Appendix A: Abdominoinguinal Incision for the Resection of Pelvic Tumors

Constantine Karakousis

OVERVIEW

The abdominoinguinal incision allows a vast improvement in the exposure and resectability of tumors in the lower abdomen with fixation to the pelvic side wall. A midline abdominal incision is connected to a longitudinal inguinal incision across the inguinal ligament. The pelvic side wall is directly exposed by detachment of the rectus muscle from its origin on the pubic crest and by division of the inguinal canal along the spermatic cord. This exposure allows safe resections along the iliac vessels without tumor spillage. The abdominoinguinal incision should be part of the armamentarium of every surgeon willing to accept responsibility for pelvic and pelvic side wall malignancy.
INTRODUCTION

Pelvic tumors with lateral fixation present difficulties in their resection, primarily due to inadequate exposure through conventional abdominal incisions. The difficulty arises especially with tumors in the lower parts of the pelvis where the anterior abdominal wall converges with the retroperitoneal structures (e.g. iliopsoas muscle, iliac vessels). In this area the inguinal ligament spanning between the anterior superior iliac spine and the pubic tubercle provides an obstacle to unhindered exposure.

A midline, paramedian, or oblique abdominal incision often does not provide adequate exposure for these tumors. These incisions render sufficient exposure for the dissection and control of the common iliac vessels proximally, below the bifurcation of the aorta, but do not afford exposure of the terminal portion of the external iliac vessels because the presence of tumor hinders further visibility. Often these tumors are considered unresectable or are managed with hemipelvectomy.

Queral and Elias reported a two-stage procedure for removal of a sarcoma localized in the right iliac fossa with involvement of the iliac vessels. In the first operation a femorofemoral bypass was performed from the left side to the right, and the common femoral artery was proximally ligated and divided. In the second operation, through an abdominal incision the mass was resected with en-bloc resection of a segment of the right iliac vessels, which were ligated and divided proximally. This example provides a solution to the distal control of the iliac vessels, but it requires two operations, and exposure at the time of resection of the tumor mass through an abdominal incision remains suboptimal.

What is needed for the resection of these tumors is an incision that would simultaneously provide an incontinuity in exposure of the abdominal cavity and one or both groins so that both iliac and femoral vessels would be exposed in one field. For this incision an abdominal component would be needed and an incontinuity inguinal component, i.e. an abdominoinguinal incision. The inguinal ligament would have to be divided to allow uninterrupted exposure and control of the iliofemoral vessels.

A lower midline incision provides good exposure of the intrapelvic structures. An inguinal incision exposes the femoral vessels. A transverse incision connecting the two, by dividing the origin of the rectus abdominis from the pubic crest and the insertion of the inguinal ligament to the pubic tubercle, provides the necessary link that allows a single incontinuity field and optimizes exposure. Although in the preceding discussion we arrived at the abdominoinguinal incision deductively, in reality I stumbled upon variations of it in the first few cases in the process of designing an incision for a specific tumor. Later I realized that this could be developed into a formal incision for exposure in the lower quadrants of the abdomen. The abdominoinguinal incision may function much in the same way that the thoracoabdominal incision is used for the upper quadrants of the abdomen.

INDICATIONS

The indications for the abdominoinguinal incision are: (1) abdominal or pelvic tumors extending over the iliac vessels, (2) tumors in the iliac fossa (Figure A1), (3) primary tumors, possibly involving the iliac vessels or large iliac lymph node metastases, (4) tumors with fixation to the wall of the true pelvis or large obturator nodes, (5) tumors involving the pubic bone with or without extension to the pelvis or adductor group of muscles, and (6) tumors of the groin when they involve the vessels of the lower abdominal wall or extend in the retroperitoneal area.
Figure A1 Position and incision. With the patient in the supine position, a lower midline abdominal incision is outlined from just above the umbilicus to the pubic symphysis. The peritoneal cavity is entered, and exploration is carried out to assess the extent of disease. Preliminary dissection between the tumor mass and midline pelvic structures may be carried out. Involvement of the latter does not necessarily mean unresectability, of course, since they can often be removed en-bloc with the tumor. When there is a question of involvement of the iliac vessels distally, the common iliac vessels are dissected free and vessel loops are passed around them.

Figure A2 Incision through inguinal canal. If the decision is made to proceed with the resection the lower end of the incision is extended transversely to the midinguinal point and then vertically, over the course of the femoral vessels, for a few centimeters. The vertical portion of the incision is deepened to expose the common femoral vessels.
Figure A3 Dissection of inguinal nodes. When the operation is performed for large iliac and/or obturator nodes, or if there is clinical or potential microscopic involvement of the inguinal nodes, the vertical portion of the incision is made to extend to the apex of the femoral triangle, flaps are raised as in a groin dissection, and the nodes are mobilized off the femoral vessels, but their proximal continuity with the deep nodes is preserved.

Figure A4 Division of rectus abdominis muscle. The transverse portion of the incision is deepened to the surface of the anterior rectus sheath, which is divided, and the rectus abdominis muscle is transected a few millimeters from its origin on the pubic crest. This incision is through its tendinous portion.

Figure A5 (right) Incising the floor of the inguinal canal. The inguinal canal floor is divided in the same direction up to and including the medial border of the internal inguinal ring. In so doing, the spermatic cord is displaced medially. Alternatively, after division of the medial crus the inguinal floor may be incised from inside and the cord exposed from within the abdomen and extracted from the inguinal canal for medial displacement. Deep to the internal inguinal ring the structures of the cord deviate, the vas deferens coursing medially, and the internal spermatic vessels toward a lateral and cephalad direction. Depending on the location of the tumor, the internal spermatic vessels may have to be divided at this level; this maneuver usually leaves a viable ipsilateral testis. Division of the cord at the level of the external inguinal ring does not require ipsilateral orchietomy but will be accompanied by testicular atrophy.
Exposure of the pelvic side wall. The inguinal ligament is then divided at the pubic tubercle and dissection carried on its undersurface until the inferior deep epigastric vein and artery are encountered, ligated, and divided. The lateral third of the inguinal ligament is then detached off the iliac fascia. This allows the completion of the abdominoinguinal incision and provides wide exposure of abdomen and pelvis.

Further dissection depends on the location of the tumor. If the tumor is simply a pelvic mass extending over and obscuring the iliac vessels, the improved exposure now makes easy the dissection of the mass off the vessels and safe ligation of any tumor feeding branches. For large nodes the dissection is carried on the surface of the iliac vessels which are skeletonized. For a tumor located in the iliac fossa, the femoral nerve is located lateral to the femoral artery, immediately posterior to the continuation of the iliac fascia. A vessel loop is passed around it. Further cautious dissection along this nerve determines its relation to the tumor and whether it can be saved. If the tumor involves the vessels, proximal and distal control are secured and the dissection completed around the tumor mass, with any involved organs removed en-bloc. When the specimen is held only by the attachment to the vessels, the patient is heparinized, vascular clamps are placed proximally and distally, the specimen is removed, and vascular reconstruction is performed.

When the iliofemoral vessels are to be resected, the profunda femoris branches may have to be divided at a distance from the tumor in order to allow the mobilization of the specimen.

For tumors attached to the wall of the lesser pelvis or the obturator fossa, the improved exposure usually allows their resection. For tumors involving the pubic bone, following the completion of the abdominoinguinal incision, the adductor muscles are divided off the pubic bone at an appropriate distance from the tumor and the anterior and posterior pubic rami are exposed: the former just medial to the acetabulum and the latter medial to the ischial tuberosity. With the help of a right-angle clamp a Gigli saw is passed around the pubic symphysis, which is divided along with the anterior and posterior pubic rami. The obturator nerve and vessels have to be divided proximally because they course through the obturator foramen. The defect may be replaced with a polypropylene mesh.

For a large tumor located in the groin, covering or involving the entire length of the common femoral vessels and possibly the lower abdominal wall, the abdominoinguinal incision provides incontinuity exposure of the iliofemoral vessels. In making the incision, flaps may have to be raised around the mass. If the lower abdominal wall and inguinal ligament are involved, following transection of the anterior rectus sheath and rectus abdominis muscle off the pubic crest, the incision is continued through the external oblique aponeurosis and internal oblique and transversus abdominis muscles at a sufficient distance from the tumor. The inguinal ligament is divided off the anterior superior iliac spine and the pubic tubercle, and thus the lower abdominal wall muscles and inguinal ligament are removed en-bloc with the tumor. The inferior epigastric vessels are divided at the point they proceed behind the rectus muscle.

In Figure A6 the lateral third of the inguinal ligament has not been detached off the iliac fascia, a step providing further exposure.
Figure A7 Deep closure. The closure of the abdominoguinal incision is uncomplicated. Lateral to the vessels the inguinal ligament is approximated to the iliac fascia and medial to the vessels to Cooper's ligament. The rectus sheath and muscle are approximated to their remnants on the pubic crest. A suction drain is placed in the inguinal portion of the incision. A subcutaneous layer of absorbable material may be used. The skin and the midline portion of the incision are closed in a routine fashion. The sartorius muscle may be detached from its origin on the anterior iliac spine and rotated to provide a nice muscle coverage of the exposed femoral triangle vessels and nerves.

