References

Index

Active inductors
- Bodé plots, 30
- self-resonant frequency, 27, 30
- single-ended gyrator-C active inductors, 21

Active inductors and transformers, 17
- advantages, 17
- applications, 18
- drawbacks, 19

Active termination, 7

Bandpass filters
- characterization, 150
 - 1 dB compression points, 152
 - bandwidth, 150
 - frequency selectivity, 158
 - frequency tuning, 158
 - noise bandwidth, 156
 - noise bandwidth of 1st-order low-pass filters, 156
 - noise bandwidth of 2nd-order bandpass filters, 157
 - noise figures, 153
 - spurious-free-dynamic-range, 158
 - third-order intercept points, 152

- configurations, 159
 - differential, 160
 - single-ended, 160

- Thanachayanont bandpass filters, 162
- Thanachayanont-Payne bandpass filters, 163
- Weng-Kuo bandpass filters, 165
- Wu bandpass filters, 160
- Xiao-Schaumann bandpass filters, 163

Bandwidth improvement, 4

Basic transconductors, 22
- common-drain, 22
- common-gate, 22
- differential pairs, 22

Boltzmann constant, 44

CMOS active inductors
- Abdalla feedback resistance active inductors, 85
- active inductors with low supply voltage sensitivity, 87
- basic gyrator-C active inductors, 56
 - frequency range, 58
 - quality factor, 57
 - self-resonant frequency, 57
 - voltage swing, 60
- basic transconductors, 22
- Carreto-Castro active inductors, 75
cascades, 38
charaterization, 29
 - average quality factor, 43
 - frequency range, 29
 - inductance tunability, 30
 - instantaneous quality factor, 35
 - linearity, 50
 - noise, 44
 - noise of transconductors, 44
 - normalized parameter sensitivity, 54
 - normalized sensitivity, 53
 - normalized supply voltage sensitivity, 53
 - parameter sensitivity, 53
 - power consumption, 55
 - quality factor, 35
 - quality factor improvement, 37
 - signal sensitivity, 55
 - stability, 51
 - supply voltage sensitivity, 52

Class AB active inductors, 95
- feedback resistance cascode active inductors, 84
- feedback resistance floating active inductors, 93
- Grözing floating active inductors, 89
- gyrator-C active inductors, 22
Hara active inductors, 62
Karsilayan-Schaumann active inductors, 68
lossless, 68
lossy, 70
variations, 71
Lin-Payne active inductors, 62
lossless floating gyrator-C active inductors, 22
lossless single-ended gyrator-C active inductors, 21
lossy floating gyrator-C active inductors, 28
lossy single-ended gyrator-C active inductors, 25
Lu floating active inductors, 89
Mahmoudi-Salama floating active inductors, 91
Manetakis regulated cascode active inductors, 82
Nair active inductors, 86
Ngow-Thanachayanont active inductors, 62
principles, 21
quality factor, 42
quality factor of compensated active inductors, 42
self-resonant frequency, 27
Thanachayanont floating active inductors, 90
Thanachayanont-Payne cascode active inductors, 77
Uyanik-Tarim active inductors, 74
Weng-Kuo cascode active inductors, 82
Wu current-reuse active inductors, 60
Wu folded active inductors, 65
Yodprasit-Ngarmnil active inductors, 72
CMOS active transformers
active transformers with low V_{DD} sensitivity, 137
basic active transformers, 132
characterization, 116
coupling factors, 120
current transfer, 122
frequency range, 117
impedance transformation, 123
inductance tunability, 119
linearity, 129
noise, 125
parameter sensitivity, 130
power consumption, 131
quality factor, 127
stability, 117
supply voltage sensitivity, 129
turn ratios, 119
voltage transfer, 120
class AB active transformers, 143
lossless floating active transformers, 106
mutual inductances, 107
self inductances, 107
lossless single-ended active transformers, 102
mutual inductances, 104
self inductances, 104
lossy single-ended active transformers, 107
mutual inductances/resistances, 110
self inductances/resistances, 110
multiple primary windings, 112
multiple secondary windings, 115
multiple windings, 112
Tang active transformers, 135
Corner analysis, 54
Corner frequency of 1/f noise, 44
Critical node, 4
Critically damped, 4
Current-mode class A transmitters, 179
Current-mode class AB transmitters, 181
Current-mode loop filters, 241
challenges, 243
Current-mode signaling, 6
Cutoff frequency of transconductors, 27
Distributed amplification, 6
Duty cycle, 242
Eddy currents, 12
Frequency selection, 10
Gain boosting, 10
Gate series resistance, 44
Gyrator-C networks, 21
Gyrators, 21
Impedance matching, 6, 7
broad-band impedance matching, 7
narrow-band impedance matching, 8
Impulse sensitivity function, 198
Inductive peaking, 4
series peaking, 4
shunt peaking, 4
LC oscillators, 4
LC tank loads, 10
LC tanks, 192
Limiting amplifiers
Chen-Lu limiting amplifiers, 173
Söckinger-Fischer limiting amplifiers, 172
Wu limiting amplifiers, 174
Linear phase detectors, 233
Loop gain, 192
Lossless floating gyrator-C active inductors, 22
Lossless gyrator-C networks, 21
INDEX

