References

1. http://www.energybulletin.net/

References

References

342. Takahara, S., Miyamoto, S.: An adaptive tabu search (ATS) and other metaheuristics for a class of optimal allocation problems. Journal of Advanced Computational Intelligence and Intelligent Informatics (JACIII) 3(1), 21–27 (1999)
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Dual-K Based Algorithm for Gate Leakage Optimization, 271</td>
</tr>
<tr>
<td>Activity factor (AF), 90</td>
</tr>
<tr>
<td>Advantages of High-Level Synthesis, 10</td>
</tr>
<tr>
<td>ALAP Scheduling, 19</td>
</tr>
<tr>
<td>Algorithmic level, 7</td>
</tr>
<tr>
<td>Allocation Phase, 13</td>
</tr>
<tr>
<td>Altera - Quartus, 46</td>
</tr>
<tr>
<td>AMPL language, 19</td>
</tr>
<tr>
<td>Ant Colony Scheduling (ACS), 30</td>
</tr>
<tr>
<td>Architectural Scaling, 91</td>
</tr>
<tr>
<td>Architecture, 7</td>
</tr>
<tr>
<td>Architecture-Driven Voltage Scaling, 156</td>
</tr>
<tr>
<td>Architecture-Level Estimation, 84</td>
</tr>
<tr>
<td>ASAP Scheduling, 19</td>
</tr>
<tr>
<td>Assignment Phase, 13</td>
</tr>
<tr>
<td>Automata-Based Symbolic Scheduling, 31</td>
</tr>
<tr>
<td>Average Power, 132, 201</td>
</tr>
<tr>
<td>Average Power Reduction, 135, 143, 163</td>
</tr>
<tr>
<td>Band-to-Band (BTBT) Tunneling, 54</td>
</tr>
<tr>
<td>Battery Efficiency, 134</td>
</tr>
<tr>
<td>Battery Life, 134</td>
</tr>
<tr>
<td>Behavioral Level, 7</td>
</tr>
<tr>
<td>Binding Phase, 13</td>
</tr>
<tr>
<td>BlueSpec - ESEComp, 45</td>
</tr>
<tr>
<td>Body Biasing Technique, 152</td>
</tr>
<tr>
<td>Caches, 120</td>
</tr>
<tr>
<td>CACTI Dynamic Power Model for Caches, 120</td>
</tr>
<tr>
<td>Cadence - NC-SC, 45</td>
</tr>
<tr>
<td>Cadence - NC-Verilog, 45</td>
</tr>
<tr>
<td>Cadence - NC-VHDL, 45</td>
</tr>
<tr>
<td>Celoxica - Agility Compiler, 45</td>
</tr>
<tr>
<td>Chaining, 31</td>
</tr>
<tr>
<td>Chip Fabrication, 5</td>
</tr>
<tr>
<td>Circuit Level, 7</td>
</tr>
<tr>
<td>Clique Partitioning Problem, 33</td>
</tr>
<tr>
<td>Clock Gating, 99, 101, 161</td>
</tr>
<tr>
<td>Clock Power, 108</td>
</tr>
<tr>
<td>CMOS technology trend, 48</td>
</tr>
<tr>
<td>Compilation Phase, 12, 14</td>
</tr>
<tr>
<td>Control Data Flow Graph (CDFG), 14</td>
</tr>
<tr>
<td>Control Synthesis, 38</td>
</tr>
<tr>
<td>Cooling Costs, 135</td>
</tr>
<tr>
<td>CPF Modeling using Cycle-to-Cycle Gradient, 229</td>
</tr>
<tr>
<td>CPF Modeling using Mean Deviation, 226</td>
</tr>
<tr>
<td>Critical Blue - Cascade, 45</td>
</tr>
<tr>
<td>Currents in a Nano-CMOS device, 49</td>
</tr>
<tr>
<td>Cycle Difference Power, 132</td>
</tr>
<tr>
<td>Cycle Power Function (CPF), 225</td>
</tr>
<tr>
<td>Data path power estimation, 91</td>
</tr>
<tr>
<td>Design For Manufacturing (DFM), 5</td>
</tr>
<tr>
<td>Design-optimization-aware Estimation, 100</td>
</tr>
<tr>
<td>Direct tunneling, 55</td>
</tr>
<tr>
<td>Drain-Induced Barrier Lowering (DIBL), 51</td>
</tr>
<tr>
<td>Driving Factors for Low-Power Design, 134</td>
</tr>
<tr>
<td>Dual-J_{on} Based Algorithm for Gate Leakage Optimization, 265</td>
</tr>
<tr>
<td>Dual-V_{fth}-Based Prioritization Algorithm, 274</td>
</tr>
<tr>
<td>Dynamic Clocking Unit Design, 148</td>
</tr>
<tr>
<td>Dynamic Frequency, 140</td>
</tr>
<tr>
<td>Dynamic Frequency Clocking, 148</td>
</tr>
<tr>
<td>Dynamic Power Dissipation, 59</td>
</tr>
<tr>
<td>Dynamic Power Estimation, 90</td>
</tr>
<tr>
<td>Dynamic Power Modeling, 90</td>
</tr>
<tr>
<td>Dynamic Threshold CMOS (DTCMOS), 150</td>
</tr>
<tr>
<td>Early prediction, 85</td>
</tr>
<tr>
<td>EDP Modeling of a DFG, 166</td>
</tr>
<tr>
<td>Effect of Variation on Power, 103</td>
</tr>
</tbody>
</table>