Figure A8 Deep closure requiring mesh. When a defect in the fascia has been created, it may be covered with a plastic mesh, which also replaces the inguinal ligament. The mesh should not be in direct contact with the vessels. This can usually be done by dividing the sartorius muscle distally at the apex of the femoral triangle and mobilizing the distal end so that the vessels are covered, taking care to avoid devascularization of this muscle.

When the defect in the groin also involves the skin, we have used the contralateral rectus abdominis muscle which is divided proximally and rotated with the posterior sheath attached to it, its blood supply deriving from the inferior epigastric vessels. The muscle is sutured to the defect and skingrafted immediately.
Figure A9 Skin closure.
DISCUSSION

The abdominoinguinal incision has been used in over 50 patients with a variety of tumors, usually soft-tissue sarcomas. One of these patients had adenocarcinoma of the sigmoid fixed to the iliac fascia. This tumor was thought to be unresectable at another hospital, but was successfully removed through this incision. The majority of the patients had been operated on once or twice elsewhere, and were found to be unresectable or thought to need a hemipelvectomy.

All these tumors, presenting with fixation to the soft tissues of the wall of the pelvis, were resected with the abdominoinguinal incision, with the exception of two patients. They required hemipelvectomy due to extensive nerve involvement. One patient required an abdominobinguinal incision, i.e. bilateral extension of the abdominal inguinal midline incision to the groins. Tumors involving the innominate bone, with the exception of the medial portion of the pubic bone, are resected best with the use of the techniques of internal hemipelvectomy, and, if necessary, hemipelvectomy.

The abdominoinguinal incision heals well without complications. In the event of a previous transverse incision in the lower quadrant, which may have interrupted the connection to the superior epigastric vessels and the distal portion of intercostal and lumbar branches, a small area of necrosis at the junction of the midline and transverse portions of the incision may occur, since this incision divides the inferior epigastric vessels. In two patients with this condition a small area of ischemic necrosis developed, which, following debridement, healed by secondary intention.

There was one death 2 weeks postoperatively, which resulted from erosion and hemorrhage of a previously heavily radiated external iliac artery that was in contact with a mesh used to replace a fascial defect. It is important therefore to cover the vessels with the sartorius or rectus femoris muscle (by dividing its origin from the anterior inferior iliac spine and displacing it medially) when a mesh is placed adjacent to the vessels or when there is concern about pap necrosis. No instances of postoperative incisional hernia have been noted.

The abdominoinguinal incision renders resectable the majority of pelvic tumors with lateral fixation to the soft tissues of the pelvis and, through improvement in exposure, allows for a safe, deliberate dissection. It is the counterpart of the thoracoabdominal incision for the upper quadrants of the abdomen. The results from the use of this incision obviously depend on the histologic type and stage of the tumor and the expected margin of resection one can thus obtain. It should be used when appropriate and in the context of the biology of the tumor, the expected margin, and the possible use of adjuvant treatments.

In many situations in which the tumor is not laterally fixed, but when it is large and distal and pressing against the obturator foramen(s) or the obturator areas, one can obtain sufficient exposure with a unilateral or bilateral use of the transverse portion of the full incision. In other words, the lower end of the midline incision is extended transversely from the pubic symphysis to the pubic tubercle, and the ipsilateral rectus sheath and muscle are divided off the pubic crest.

References

1. Queral LA, Elias KG. Femorofemoral and venous bypass in association with resection of a pelvic leiomyosarcoma. In General Surgery Motion Picture Session 10/24/84 of the American College of Surgeons, 1984 Clinical Congress.
Appendix B: Canine Osteosarcoma

Charles Kuntz
INTRODUCTION AND USE OF CANINE OSTEOSARCOMA AS A MODEL FOR HUMAN OSTEOSARCOMA (Figure B1A)

Osteosarcoma occurs commonly in the dog. It has been estimated that there are 8000 new cases per year in the United States alone. This high frequency makes it an excellent model for human osteosarcoma and it has frequently been used for this purpose. Similarities between canine and human osteosarcoma include metaphyseal occurrence, typical metastasis to lungs and other bones, and response to doxorubicin and platinum-based protocols. Canine osteosarcoma appears to be more malignant than human osteosarcoma in that, without treatment, death usually occurs within 4–5 months. This offers another advantage when considering it as a model for the human disease. Research protocols very rapidly demonstrate effectiveness of therapeutic attempts. Researchers can frequently demonstrate effectiveness within 2 years of beginning a therapeutic trial. Because financial incentives can be offered clients, identifying candidates has not been a problem. Necropsy compliance is usually very high. Alternatives for treatment can be attempted relatively easily if a therapeutic protocol can be logically justified based on experimental data in other species.

DEMOGRAPHICS AND PRESENTING CLINICAL SIGNS

Osteosarcoma is the most common malignant bone tumor in dogs. There is a biphasic prevalence age distribution curve for canine osteosarcoma, with peaks at 2 and 7 years. A male predominance has been shown in some studies, whereas others have shown no sex predilection. It most commonly occurs in metaphyseal bone. Commonly affected sites, in order of frequency, include the distal radius, proximal humerus, distal ulna, distal femur, proximal tibia, distal tibia, and diaphyseal ulna. Other affected sites include ribs, skull, vertebral bodies, scapula, metatarsal and metacarpal bones, lung, spleen, and mammary tissue. Primary soft-tissue occurrences are rare.

Most affected dogs present with lameness resulting from appendicular osteosarcoma. Usually, a painful swelling is identified over the affected region. Dogs with mandibular and orbital sites may present with dysphagia. Dogs with cranial or vertebral tumors will present with neurologic deficits. Dogs with pelvic masses may present with dyschezia. Some dogs will present with a history of acute exacerbation of clinical signs following trauma. This may mislead the clinician into suspecting a fracture or anterior cruciate ligament rupture. Radiographs of the affected region will usually confirm the diagnosis.

DIAGNOSTIC WORKUP (REGIONAL DISEASE)

Regional radiographs, in addition to predisposing factors such as large breed and advanced age, usually confirm the diagnosis of osteosarcoma and show the tumor’s extent in commonly affected anatomic sites. Typical lesions are a mixed pattern of cortical lysis and periosteal proliferation. Although a previous study suggested that radiographs underestimate the local extent of the tumor, a recent study showed that high-detail radiographs overestimate the local extent of the tumor. Nuclear scintigraphy also overestimates the local extent of the tumor, and to a greater degree than radiographs. Computed tomography is helpful in delineating skull and thoracic wall tumors. It can also be used for appendicular tumors to determine the extent of resection required to attain complete surgical margins. Determination of tumor volume and tumor length is of prognostic value in dogs with osteosarcoma in that large tumor size is associated with a poorer prognosis.

Biopsy may be performed, although it is usually not necessary to confirm the diagnosis. If performed, a Jamshidi biopsy needle should be used, and two samples taken, including the center and the periphery of the lesion. If this protocol is followed, a diagnostic accuracy of 90% can be achieved. Reactive bone may be identified, and this suggests that more aggressive biopsies are indicated.

DIAGNOSTIC WORKUP (METASTATIC DISEASE)

Approximately 10% of dogs will show gross evidence of distant metastasis at the time of diagnosis. Sixty percent will metastasize to lung and 40% will metastasize to other musculoskeletal sites. Thoracic radiographs, including right and left lateral and anterior/posterior, views are performed. Thoracic radiographs are limited in that they delineate only lesions which are greater than 6 mm in diameter. Computed tomography can also be used to screen for thoracic metastasis, but is not widely used. When available, nuclear scintigraphy is also performed, and will show occult bony metastasis in 10% of cases.

TREATMENT OPTIONS

Cure is achieved in less than 15% of dogs diagnosed with osteosarcoma. Treatment is directed at palliating or eliminating locoregional disease and preventing distant metastasis. Preventing of distant metastasis without eliminating the primary tumor offers no survival advantage. Analgesic therapy alone, using aspirin or piroxicam, has a median survival time of 90 days. It is most effective in dogs with relatively small tumors, in the absence of pathologic fractures. Most of these dogs
are euthanized because of pain and/or pathologic fracture of the affected bone. Palliative radiation therapy has also been attempted with coarsely fractionated radiation therapy (24–28 Gy in three or four dose increments). This does appear to reduce bone pain, but does not significantly improve survival. Patients with small tumors in the absence of pathologic fractures appear to have the best survival. The median survival time is 120 days. Most dogs are euthanized because of intractable pain and/or pathologic fracture.

Amputation offers significant improvement in survival over medical management in dogs with appendicular osteosarcoma. Amputation is well tolerated in almost all dogs in which it is performed, including those who are obese and those with neurological deficits. The author has performed approximately 300 amputations in dogs and has had only one, who had degenerative myelopathy, who had difficulty walking after surgery. This dog eventually was fully ambulatory 40 days after surgery. Most other dogs are fully ambulatory within 3 postoperative days. Regardless of the location of appendicular tumor, all amputations are performed using scapulectomy or coxofemoral disarticulation for front-limb and hindlimb lesions, respectively. Amputation by scapulectomy is associated with better function and cosmesis than amputation by scapulohumeral disarticulation or humeral–antebrachial disarticulation, and is technically less challenging. Coxofemoral disarticulation is also associated with better cosmesis and is also technically less challenging than amputation by midfemoral osteotomy or femorotibial disarticulation. Preservation of the extremity in dogs is not beneficial because they do not tolerate prostheses, and they function well without them. In two surveys, function and client satisfaction were very good to excellent in 98% of pets. Dogs having amputation alone for the treatment of appendicular osteosarcoma have a median survival time of 5 months. These dogs usually die of metastasis.

