References

Index

acf, see autocorrelation
acute effect, 5
adjusting for measured confounders, 60, 77
temperature, 77
adjusting for unmeasured confounders, 35, 62, 72
season, 82
American Cancer Society study, 5
autocorrelation, 47
cacher package, 21, 112
case-crossover study, 2
overlap bias, 3
chronic effect, 4, 6
cohort study, 4
degrees of freedom, 37, 38
choosing, 39, 84, 88, 128
distributed lag model, 74
cumulative effect, 76
temperature, 78
GAM, see generalized additive model
generalized additive model, 71
asymptotically exact standard error, 88
Harvard Six Cities Study, 4
iHAPSS, see Internet-based Health and Air Pollution Surveillance System
Internet-based Health and Air Pollution Surveillance System, 9
lazy-loading, 24
MCAPS package, 14, 100, 103, 104, 108
Medicare Air Pollution Study, 14
National Morbidity, Mortality, and Air Pollution Study, 9
natural spline, 36
natural spline, 92
NMMAPS, see National Morbidity, Mortality, and Air Pollution Study
NMMAPSdata package, 118
NMMAPSlite package, 8, 9, 41, 45
Baltimore, Maryland, 41
Chicago, Illinois, 53, 70, 74
Denver, Colorado, 84
Detroit, Michigan, 51, 90
New York City, New York, 62, 78
Salt Lake City, Utah, 32
Normal approximation to likelihood, 102
ozone, 45
sampling pattern, 46
panel study, 3
particulate matter, 41
sampling pattern, 42
penalized spline, 37, 92
Poisson model, 69
pollutant data processing, 11
R packages, 8
installing in nonstandard directory, 8
Index

reproducible research, 19
cached computation, 21
smooth function of time, 72, 82
smoothing spline, 37, 92
spatial correlation model, 108
time series data, 32, 42, 44
time series study, 2
potential confounding, 35
time-varying effects, 121
timescale, 32
 decomposition, 33, 50, 51
tsdecomp function, 53
tsModel package, 8, 103
Statistical Analysis of Environmental Space-Time Processes

Nhu D. Le and James V. Zidek

This book provides a broad introduction to the subject of environmental space-time processes, addressing the role of uncertainty. It covers a spectrum of technical matters from measurement to environmental epidemiology to risk assessment. It showcases non-stationary vector-valued processes, while treating stationarity as a special case. In particular, with members of their research group the authors developed within a hierarchical Bayesian framework, the new statistical approaches presented in the book for analyzing, modeling, and monitoring environmental spatio-temporal processes.

Survival and Event History Analysis
A Point Process View

Odd Aalen, Ørnulf Borgan, and Håkon Gjessing

The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data.

Applied Spatial Data Analysis with R

Roger S. Bivand, Edzer J. Pebesma, and Virgilio Gómez-Rubio

This book is divided into two basic parts, the first presenting R packages, functions, classes and methods for handling spatial data. The second part showcases more specialised kinds of spatial data analysis, including spatial point pattern analysis, interpolation and geostatistics, areal data analysis and disease mapping. The coverage of methods of spatial data analysis ranges from standard techniques to new developments, and the examples used are largely taken from the spatial statistics literature. All the examples can be run using R contributed packages available from the CRAN website, with code and additional data sets from the book’s own website.

2008. Approx 400 pp. (Use R!) Softcover