299
Effective tunneling capacitance, 64
Electromigration, 134
Energy Delay Product (EDP), 133
Energy Per Cycle, 132
Energy Reduction, 135, 143, 163
Environmental Concerns, 135
Estimation of Bounds on Average Power, 94

Force Directed Scheduling, 25
Forte Design Systems - Cynthesizer, 44
Fowler-Nordheim tunneling, 55
Frequency Scaling, 140, 141
Gambit software, 27
Game Theory Scheduling, 26
Gate oxide leakage, 60
Gate Oxide Tunneling, 55
Gate-Induced Drain Leakage (GIDL), 52
Gate-Oxide Leakage, 97
Gate-oxide Leakage Estimation, 95
Gate-oxide Leakage Modeling, 95
Gate-Oxide Reduction using Dual-κ Technique, 271
Gate-Oxide Reduction Using Dual-\(T_{ox}\) Technique, 262
Genetic Algorithm Scheduling, 30
Glitch power, 89
Graph Coloring Problem, 33
Guarded Evaluation, 159

Heuristic Based Scheduling Algorithm for Energy Minimization, 176
Heuristic Based Scheduling for Transient Power Reduction, 232
Hierarchical Conditional Dependency Graph (HCDG), 14
Hierarchical power modeling, 72
High Level Synthesis Tools, 44
High-Level, 7
High-level synthesis, 10
High-Level Synthesis Benchmarks, 38
High-Level Synthesis Flow for Gate Leakage Reduction, 264
HLS Example, 14
HLS Fundamentals, 5
HLS Phases, 11
Hot Electron Effects, 134
Hot-Carrier Injection, 53
Hot-spot detection, 85

I/O Power, 107
ILP Formulation for CPF\(_{MVDFC}\), 246
ILP Formulation for CPF\(_{MVMC}\), 249
ILP Formulation for Peak Power, 205
ILP Formulations for EDP, 168
ILP Formulations For Simultaneous Peak and Average Power, 215
ILP Formulations to Minimize (CPF\(_*\)), 246
ILP-Based Scheduler for Peak Power, 207
ILP-Based Scheduler For Simultaneous Peak and Average Power, 216
ILP-Based Scheduling Algorithm for CPF\(_*\) Minimization, 251
Increased Parallelism, 156
Increased Pipelining, 156
Inductive Noise, 134
Integer Linear Programming (ILP) Based Scheduling, 19, 165
Integer linear programming (ILP) based scheduling, 163
Interconnect Power, 161
IR drop, 134

Junction Reverse Bias Current, 50
Layout Level, 7
Leakage Modeling, 94
Leakage Power Dissipation, 59
Leakage Power Reduction, 137, 261
Left Edge Algorithm, 35
Level Converter Design, 146
Levels of Design Abstraction, 7
Linear Programming (LP) Modeling of Absolute Deviation, 244
Linear Programming Modeling of Fractions, 245
Linear Programming Modeling of Non-linearities, 244
List-Based Scheduling, 23
Logic Level, 7
Logic level power dissipation, 59
Long Channel Transistors, 102
LP-Solve, 19

Macro-modeling, 88
Macromodeling for Dynamic Power, 93
Maximum Instantaneous Power, 132
Maximum Sustained Power, 132
Maximum Weight Independent Set Problem Heuristic for Dual-\(V_{TH}\), 276
Mean Time to Failure (MTF), 134
Mentor Graphics - CatapultC, 44
Minimum Power, 132
Mobility, 19
Modeling for Power Fluctuation, 225
Modeling for Power Transience, 225
Monte Carlo simulations, 70
MTCMOS Based Clique Partitioning, 275
Index