Rib tumors are treated with thoracal wall resection and, when treated with adjuvant chemotherapy, patients have a median survival time of 1 year. Mandibular tumors are treated with hemimandibulectomy; maxillary tumors are treated with partial maxillectomy and/or orbitectomy. Spinal tumors are treated with decompression and rarely have long-term survival. Pelvic tumors are usually treated with amputation and hemipelvectomy, and these patients usually have excellent function.

Limb salvage surgery can be performed in some dogs with appendicular osteosarcoma (Figures B1A,B and B2A,B). Dogs with tumors of the scapula, diaphyseal and distal radius and ulna, metacarpus, metatarsus, diaphyseal humerus, femur and tibia and distal tibia treated with limb-salvage surgery are associated with good to excellent function. Allograft implantation is not required for tumors of the scapula, metatarsus, metacarpus or ulna (distal or diaphyseal). Most other diaphyseal tumors and tumors of the distal radius treated with limb-salvage surgery require allograft implantation and are associated with good function. Dogs tolerate removal of up to 90% of the scapula with good function. Dogs with tumors of the proximal humerus treated by scapulohumeral arthrodesis following allograft implantation have poor functional outcome. The median survival time in dogs treated with limb-salvage surgery for appendicular osteosarcoma and chemotherapy is equivalent to those treated with amputation and chemotherapy, and is approximately 1 year. There is a 25% local recurrence rate following limb-salvage surgery, and local recurrence does not appear to negatively affect survival. If local recurrence occurs, a second limb-salvage surgery can be attempted, or amputation can be performed.

Allograft implantation usually requires maintenance of a bone bank. Bones can either be harvested steriley and directly implanted, or harvested cleanly and secondarily sterilized prior to implantation. Transmission of infectious agents from the donor to the recipient has not been a significant problem. Infectious agents are usually introduced during the preparation of the graft, resulting in local infection. Methods for sterilization include steam sterilization, ethylene oxide sterilization and, more recently, low-temperature hydrogen peroxide plasma gas sterilization. Low-temperature hydrogen peroxide plasma gas sterilization does not cause deterioration of biomechanical properties of allograft bone. The author has performed limb-salvage surgery in two dogs using autograft bone which was autoclaved during the surgical procedure, and reimplanted in the tumor bed, with good results. This offers the advantage of no requirement for a bone bank. The allograft is filled with sterile methylmethacrylate prior to implantation. This has been shown to improve the biomechanical properties of the implant without negatively affecting bone incorporation. Limb-salvage surgery, where an allograft is implanted, is associated with a 50% infection rate. Interestingly, dogs who have a culture-positive infection are associated with a significant improvement in survival (median survival time of 600 days, compared with 290 days in dogs not having postoperative infection).

ADJUVANT CHEMOTHERAPY

Chemotherapy significantly improves survival in dogs with appendicular osteosarcoma when locoregional disease is eliminated using surgery. Protocols which have shown significant improvement in survival include doxorubicin, cisplatin, carboplatin, and to
The median survival times for the former three is approximately 1 year, and for the latter, 7 months. There has been no advantage to combination chemotherapy demonstrated. Dogs usually are euthanized because of the development of distant metastasis. Chemotherapy is well tolerated in most dogs. Eighty percent of dogs complete the course of chemotherapy without any significant side-effects. Eighteen percent have mild side-effects including bone marrow suppression, and gastrointestinal complications. Two percent have side-effects significant enough to require hospitalization.

Implantable cisplatin chemotherapy has been used to treat dogs with osteosarcoma, with encouraging results. Cisplatin is invested in a polylactic acid polymer which allows gradual release of the cisplatin over approximately 3 weeks. Peak levels, commonly associated with side-effects, are 10–30% of those attained with equivalent intravenous doses, but the area under the serum concentration curve (AUC) is seven to 22 times that attained with intravenous doses. Side-effects are rare but include nephrotoxicity (rare) and infection (common). Infection of the chemotherapy site appears to offer protection against metastasis, similar to that seen with infected limb-salvage allografts. The chemotherapy takes the form of a sponge which is implanted in the amputation stump or limb-salvage tumor bed, or of a gel which is a liquid at room temperature and becomes a solid at body temperature. Implantation of sponges in the limb-salvage tumor bed also reduces the incidence of local recurrence.

PROGNOSIS

Tumor size, calculated as the percentage of bone length affected by tumor, or as an actual tumor volume, has been found to be prognostic in dogs with osteosarcoma. Larger tumors have been found to have a poorer prognosis. Anatomic site is also prognostic in that appendicular osteosarcoma (radius, ulna, humerus, femur and tibia) is associated with a median survival
time of 1 year when treated with aggressive surgery and chemotherapy. Tumors of the mandible and scapula have a slightly better prognosis with a median survival time of about 15–18 months. Tumors of spine and skull have a poorer prognosis because of anatomic limitations on aggressive surgical resection. Extraskeletal osteosarcoma has a dismal prognosis with a median survival time of 73 days.3,20–25 The bone isoenzyme of alkaline phosphatase has been shown to be prognostic in that high levels before surgery are associated with a poorer prognosis. After the initial decrease following surgery, an increase helps predict impending gross metastasis. Quantification of metalloproteinases two and nine have shown some predictive value, and further studies are under way. Recent studies have suggested that tumor grade, characterized by degree of necrosis, mitotic rate and cell differentiation, is highly prognostic; further study is necessary.18
CONCLUSION

Osteosarcoma is a common tumor in the dog. It serves as an excellent model for human osteosarcoma studies. It is malignant, and affected patients usually die of their tumors. Aggressive surgery and chemotherapy have been shown to significantly improve survival.