Lossy floating gyrator-C active inductors, 28
Lossy single-ended gyrator-C active inductors, 25
Low-noise amplifiers, 169
termination, 8
Monte Carlo analysis, 54
Mutual inductances, 13
Negative resistors, 39, 58, 59
differential, 59
single-ended, 59
negative resistors, 193
Optical front-ends, 171
Oscillators
amplitude-limiting mechanism, 195
Barkhausen criteria, 192
closed-loop transfer function, 192
LC oscillators, 192
LC oscillators with active inductors, 211
phase noise, 195
Hajimiri model, 198
Lee son model, 195
Razavi model, 196
Weigandt model, 196
quadrature LC oscillators with active inductors, 222
quadrature LC oscillators with active transformers, 224
ring oscillators, 193
ring oscillators with active inductors, 199
cross-coupled, 202
Park-Kim oscillators, 205
source-coupled, 200
ring oscillators with active transformers, 219
ring oscillators with Gr"oezing active inductors, 215
ring oscillators with Karsilay yan-Schaunn active inductors, 216
ring oscillators with Lin-Payne active inductors, 215
ring oscillators with Lu active inductors, 218
ring oscillators with Wu current-reuse active inductor, 214
Over damped, 4
Phase shifters, 9, 175
Abdalla active inductor phase shifter, 178
basic configuration, 176
insertion loss, 9
Lu-Liao active inductor phase shifter, 177
phase shift range, 9
return loss, 9
Phase-locked loops, 232
classifications, 232
current-mode PLLs, 232
type I PLLs, 232
type II PLLs, 232
voltage-mode PLLs, 232
current-mode PLLs with active inductors, 241
current-mode filtering, 242
loop dynamics of type I, 244
loop dynamics of type II, 247
phase noise, 251
voltage-mode filtering, 242
current-mode PLLs with active transformers, 260
current-mode loop filters with active transformers, 261
damping factor, 265
loop bandwidth, 265
loop dynamics, 264
phase noise, 268
loop dynamics of type I voltage-mode PLLs, 233
damping factor, 234
loop bandwidth, 234
loop dynamics of type II voltage-mode PLLs, 235
damping factor, 236
loop bandwidth, 236
poles, 236
loop dynamics of voltage-mode PLLs, 233
phase noise simulation, 240
phase noise of voltage-mode PLLs, 238
Bode plots, 239
transfer functions, 238
Post-equalization, 183, 185
Power dividers, 11
Wilkinson power divider, 11
Pre-emphasis, 183, 184
QPSK, 186
QPSK modulators, 185
RLC transformation, 41
SAW filters, 10, 149
Self inductances, 12
Serial data links, 178
pre-emphasis, 178
pre-processing, 178
serialization, 178
transmission, 178
Shunt termination, 7
Skin effect, 12
Spiral inductors and transformers, 11
drawbacks of spiral inductors, 15
lumped circuit model of planar spiral inductors, 12
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>lumped circuit model of spiral transformers</td>
<td>14</td>
</tr>
<tr>
<td>performance of stacked spiral inductors</td>
<td>13</td>
</tr>
<tr>
<td>planar spiral inductors</td>
<td>12</td>
</tr>
<tr>
<td>quality factor</td>
<td>15</td>
</tr>
<tr>
<td>self-resonant frequency</td>
<td>16</td>
</tr>
<tr>
<td>silicon area</td>
<td>16</td>
</tr>
<tr>
<td>stacked spiral inductors</td>
<td>12</td>
</tr>
<tr>
<td>stacked spiral transformers</td>
<td>13</td>
</tr>
<tr>
<td>Transceivers</td>
<td>178</td>
</tr>
<tr>
<td>Under damped</td>
<td>4</td>
</tr>
<tr>
<td>Underpass capacitances</td>
<td>12</td>
</tr>
<tr>
<td>Varactors</td>
<td>31, 32</td>
</tr>
<tr>
<td>accumulation-mode MOS varactors</td>
<td>32</td>
</tr>
<tr>
<td>junction varactors</td>
<td>31</td>
</tr>
<tr>
<td>quality factors</td>
<td>31</td>
</tr>
<tr>
<td>sideview - n+/p-well</td>
<td>33</td>
</tr>
<tr>
<td>sideview - p+/n-well</td>
<td>32</td>
</tr>
<tr>
<td>Voltage-mode circuits</td>
<td>6</td>
</tr>
<tr>
<td>Worst-case analysis</td>
<td>54</td>
</tr>
</tbody>
</table>
Fei Yuan received the Ph.D. degree in electrical engineering from University of Waterloo, Canada in October 1999. He is currently an Associate Professor in the Department of Electrical and Computer Engineering, Ryerson University, Toronto, Canada. He is the author of the book *CMOS Current-Mode Circuits for Data Communications* (Springer, New York, 2006), the co-author of the book *Computer Methods for Analysis of Mixed-Mode Switching Circuits* (with Ajoy Opal, Kluwer Academic Publishers, Boston, 2004), and the author / co-author of over 120 refereed journal and conference papers in the field of mixed-mode circuits.

Dr. Yuan is the recipient of the Ryerson Research Chair award from Ryerson University in 2005, the Research Excellence award from the Faculty of Engineering, Architecture, and Science of Ryerson University in 2004, the Doctoral Scholarship from Natural Science and Engineering Research Council (NSERC) of Canada during 1997-1998, and the Teaching Excellence award from Changzhou Institute of Technology, Jiangsu, China in 1988. He has been an Adjunct Professor at University of Waterloo since 2000. Dr. Yuan is a registered professional engineer in the province of Ontario, Canada and a senior member of IEEE.