MTCMOS-Based Knapsack Binding, 275
Multicycling, 31
Multiple Dielectric (κ) CMOS (MKCMOS), 153
Multiple Frequency, 140
Multiple Oxide CMOS (MOXCMOS), 153
Multiple Supply Voltage Based Scheduling, 191
Multiple Supply Voltages and Dynamic Frequency Clocking (MVDFC), 163
Multiple supply voltages and dynamic frequency clocking (MVDFC), 143
Multiple supply voltages and multicycling (MVMC), 143
Multiple Supply Voltages and Multicyling (MVMC), 163
Multiple supply voltages and single frequency (MVSF), 143
Multiple Threshold, 102
Multiple Threshold CMOS (MTCMOS), 150
Multiple Voltage, 140
Multiple Voltage Based Design Issues, 146
NAND versus NOR for power, 60
Nash Equilibrium, 37
NEC - CyberWorkBench, 44
Network on a Chip, 106
Noise Immunity, 134
Noise Margin, 134
Operation Isolation, 159
Operation Reduction, 155
Operation Shut Down, 159
Operation Substitution, 156
Output Generation, 14
Packaging Costs, 135
Parking States, 103
Peak and Average Power Modeling of a DFG, 201
Peak Power, 201
Peak Power (P_{peak}), 132
Peak Power Differential, 133
Peak Power Reduction, 136, 145, 201, 204
Physical Level, 7
Pipeline Scaling, 92
Pipelining, 31
Portable Systems, 134
Power as probability density functions, 70
Power Delay Product, 201
Power Delay Product (PDP), 133
Power dissipation trend, 48
Power Estimation for Combinational Circuits, 105
Power Estimation in Combinational Circuits, 106
Power Fluctuation Reduction, 137
Power Gating, 99
Power Island for Subthreshold Leakage Reduction, 276
Power Model, 118
Power Model Accuracy, 127
Power Modeling of Architectural Components, 100
Power Per Cycle, 132
Power Reduction Mechanisms, 138
Power-budgeting, 85
Precomputation, 160
Probabilistic and statistical modeling, 75
Process variation effects, 67
Punch-Through, 53
Reasons for performing register transfer level estimation, 84
Register Files, 108
Register Transfer Level (RTL), 7
Reliability, 134
Rent’s Rule, 161
Resource Compatibility Graph, 33
Resource Conflict Graph, 33
Resource Constrained Scheduling, 183
Resource Constrained Scheduling (RC-DFC) Algorithm, 163
Resource Sharing, 13
RTL Generation, 14
Scheduling and/or Allocation for Switching Activity Reduction, 195
Scheduling and/or Binding for Switching Activity Reduction, 198
Scheduling Phase, 13
Selection Phase, 13
Sequencing Data Flow Graph (DFG), 14
Signal probability (SP), 91
Simulated Annealing Scheduling, 29
Simulator Accuracy, 127
Simultaneous Peak and Average Power Reduction, 215
Single supply voltage and dynamic frequency clocking (SVDFC), 143
Single supply voltage and multicycling (SVMC), 143
Single supply voltage and single frequency (SVSF), 143
Stacking Factor, 95
Static Power Dissipation, 59
Strength reduction in compiler optimization, 156
Substrate Biasing Technique, 152
Subthreshold Leakage, 51, 96
Subthreshold Leakage Estimation, 95
Subthreshold Leakage Modeling, 95
Subthreshold Leakage Reduction using Multi/Dual-V_{Th} CMOS, 274
Super-Graph, 37
Switching Activity Reduction, 194
Synfora - PICO Express, 44
Synopsys - VCS, 45
Synplicity - Synplify, 46
System Level, 7
System on a chip, 106
Tabu Search Scheduling, 28
Target Architecture for Multiple Voltage, 164
Telescopic Units, 140
Temperature Effect on Reliability, 134
Time and Resource Constrained Scheduling Algorithms, 193
Time Constrained Scheduling, 177
Time Constrained Scheduling (TC-DFC) Algorithm, 163
Time or Resource Constrained Scheduling Algorithms, 191

Total Energy, 132
Total Leakage, 97
Transformation Phase, 12
Transformation Techniques, 155
Transient Power Reduction, 137, 225
Transistor Level, 7
Translation Phase, 14
Validation and Accuracy, 125
Variable V_{cc}, 101
Variable Frequency, 140
Variable Latency, 140
Variable Threshold CMOS (VTCMOS), 150
Variable Voltage, 140
Voltage Islands, 101
Voltage Scaling, 101, 140
Voltage-Frequency Coordination, 141, 142

WattWatcher, 86
Xilinx - ISE, 46
Y Explorations - eXCite, 45
Y-chart, 7