References

Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>abdominal aorta</td>
<td>325</td>
</tr>
<tr>
<td>abdominal cavity, opening</td>
<td>155</td>
</tr>
<tr>
<td>abdominal incision (old), reopening</td>
<td>155</td>
</tr>
<tr>
<td>abdominal sarcomas, surgical treatment, failures</td>
<td>152(fig.)</td>
</tr>
<tr>
<td>abdominal wall</td>
<td></td>
</tr>
<tr>
<td>musculature, release and anterior approach</td>
<td>330(fig.)</td>
</tr>
<tr>
<td>resection</td>
<td>173</td>
</tr>
<tr>
<td>follow-up</td>
<td>176</td>
</tr>
<tr>
<td>abdominal wall sarcomas</td>
<td>170</td>
</tr>
<tr>
<td>desmoid tumors</td>
<td>170</td>
</tr>
<tr>
<td>fully malignant soft-tissue sarcomas</td>
<td>170</td>
</tr>
<tr>
<td>abdominoinguinal incision, pelvic tumors resection</td>
<td>596–602</td>
</tr>
<tr>
<td>discussion</td>
<td>602</td>
</tr>
<tr>
<td>indications</td>
<td>596</td>
</tr>
<tr>
<td>surgical technique</td>
<td>597–601</td>
</tr>
<tr>
<td>abdominopelvic partitions, construction methods</td>
<td>159(fig.)</td>
</tr>
<tr>
<td>abdominopelvic sarcomas</td>
<td>148–62</td>
</tr>
<tr>
<td>chemotherapy</td>
<td>155(fig.), 156–7</td>
</tr>
<tr>
<td>adjuvant regional</td>
<td>160(fig.)</td>
</tr>
<tr>
<td>induction</td>
<td>160</td>
</tr>
<tr>
<td>intraperitoneal</td>
<td>160–2</td>
</tr>
<tr>
<td>natural history</td>
<td>148–52</td>
</tr>
<tr>
<td>hematogenous seeding to lungs vs. liver</td>
<td>152</td>
</tr>
<tr>
<td>peritoneal sarcomatosis</td>
<td>152</td>
</tr>
<tr>
<td>tumor biology: hematogenous vs. lymphatic dissemination</td>
<td>149–50</td>
</tr>
<tr>
<td>tumor biology: local–regional recurrence</td>
<td>150–2</td>
</tr>
<tr>
<td>presenting symptoms</td>
<td>148</td>
</tr>
<tr>
<td>surgical approach</td>
<td>153–62</td>
</tr>
<tr>
<td>abdominal cavity, safe entry</td>
<td>155</td>
</tr>
<tr>
<td>centripetal dissection</td>
<td>157</td>
</tr>
<tr>
<td>chemotherapy, induction</td>
<td>160</td>
</tr>
<tr>
<td>chemotherapies, intraperitoneal</td>
<td>160–2</td>
</tr>
<tr>
<td>hemostasis</td>
<td>157</td>
</tr>
<tr>
<td>intra-abdominal adhesions, surgical approach</td>
<td>155–6</td>
</tr>
<tr>
<td>old incision, opening</td>
<td>155</td>
</tr>
<tr>
<td>patient positioning and exposure</td>
<td>153–4</td>
</tr>
<tr>
<td>peritonectomy</td>
<td>160–2</td>
</tr>
<tr>
<td>peritonectomy, procedures</td>
<td>157</td>
</tr>
<tr>
<td>piecemeal excision</td>
<td>157–8</td>
</tr>
<tr>
<td>primary vascularized tissue, transplants</td>
<td>158–9</td>
</tr>
<tr>
<td>radiotherapy</td>
<td>162</td>
</tr>
<tr>
<td>reoperative surgery</td>
<td>154</td>
</tr>
<tr>
<td>resection, difficult</td>
<td>158</td>
</tr>
<tr>
<td>sarcoma capsule (vasculature), trauma avoidance</td>
<td>157</td>
</tr>
<tr>
<td>sarcomatosis, exploration</td>
<td>156–7</td>
</tr>
<tr>
<td>treatment</td>
<td>148, 152–3</td>
</tr>
<tr>
<td>above-elbow amputation</td>
<td>300–4</td>
</tr>
<tr>
<td>clinical considerations</td>
<td>301</td>
</tr>
<tr>
<td>diaphyseal–supracondylar</td>
<td>300(fig.), 301</td>
</tr>
<tr>
<td>indications</td>
<td>300–1</td>
</tr>
<tr>
<td>metacarpal</td>
<td>300(fig.), 301</td>
</tr>
<tr>
<td>psychological problems</td>
<td>301</td>
</tr>
<tr>
<td>surgical technique</td>
<td>301–4</td>
</tr>
<tr>
<td>above-knee amputation</td>
<td>338–9, 352–61, 486, 506–7</td>
</tr>
<tr>
<td>clinical consideration</td>
<td>354–7</td>
</tr>
<tr>
<td>amputation level</td>
<td>355–7</td>
</tr>
<tr>
<td>contracture, prevention</td>
<td>358</td>
</tr>
<tr>
<td>diaphyseal</td>
<td>355, 365(fig.)</td>
</tr>
<tr>
<td>energy requirements</td>
<td>358</td>
</tr>
<tr>
<td>higher</td>
<td>355, 365(fig.)</td>
</tr>
<tr>
<td>indications</td>
<td>352–4</td>
</tr>
<tr>
<td>osteotomy level</td>
<td>355, 365(fig.)</td>
</tr>
<tr>
<td>prosthesis</td>
<td>358–9</td>
</tr>
<tr>
<td>rehabilitation</td>
<td>358–60</td>
</tr>
<tr>
<td>supracondylar</td>
<td>355, 365(fig.)</td>
</tr>
<tr>
<td>surgical technique</td>
<td>357–8</td>
</tr>
<tr>
<td>Ace wraps</td>
<td>323</td>
</tr>
<tr>
<td>acetabulum</td>
<td>209, 226, 228(fig.), 339, 347(fig.)</td>
</tr>
<tr>
<td>skeletal metastasis</td>
<td>223–4, 226</td>
</tr>
<tr>
<td>Achilles’ tendon</td>
<td>282, 284–5(figs)</td>
</tr>
<tr>
<td>Achilles’ tenotomy</td>
<td>286</td>
</tr>
<tr>
<td>actinomycin</td>
<td>52(table)</td>
</tr>
<tr>
<td>Ewing’s sarcoma</td>
<td>108, 109(table)</td>
</tr>
<tr>
<td>actinomycin-D, isolated limb perfusion</td>
<td>80</td>
</tr>
<tr>
<td>activated partial thromboplastin time</td>
<td>571</td>
</tr>
<tr>
<td>acupunctures</td>
<td>376(table), 377, 578</td>
</tr>
<tr>
<td>acute cerebellar syndrome</td>
<td>572(table)</td>
</tr>
<tr>
<td>Adair clamps</td>
<td>155(fig.), 295(fig.), 340(fig.)</td>
</tr>
<tr>
<td>adductor brevis m</td>
<td>356(fig.)</td>
</tr>
<tr>
<td>transsection</td>
<td>343(fig.)</td>
</tr>
<tr>
<td>adductor hiatus m</td>
<td>250(fig.)</td>
</tr>
<tr>
<td>adductor longus m</td>
<td>245(fig.), 251(fig.), 260(fig.), 313(fig.), 315(fig.), 342(fig.), 343(fig.), 356(fig.)</td>
</tr>
<tr>
<td>transection</td>
<td>343(fig.)</td>
</tr>
<tr>
<td>adductor longus magnus m</td>
<td>249(fig.)</td>
</tr>
<tr>
<td>adductor m</td>
<td>313(fig.)</td>
</tr>
<tr>
<td>adductor magnus brevis m</td>
<td>244</td>
</tr>
<tr>
<td>adductor magnus longus m</td>
<td>244</td>
</tr>
<tr>
<td>adductor magnus m</td>
<td>245(fig.), 251(fig.), 260(fig.), 313(fig.), 315(fig.), 342(fig.), 343(fig.), 356(fig.)</td>
</tr>
<tr>
<td>transection</td>
<td>343(fig.)</td>
</tr>
<tr>
<td>adductor minimus m</td>
<td>245(fig.), 251(fig.)</td>
</tr>
<tr>
<td>adductor muscle group tumors</td>
<td>244–52</td>
</tr>
<tr>
<td>anatomic consideration</td>
<td>244–5</td>
</tr>
<tr>
<td>biopsy</td>
<td>246–7</td>
</tr>
<tr>
<td>limb-sparing surgery, indications and contraindications</td>
<td>248</td>
</tr>
<tr>
<td>staging studies</td>
<td>245–6</td>
</tr>
<tr>
<td>surgical guidelines</td>
<td>248–52</td>
</tr>
<tr>
<td>closure</td>
<td>251(fig.)</td>
</tr>
<tr>
<td>completion</td>
<td>251(fig.)</td>
</tr>
<tr>
<td>exploration</td>
<td>249(fig.)</td>
</tr>
<tr>
<td>exposure</td>
<td>249(fig.)</td>
</tr>
<tr>
<td>incision</td>
<td>249(fig.)</td>
</tr>
<tr>
<td>release from insertion</td>
<td>250(fig.)</td>
</tr>
<tr>
<td>adrenal insufficiency</td>
<td>570(table)</td>
</tr>
<tr>
<td>adriamycin</td>
<td>48–51, 52(table), 54–6, 64, 65(fig.)</td>
</tr>
<tr>
<td>cardiotoxicity</td>
<td>48</td>
</tr>
<tr>
<td>combination therapy</td>
<td>50(table)</td>
</tr>
<tr>
<td>decarbazine (DTIC), combined with</td>
<td>49</td>
</tr>
<tr>
<td>Ewing’s sarcoma</td>
<td>107–12</td>
</tr>
<tr>
<td>limb-sparing surgery</td>
<td>384, 386</td>
</tr>
<tr>
<td>MAID regimen</td>
<td>49</td>
</tr>
<tr>
<td>osteosarcoma</td>
<td>56–7</td>
</tr>
<tr>
<td>intra-arterial</td>
<td>63, 116</td>
</tr>
<tr>
<td>proximal humerus</td>
<td>524(fig.)</td>
</tr>
<tr>
<td>aggressive fibromatosis</td>
<td>167</td>
</tr>
<tr>
<td>agranulocytosis</td>
<td>572(table)</td>
</tr>
<tr>
<td>airway, protection</td>
<td>574</td>
</tr>
<tr>
<td>alcohol</td>
<td>32</td>
</tr>
<tr>
<td>alfentanil</td>
<td>374</td>
</tr>
<tr>
<td>alkaline phosphatase</td>
<td>59</td>
</tr>
<tr>
<td>alkylating agents</td>
<td>48</td>
</tr>
<tr>
<td>allograft–prosthetic composite</td>
<td>386</td>
</tr>
<tr>
<td>alopecia</td>
<td>572(table)</td>
</tr>
<tr>
<td>amantadine</td>
<td>377</td>
</tr>
<tr>
<td>ambulatory surgery</td>
<td>574</td>
</tr>
</tbody>
</table>
American Joint Committee on Cancer 11, 16(table)
soft-tissue sarcomas, staging system 13(table)
amitriptyllin 578
ampoule of Vater, sarcoma 571
amputation 4, 17, 40, 56, 204
above-knee 280
neurovascular bundle, proximity 280
above-knee see also above-knee amputation
adductor muscle group tumors 252
canine osteosarcoma 605
forequarter see forequarter amputation
indications 264
interscapulothoracic see forequarter amputation
National Cancer Institute (May 1975) trial 89
phantom limb pain 301, 372–8
postoperative pain relief, epidural analgesia 374
skeletal metastasis 223
soft-tissue contamination 352
vascular disease 349, 372
anemia 218, 221, 323, 570(table), 572(table), 573
anesthesiologist, and oncological patient
anesthesia 573–9
analgesia, postoperative 579–80
central blocks 575
general 574
maintenance 574–5
perineural 578–9
regional 574
general considerations 570
patient evaluation and preparation 570–1
pediatric oncology patient 571
preoperative visit and drug administration 573
previous antitumoral therapy, patient 571–3
aneurysmal bone cyst 22, 24
angina 571
angiogenesis inhibitors 65(table)
angiography 9–13
adductor compartment tumors 245, 247(fig.)
anatomical approach, planning 10
anterior flap hemipelvectomy 306, 308
axillary tumors 543(fig.), 545
tumor abscision, intra-arterial administration 10
chondrosarcoma 168
distal femoral resection 463–5
forequarter amputation 290
gluteal maximus tumors 234, 235(fig.)
limb-sparing surgery 192
pelvic girdle lesions 205–7
pelvis and acetabulum tumors, resection 426–9
peripheral vascular disease 76
popliteal and posterior leg compartment tumors 281–2
posterior flap hemipelvectomy 326–7
proximal humerus tumors 526
vascular displacement 523
proximal tibia resection 502
proximal total femur resection 441–2
quadriceps muscle group tumors 255–7
surgery, prior to 9–10
thigh, posterior compartment tumors 266, 268(fig.)
vascular anomalies 10, 13(fig.)
angiosarcoma 90
head and neck 167
angiosarcomatosis, leg and foot 366(fig.)
ankle–foot orthosis 241, 266, 269(fig.)
anocoycygeal raphe 420(fig.)
anorexia 570(table)
ankle–foot amputation 306, 307–8
advantages 306
after failed limb-sparing surgery 306
anatomical considerations 307–8
clinical considerations 306–7
imaging studies 308
indications 320
patient selection 306
surgical guidelines 308–17
indications, non-oncologic 306
specimen 308(fig.)
anterior inferior iliac spine 340(fig.)
anterior myocutaneous flap 234
anterolateral cordotomy 376(table), 377
anthracycline analogues 48
anti-vascular endothelial growth factor (VEGF) 66
antibiotics
perioperative 218, 323–5
cryosurgery 142
distal femoral resection 471
isolated limb perfusion 76
sacrrectomy 416
shoulder resection 531(fig.)
anticoagulation, prophylactic 575
anticonvulsants 376–7
antiemetics 573
antisense oligonucleotides 65(table)
anus 316(fig.)
anxiolytic drugs 570
aorta 213(fig.), 328(fig.)
aorto-femoral bypass graft (failed), hemipelvectomy 322, 323(fig.)
aromatic 4, 66(table)
artery 54, 568
arterial 54, 568
arterial blood gases 571
arteriography, scapula tumors 557
tumor localization 76
aspiration, risk 574
aspirin 604
atracurium 574
auriculotherapy 578
autonomic neuropathy 570(table)
axilla 182(fig.)
exploration, resectability determination 531(fig.)
fasciocutaneous flaps 186
perfusion 77
axillary artery 192, 193(fig.), 198, 290, 523, 545
axillary vein 185, 188(fig.), 195(fig.), 197, 526
axillary sheath
anomaly 192, 193(fig.)
catheter, epineural 527
axillary space 547(fig.)
chest wall 547(fig.)
liposarcoma 543(fig.)
metastatic melanoma 545(fig.)
axillary tumors, anatomic considerations 542–5
staging studies 545–6
surgical guidelines 546–51
axillary vein 192, 193(fig.), 195(fig.), 290, 300, 523, 551(fig.)
atrophesic transport modifiers 377
ball-tip electrosurgery 156(fig.)
basilic vein 302(fig.)
below-elbow amputation 300–4
clinical considerations 300–4
indications 300–1
psychological problems 301
surgical technique 300–4
below-knee amputation 364–9
ankle and foot tumors, growth 364
bone transection 368(fig.)
indications 364, 365–6(figs)
patient evaluation 364
rehabilitation 365–7
soft-tissue dissection 368(fig.)
surgical technique 364–5, 367–9(figs)
Index
busulfan, toxicity 572(table)
buttockectomy see gluteus maximus tumors
calcitonin infusions 376
canine osteosarcoma, model for human osteosarcoma 604–8
adjuvant chemotherapy 605–6
clinical science 604
demographics 604
metastatic disease 604
prognosis 606–7
regional disease 604
treatment options 604–5
caput meduse 571
carbolic acid 33
carbon dioxide, solid 136
carboplatinum 57
dog, appendicular ostosarcoma 605

