 194, 483, 509
Winter, J. N., 299
Y
90Y ibritumomab tiuxetan, 34
in autologous HSCT treatment of NHL, 364
Yttrium-90 (Y-90) dose-escalated yttrium-90 ibritumomab tiuxetan, 305–308
escalated RIT and chemotherapy, 306
in HSCT therapy, 300
RIT alone, 306
standard dose RIT and chemotherapy, 306
standard dose Yttrium-90 ibritumomab tiuxetan, 308–309

Z
Zangari, M., 317
Zhang, S., 47
Zygomycosis, 553–554