carcinomas
bladder, metastatic 9(fig.)
diagnosis, tissue core, aspirate of 40
growing 38
infiltration 38
invasiveness 5
metastatic, fine needle aspiration 41
preoperative concerns and complications 370(table)
cardiac failure 570(table)
cardiopulmonary bypass 75, 76(fig.), 77
cardiopulmonary disease 218
carpal tunnel syndrome 577
peripheral blocks, choice 576(table)
caudal block 575
caval compression syndrome 574
“cement disease” 393
cementation, technique 452
cemented stems 391
central blocks 575
central venous catheters 48
measurement 573
centripetal dissection 157
cephalic vein 300, 302(fig.), 532(fig.), 547(fig.)
cervical neural foramina, sarcoma progression 167
cervix 325
charged-particles, osteosarcoma treatment 186–9
chemotherapy 4
abdominal pelvic sarcomas 160–2
adductor compartment tumors 244
below-knee amputation 365
canine osteosarcoma 656
distal femoral resection 464
gluteus maximus tumors 234
head and neck, trunk and breast carcinomas 171–3
intra-arterial 63
administration, soft-tissue sarcomas 95
administration, tumor vascularity reduction 10
popliteal fossa tumors 280
nausea and vomiting 323
neutropenia 218
phantom limb pain, peripheral neurotoxicity 373
preoperative
above below elbow amputation 300
ankle and foot tumors 364
distal femoral tumors 338
limb-sparing resection 264
lower extremity amputation 352
posterior flap hemipelvectomy 323
toxicity 572(table)
problems associated with 585
side effects 570
soft-tissue sarcomas
adjuvant 51–3
combination therapy 51–3
development 48–9
neoadjuvant 54–6
survival, impact on 8
thigh, posterior compartment tumors 277
chest
resection 173
follow-up 176
chest wall, osteogenic sarcoma 169
chest wall tumors
clinical features 168–70
diagnosis 168–70
histopathologic types 168–70
reconstruction, technical aspects 173–6
survival, long-term 171(table)
treatment options 171–3
wide excision 173
chest wall tumors see also trunkal sarcomas
chest X-ray, oncologic patient 571
Children’s Cancer Study Group 62
chills 570(table)
chloracetaldehyde 49
chlorambucil, toxicity 572(table)
chlorophenols 66(table)
chondroblastoma 28
cryosurgery 144(table)
chondroma, radiotherapy 120–1
chondromyxofibroma 28
chondrosarcoma 4, 27–9
abdominal cavity 571
calcification 29
central 28, 30(fig.)
chest wall and trunkal sarcomas 186–9
management/treatment and guidelines 168–9
classification 27
conventional 28
eextraosseous, buttocks 306–7(figs)
histological spectrum 28–9
multiple hereditary osteochondromatosis, arising from 321(fig.)
pelvis 28, 205, 426
periacetabular 427(fig.)
primary/secondary 27–8
proximal tibia 486
radiotherapy 119–20
resection 29
scalloping, endosteal 28, 31(fig.)
scapula 290–1, 554–5
chondrosarcomas, proximal femur and mid–femur 440
chordoma 416, 419(fig.), 423
chronic tissue irritation 4
circumferential porous coating 393
cisplatinum 49
amputation, prior to 373
dog, appendicular osteosarcoma 605–6
epidermic, combined with 49
intra-arterial 63
intra-arterial vs. intravenous, osteosarcoma 64(table)
intrapelvic 160, 161(table)
isolated limb perfusion 80
osteosarcoma 56, 116
proximal humerus 524(fig.)
UCLA protocol, soft-tissue sarcoma 55(table)
clamps 332(fig.)
clavicle 197, 290, 296(fig.), 520, 536(fig.)
biopsy 194
osteotomy 293, 534(fig.)
clonazepam 376
clonidine, epidural 375
clotting evaluation 218
deficits 221
Co-operative Ewing’s Sarcoma Study 109–10
Cobra retractor 434(fig.)
coccyx 316(fig.)
Codman’s triangle 22, 25, 27(fig.), 168
cold air blast 136
colon 325
malignancy, anatomic location 473(fig.)
modular replacement system 468–70
palliative resections 471–2
postoperative exploration 474(fig.)
preoperative evaluation and staging studies 461–5
soft-tissue reconstruction, principle 465–8
surgical guidelines 465
Doppler
deep venous thrombosis, evaluation 76
pulses, checking 495
dorsal cordotomy 376(table)
dorsal rhizotomy 376(table)
dorsal route entry zone lesioning 376(table), 377
doxorubicin
abdominopelvic sarcoma, induction chemotherapy 160
dog, appendicular osteosarcoma 605
intraperitoneal 160, 161(table)
isolated limb perfusion 80
osteosarcoma 116
droperidol 573
Dupuytren’s contracture, peripheral blocks, choice 576(table)
dysesthesia 570
echocardiography 571
ECOG 49, 50(table), 55
ectopic hormone production 570(table)
elbow
local anesthesia, choice 576(table)
surgery
peripheral blocks, choice 576(table)
technique 195(fig.)
electrocardiography 574
electrocautery 284, 342(fig.), 344–5(figs)
electrocoagulation 157
electron microscopy 40
electrotherapy 585
embolization 220–2(figs)
preoperative 10
vascular tumors 221–2
embryonal rhabdomyosarcoma 90
decision 572(table)
encephalopathy, metabolic, ifosfamide induced 49
enchondroma 28
cryosurgery 144(table)
endoprosthesis 386, 387(fig.)
fixation 396
endoprosthetic reconstruction 198–200, 440
history 386–92
above-below-elbow amputation 300
calcaneus 390
elbow 389
hip (proximal femur, saddle) 387
knee (distal femur) 387–9
proximal tibia 389
scapula (scapulo-humeral) 389
shoulder (proximal humerus) 389
skeletally immature patients, expandable implants 390–2
total femur 389
total humerus 389
proximal humerus 180
endostatin 66
endosteal scalloping 28, 31(fig.)
Enneking’s classical staging system 7(fig.), 11, 14(fig.)
bone tumors, benign 11, 16(table)
EORTC 48–9, 50(table), 52
EORTC Sarcoma Group 48
eosinophilic granuloma, cryosurgery 144(table)
edipalum anesthesia
analgesia, side effects 375
infusions 376(table)
quiescent phantom pain 374
epidural block 574–5, 578
patient with cardiac disease 575
epirubicin
cardiotoxicity 48
cisplatinum, combined with 49
combination therapy 49, 50(fig.)
epitheloid sarcoma, lymphatic supply of tissue vs. lymph node metastasis 150(table)
erector spinae m. 310(fig.)
EROTC 02 study 118–19
erythropoietin 323–5
ethylene oxide sterilization 605
etoposide, Ewing’s sarcoma 109(table)
European Osteosarcoma Intergroup 57
Ewing’s sarcoma 4, 27, 29–32
chemotherapy 107–12
adjuvant 51
induction 486
chest wall 169
children 554, 555(fig.)
pelvis 426
femoral diaphysis 445
femur 7(fig.)
“onion-skin appearance” 31
presentation, radiological 31, 33(figs)
proximal femur and mid-femur 440
radiotherapy 107–16
pelvic 112–15
treatment, radiation–induced sarcoma 115–16
scapula 196(fig.), 200
subtypes 66
survival 32
expandable implants, skeletally immature patient (children) 390–2
extracorporeal circulation 77–8, 79(fig.)
extracorporeal bone fixation 395, 452–3, 454(fig.)
fallopian tube 325
fascia lata 174
fasciocutaneous flap 213(fig.)
adductor muscle group tumors 249(fig.)
gluteus maximus tumors 238(fig.), 240(fig.)
palliative forequarter amputation 297
fatigue 570(table)
feet, sarcomas, radiotherapy 124–5
femoral artery 204, 209, 213(fig.), 241, 245(fig.), 249–50(figs), 259(fig.), 340(fig.), 356(fig.), 426–7, 448(fig.), 453(fig.), 597(fig.)
division 341(fig.)
femoral nerve 204, 209, 213(fig.), 241, 245(fig.), 249–50(figs), 259(fig.), 340(fig.), 407, 410(fig.), 434(fig.), 448(fig.), 453(fig.), 578, 597(fig.)
block 577
division 341(fig.)
local anesthetic distribution 375(fig.)
femoral prosthesis
components 479(fig.)
implantation and orientation 470(fig.)
femoral shaft, skeletal metastasis 228–9
prophylactic fixation 229
supracondylar femoral fixation 229
femoral sheath 313(fig.), 342(fig.)
femoral triangle 255, 258
exposure 340(fig.)
femoral vein 209, 213(fig.), 245(fig.), 259(fig.), 340(fig.), 356(fig.), 426–7, 448(fig.), 453(fig.), 597(fig.)
division 341(fig.)
femoral vessels (superficial), dissection 260(fig.)

femoral-popliteal grafts 349
femur 261(fig.), 311–12(figs), 313(fig.), 314(fig.), 315(fig.)
dislocation 448
head 343(fig.)
muscle origins, transection 261(fig.)
osteotomy 448–9, 450(fig.)
proximal and distal biopsy tract 42(fig.)
skeletal metastasis 224–8

fentanyl 574
intrathecal injection, phantom limb pain 377
fewer 570(table)

fibromatosis 9
fibrosarcoma 21–2, 167, 486
fibrous cortical defects 13
fibrous dysplasia, cryosurgery 144(table)
fibrous histiocytoma 167
fibroxantoma 18
fibula 498(fig.)

osteotomy 367(fig.)
fibular resection 506–7
anatomic considerations 506–7
mid-fibular (intercalary resection) 511
postoperative management 511
surgical guidelines 507–10
type-1/2 506(fig.), 508–9, 512(fig.), 514–15(figs)

fine needle aspiration 40–1
adductor muscle tumors 247
axillary tumors 546
diagnostic accuracy 40–1
scapula tumors 557
shoulder girdle tumors 192
“fish-mouth” flaps 301, 349, 357, 365
flail extremity 426
flexor digitorum longus m. 496(fig.)
flexor hallucis longus m. 515(fig.)
flexor m. 346(fig.)

flow cytometry 40
5-fluorouracil 49
toxicity 572(table)
fluoxetine 376
Fond Bergonie–Bordeaux study 51
foot drop 515(fig.)
forearm, local anesthesia, choice 576(table)
foreign body implants 4
forequarter amputation 290–7
anatomic considerations 290
indications and contraindications 291
osteosarcoma, humerus 539(fig.)
proximal humeral sarcomas 338
scapular tumors 554
staging studies 290
surgical guidelines 291–7
closure 296(fig.)
incision and skin flaps 294(fig.)
palliative 297
positioning 294(fig.)
trafection 295–6(fig.)
fossa ovalis 340(fig.)
gallium 59
ganglion resection, volar, peripheral blocks, choice 576(table)
Gardner’s syndrome 4, 166(table)
gastric carcinoma, lymphatic supply of tissue vs. lymph node metastasis 150(table)
gastrocnemius m. 241, 250(fig.), 269(fig.), 275(fig.), 277, 280, 496(fig.), 498(fig.)
medial 495
blood supply 495
exposure 480(fig.)

soft-tissue reconstruction 493(fig.), 494
transfer technique 495
soft-tissue sarcoma, popliteal angiogram 284(fig.)
transposition, soft-tissue reconstruction 500(fig.)
gastrocnemius tendon 368(fig.)
gastrointestinal sarcomas
clinical presentation 148(table)
distribution 149(table)
gastrointestinal tract 325
gastroparesis 570(table), 571, 573
Gelfoam 138, 139(fig.)
gemcitabine 49
gemelli m. 346(fig.)
genral anesthesia
isolated limb perfusion 77
oncology patient considerations 574
maintenance 574–5
sudden death, hypercalcemia 219
ventilator dependence 218
genetic cancer syndromes 4
Gerdy’s tubercle 507
German–Austrian–Swiss Cooperative Osteosarcoma Study Group 62–3, 64(fig.)
giant cell tumor 18, 22
bone 32–4, 35(figs)
chest wall 169–70
presentation, radiological 32, 34(fig.)
treatment 32–3
vertebral 170
cyrotherapy 141(fig.), 142
Gigli saw 534(fig.)
glenohumeral capsule, reconstruction 561
glenohumeral joint 185, 187–8(figs), 521–2, 525(fig.), 526, 558, 559(fig.), 561
sarcoma 196(fig.), 197, 554
type I resection 184
type IV resection 185
type V resection 185
glenoid 534(fig.)
glenoid resection 562–4
globlastoma cell lines, radiosensitivity 86(fig.)
glucose-6-phosphate dehydrogenase deficiency 49
gluteal arteries 239–40(figs)
upper/lower 208, 209(fig.)
gluteal fascia 347(fig.)
gluteal region, blood supply 208, 209(fig.)
gluteus maximus m. 238(fig.), 259(fig.), 271(fig.), 310, 311(fig.), 329(fig.), 332(fig.), 346(fig.), 347(fig.), 356(fig.), 411(fig.), 412(fig.), 413(fig.), 444, 448(fig.), 451(fig.)
dissection 239(fig.)
division 345(fig.)
sciatic and pudendal nerves sparing 420(fig.)
posterior reflection, detachment 447(fig.)
gluteus maximus tumors 234–41
anatomic consideration 234
contraindications 234
imaging studies 234–5
indications 234
surgical guidelines 235–41
dissection and exploration 239(fig.)
resection and closure 240(fig.)
gluteus medius m. 240(fig.), 332(fig.), 346(fig.), 347(fig.), 407–8, 411–12(figs), 426, 435(fig.), 447(fig.), 448(fig.), 451(fig.), 454(fig.)
coverage over bony prominences 347(fig.)
gluteus medius nerve 453(fig.)
gluteus minimus m. 426
GM-CSF 49
GOG 49
Gore-tex graft 184, 186(fig.), 196(fig.), 199, 225(fig.), 257(fig.), 537(fig.)
555(fig.), 559–60, 562
Gore-tex sheets 174
gracilis m. 241, 244, 245(fig.), 249–50(figs), 260(fig.), 262(fig.), 269(fig.), 270(fig.), 274(fig.), 277, 342(fig.), 343(fig.), 356(fig.)
transsection 343(fig.)
great saphenous vein 260(fig.), 270(fig.), 496(fig.)
greater trochanter 324, 340(fig.), 412(fig.)
muscles insertion, transection 346(fig.)
growth hormone 66
Haemacel 77–8
haldol 578
halothane 574
hamstrings 244, 255
myodesis 361(fig.)
tumors, resection 266, 269, 272–4(figs)
hand
local anesthesia, choice 576(table)
sarcomas, radiotherapy 124–5
Harrington criteria 218
head and neck sarcomas 166–8
clinical features 166
histopathologic types 167–8
adult rhabdomyosarcoma 167
aggressive fibrous lesions 167
angiosarcoma 167
hemangiopericytoma 167
liposarcoma 168
malignant fibrous histiocytoma 167
management, clinical pathway 172(fig.)
prognosis 170–1
reconstruction, technical aspects 173–6
survival, long term 171(table)
treatment options 171–2
wide excision 173
heat 585
helium 119
hemangiopericytoma 167
hemangioendothelioma 551(fig.)
hemangioma of bone, cryosurgery 144(table)
hemangiomas 9
hemangioma 551(fig.)
hematopoietic growth factor G 49
hemiarthroplasty, bipolar 397–8
hemicyclopectomies 423
hemijoint replacement, metastatic lesions 222
hemipelvectomy 117, 204, 206, 210, 234, 241, 252, 266, 277, 426, 440
anterior 328(fig.), 330–1(figs)
blood loss replacement 320, 323
classic 320–1, 330–1(figs)
coagulopathies 324
compound 210, 321
emergency 323
extended 210, 321
postoperative radiography 334(fig.)
infection control, following limb-sparing procedures 322
infection risks 324
internal 210
classification 406
type I 210, 211(fig.)
type II 210, 212(fig.)
type III 210, 212(fig.)
internal/external 320
intravenous lines 573
modified 321, 330(fig.), 339
proximal femur tumors 349
mortality rate 320
palliative indications 322–3
patients selection 320
prosthesis 335(fig.)
psychological stress 323
rehabilitation 323
wound necrosis 324
hemodilution 574
hemorrhagic cystitis 572(table)
hemostasis 157
Henry’s approach, gluteus maximus resection 241
heparin, low-molecular-weight 575
heparinization, isolated limb surgery 77
hepatic dysfunction 571
hereceptin 65(table), 66
high linear energy transfer 99–102
hintquarter amputation 210, 320
hip
skeletal metastasis 224–8
pathologic fractures, surgical reconstruction 226–8
hip disarticulation 338–49, 356(fig.), 440
epineural catheter 375(fig.)
imaging studies 339
indications and contraindications 338–9
surgical guidelines 339–18
hip joint 209, 324, 339, 356(fig.), 412(fig.)
Howmedica Modular Replacement System 390–2
S-HT3 antagonists 573
human epidermal growth factor-2 66
humeral canal nerve block 576, 577
hemerus 182(fig.), 541(fig.)
osteotomy 534(fig.)
proximal, biopsy tract 43(fig.)
skeletal metastasis 229–30
Hunter’s canal 260(fig.), 312(fig.)
hydrogen peroxide 585–6, 591
hyper/hypocoagulability states 571
hyperalimentation 323
hypercalcemia 219
correction 221
hypernephroma
humeral, proximal 180
metastatic 10
hypertension 218
hyperthermia
evacucorporeal circulation 78, 79(fig.)
isolated limb perfusion 80–1
hyperuricemia 570(table)
hypocalcemia 571
hypocholesterolemia 82
hypogastric artery 213(fig.), 325, 328(fig.), 413(fig.)
hip joint 213(fig.), 328(fig.), 413(fig.)
ileus 324
iliac crest 324
back muscles, release 310(fig.)
lesions 204
iliac perfusion 77
iliac vessels, dissection and ligation 308
iliacus m. 315(fig.), 328(fig.), 332(fig.), 407, 410(fig.), 426
iliococcygeous m. 315(fig.)
iliofemoral arthrodesis 426
ilioinguinal dissection 308
ilioinguinal retroperitoneal incision 328(fig.)
iliolumbal ligament 330(fig.)
ilipsoas m. 244–5, 245(fig.), 261(fig.), 262(fig.), 314(fig.), 340(fig.), 342(fig.), 343(fig.), 344(fig.), 347(fig.), 448(fig.)
division 342(fig.)
iliotibial tract 260(fig.), 271(fig.)
ilium 208–9, 410(fig.), 412(fig.), osteotomy 407–8, 412(fig.), 435(fig.), resection 406, IM rod 229, immunodeficiency 4, immunohistochemistry 40, impotence 324, Incel 65, inferior gemellus m. 239–40(figs), inferior gluteal thigh flap 175–6, inferior obturator m. 239–40(figs), inferior pubic ramus 313(fig.), 315(fig.), inferior scapular body resection 562, inflammatory fibrous histiocytoma 18, infra acetabular osteotomy 434(fig.), infraclavicular pl exus dissection 551(fig.), infraspinatus m. 191(fig.), 195(fig.), 534(fig.), 536(fig.), 554, 565(fig.), inguinal canal incising the floor 598(fig.), incision 597(fig.), inguinal ligament 260(fig.), 261(fig.), 312(fig.), 328(fig.), 409, 597(fig.), 599(fig.), inguinal lymph nodes 340(fig.), dissection 598(fig.), insobriety, ketamine-induced 377, insulin-like growth factor 66, Intergroup Ewing’s Sarcoma Study 107–8, 113–14, interinnomino-abdominal amputation 320, interlocked IM rods 320, internal iliac artery 314(fig.), 325, 328(fig.), 599(fig.), internal iliac vein 330(fig.), internal iliac vessels, transection 314(fig.), International Society of Limb-sparing Surgeons (1998) 502, interosseous artery 302(fig.), interpelvi-abdominal amputation 320, interscalene block 575, interscapulothoracic amputation 290, intestinal adhesions 156(fig.), intra-abdominal adhesions, surgical approach 155–6, intra-articular proximal humeral resection 181, 183(fig.), 184, intra-articular total scapulectomy 181, 183(fig.), intracranial neurostimulation 377–8, intracranial pressure, increased 574, intramedullary canal reaming 451(fig.), intraperitoneal chemotherapy 160–2, intraoperative, heated 161–2, peroperative 161(figs), intrathecal infusions 376(table), iododeoxyuridine 102, irradiated bone 22, ischial osteotomy 414(fig.), ischial tuberosity 271(fig.), 324, 340(fig.), 344(fig.), release of muscles 344(fig.), ischiofemoral arthrodesis 426, ischiorectal fossa 234, 241, 539, 421(fig.), ischiorectal space 331(fig.), posterior dissection 311(fig.), ischium 244, 266, isoflurane 574, isolated limb perfusion 75–83, 260–300, background 75, candidates, evaluation 76, complications 81–2, side effects, systemic 81–2, toxicity, regional 81, drugs 80, extracorporeal circulation 77–8, extremity, soft-tissue sarcomas 82–3, heparinization 401, hyperthermia 80–1, leakage, monitoring and adjustment 78–80, limb volume, measurement 76, lower limb, iliac perfusion 77, 79(fig.), neurological status, limb 76, preparation 76, procedure, selection 77, schematic presentation 76(fig.), septic risks 76, site distribution 77(table), surgery 77, 78–9(figs), termination 80, upper limb axilla 77, brachial 77, ISSG 49, 50(table), Jackson–Pratt drains 241, 456, Jamshidi biopsy needle 604, Jehovah’s Witness patient 324, joint replacement 222, metastatic lesions 222, Kelly clamps 329, 332–3(figs), 449, ketamine 376–7, insobriety 377, kidney function tests 571, kinematic rotating hinge knee 392(fig.), 393, 395, 398(fig.), knee flexion, sciatic nerve resection 241, knee joint 280, 461, 489, incisions 498(fig.), osteotomy 498(fig.), pigmented villonodular synovitis 283(fig.), Krasky arm rest 309(fig.), L5 transverse process 316(fig.), L-MTP-PE 66, lateral gastrocnemius m. 515(fig.), latissimus dorsi m. 195, 290, 293, 295(fig.), 310, 532(fig.), 536(fig.), 549(fig.), 558, 565(fig.), musculoskeletal flap 174, 175(fig.), left ventricular stroke work index 82, leg, posterior compartment tumors 280–6, anatomic consideration 280–1, 284(fig.), anatomy 284(fig.), preoperative evaluation 280–2, surgical technique 282–6, leiomysarcoma 4, 39(fig.), calf 281(fig.), head and neck 167, sartorial canal extension, popliteal space 257(fig.), vastus lateralis/vastus intermedius muscles 6(fig.), leucovorin 56, levator ani m. 315(fig.), levator scapulae m. 199, 290, 293, 296(fig.), 565(fig.), Li–Fraumeni syndrome 4, 166(table), lidocaine 376, limb-sparing surgery 252, 290, 352–3, 384–402, adductor muscle group tumors, indications and contraindications 248, amputation surgery, vs. 584, anesthesia and perioperative pain management 570–80, angiography 192, biopsy site 188, bone scan 191, chemotherapy 48, chest wall involvement 190, computerized tomography 191, dogs, appendicular osteosarcoma 605–6(fig.), endoprosthetic reconstruction, biochemical considerations 393–6, functional reconstruction and anatomic considerations 396 stages 396–7, endoprosthetic reconstruction, future directions 402, endoprosthetic replacement, clinical results 401, complications 401, endoprosthetic survival 401–2, gluteus maximus, sarcomas 241, historical background 180
imaging studies 191, 384–5
indications and contraindications 187–8
infection control prior to surgery 300
lymph nodes 190
magnetic resonance imaging 191
nerve involvement 189–90
patient selection 384
patient staging 384–5
perineural anesthesia, nerves exposed 572, 580(fig.)
physical examination 190
previous resection 190
proximal humerus 526(fig.)
osteosarcoma, pathologic fracture 524(fig.)
proximal tibia 480
rehabilitation principles 584–92
aids, accessory 585–6
children 590–1
palliative oncology 591
problems associated with 584–5
rehabilitation process 585
specific anatomic sites 586–90
vascular involvement 588–9
lipomas, magnetic resonance imaging 9
liposarcomas 4, 19–21
adder muscle group 245(fig.)
axillary space 543(fig.)
head and neck 168
lymphatic supply of tissue vs. lymph node metastasis 150(table)
magnetic resonance imaging 9
myxoid, diagnosis 20
popliteal space 282(fig.)
liposome-encapsulated muranyl tripeptide phosphatidylinositol (L-MTP-PE) 66
liquid nitrogen 13, 136–7, 142, 222
chondrosarcomas 168
cyrotherapy 136
closed system, Parkinson’s disease 136, 138
liver metastasis 136
metastatic bone disease 136
open system, orthopedic surgery 136, 138
resection, margins 171
lip function tests 571
lobomyloma, dog, appendicular osteosarcoma 606
local anesthetics
lumbosacral plexus 324
postamputation analgesia 375–7
long stem femoral prosthesis 230(fig.)
loop electrosurgery 158(fig.)
low-temperature hydrogen peroxide plasma gas sterilization 605
lower extremity amputation see above knee amputation
lower limb blocks 577–8
lumbosacral ligament 316(fig.)
lumbosacral nerve 315(fig.)
lumbosacral plexus 324–5
lumbosacral trunk 423
lung carcinoma, cryotherapy 144(table)
lymphadenectomy 171–2
axillary, breast sarcoma 173
lymphedema 4
magnetic resonance imaging
above-knee amputation, level of amputation 354(fig.)
below-knee amputation 301
adductor compartment tumors 245, 246(fig.)
antebrachial flap hemipelvectomy 308
axillary tumors 543(fig.), 545
bladder carcinoma, metastatic 9(fig.)
bone tumors 8
chondrosarcomas 168
cruciate ligament, involvement 461
distal femoral resection 463–5
femur, primary lymphoma 12(fig.)
fibromatosis 9
forequarter amputation 290
giant-cell tumor of bone 34(fig.)
gluteus maximus tumors 234
hardware or surgical clips 9
hemangiomata 9
hematoma 9
extent, inevitable amputation 352
hip disarticulation 339
knee joint 461
leiomyosarcoma 6(fig.)
lung sparing surgery 187(fig.), 191, 384
lima 9
liposarcomas 9
medullary tumor extension 9
pelvic girdle lesions 205–7
pelvis and acetabulum tumors, resection 426–9
phantom limb pain, exacerbation 373
pigmented villonodular synovitis 9
popliteal fossa 461
postamputation analgesia 200–1
posterior flap hemipelvectomy 322(fig.), 325–6
proximal humerus tumors 526
proximal tibial reconstruction 494
prophylactic and posterior leg compartment tumors 280–1
posterior flap hemipelvectomy 322(fig.), 325–6
proximal humerus tumors 526
proximal tibial reconstruction 494
prophylactic and total femur resection 441–2
quadriceps mass, evaluation 255, 256(fig.)
quadriceps muscle group tumors 255–7
radiotherapy, treatment techniques 121–5
scapula tumors 557
skeletal metastasis 220
soft-tissue tumors 8
soleus muscle, skip metastasis 39(fig.)
synovial cysts 9
thigh, posterior compartment tumors 266, 267(fig.)
truncal sarcomas 166
viewing, three planes 8
MAID regime 49, 51
maleable retractor 414(fig.)
malignant fibrous histiocytoma 4, 18–19, 22, 90, 167
myxoid variant 19(fig.)
malignant peripheral nerve sheath tumors 90–1
malnutrition 571
mammary sarcomas 170
treatment options 173
marcaine brachial plexus, pain relief 293
epineural catheter effect on morphine reduction 334(fig.)
epineural space 297
sciatic nerve 471, 472(fig.)
marlex mesh 174
mammography 585
Mayo Clinic Study regimen 52, 58(table)
M.D. Anderson Cancer Center 51
MDR inhibitor 65(table)
medial cutaneous nerve 575, 576(fig.)
medial gastrocnemius transfer 468
medial saphenous vein 495
median nerve 302(fig.), 540, 541(fig.), 575, 576(fig.)
decompression 577
grafting 300
megaloblastic anemia 572(table)
melanoma 224(fig.)
lymphatic supply of tissue vs. lymph node metastasis 150(table)
melanomas 219(fig.)
chemotherapy 56–66
adjuvant 51, 57–8
adjuvant, tailoring 59–62
development 57
histologic assessment 59
induction 58–9
induction, duration 62
induction, multi-agent regimens 64–5
induction/adjuvant vs. adjuvant chemotherapy 62–3
intra-arterial 63–4
new development and approaches 65–6
non-metastatic, trials 62(table)
preoperative 59, 60–1(figs)
chondroblastic 24
diagnosis
definitive 22–3
differential 22
distal femoral resection, modular replacement system 466(fig.)
distal femur 460(fig.)
above knee amputation 353(fig.)
distal humerus, pre/post-operative view 107(fig.)
femur to the knee joint, cruciate ligament 10(fig.)
fibroblastic 24
high grade, sagittal section 6(fig.)
hip disarticulation 338
humerus, total humeral replacement 539(fig.)
Huvos grading system 59, 60–l(figs)
lymphatic supply of tissue vs. lymph node metastasis 150(table)
malignant fibrous histiocytoma 486
metastasis, sites 56
non-metastatic, treatment development 56(fig.)
osteoblastic 23–4
pathologic characteristics 22–34
pelvis, adolescents 426
proximal femur 444(fig.)
proximal femur and mid–femur 440
proximal humerus 10(fig.), 290, 520
amputation, failed response to chemotherapy 290
pathologic fracture 524(fig.)
proximal tibia 7(fig.)
radiological presentation
mixed pattern 22, 23(fig.)
osteolitic 22, 23(fig.)
sclerotic 22, 23(fig.)
radiotherapy
craniofacial 116
extremity 116–17
neutrons and charge particles 118
palliation 117–18
pelvic 117
preoperative, intra-arterial infusion of radiation sensitizers
116
pulmonary irradiation 118–19
vertebral 118
scapula, proximal humeral extension 559(fig.)
shoulder, girdle, pathologic fracture 292(fig.)
shoulder, telangiectatic 291(fig.)
telangiectatic 24
variants 25–34
ovaries 325
p-53 66
Paget’s disease 4, 22
pain
cancer patient 571
relief, malignant disease 570
palliative treatment 591
cryosurgery 136
metastatic osteosarcoma, radiotherapy 117–18
papaverine 495
paracetamol 578
paraplegics, anterior flap hemipelvectomy, chronic osteomyelitis 306
paravertebral block 577
paresthesia 570
parosteal osteosarcoma
diagnosis 25, 27(fig.)
location 24
presentation 24–5
survival rate 24
partial scapular resection 181, 183–4
partial scapulectomy 562–4, 565(fig.)
patella 258, 259(fig.), 262(fig.)
reconstruction, mechanism 495
patellar resurfacing 450–1
patellar tendon 489–90
reconstruction, extensor mechanism 499(fig.)
pathologic fracture
impending 217–18
isolated 217
painful, surgical intervention 216
preoperative evaluation and interventions 218–20
prophylactic fixation 217
pectineus m. 245(fig.), 249(fig.), 255, 314(fig.), 340(fig.), 342(fig.), 343(fig.), 448(fig.), 454(fig.)
pectoralis m. 296(fig.), 533(fig.)
pectoralis major flap 174
pectoralis major m. 191(fig.), 195(fig.), 290, 293, 526, 543–4, 547(fig.)
musculocutaneous flap 174
pecoralis minor m. 191(fig.), 195(fig.), 290, 293
attachment 548(fig.)
pediatric malignancies 4
Pediatric Oncology Group 62, 63(table)
Pediatric Oncology Group Trial 111–12
pedicle flaps 158–9, 160(fig.)
pelvic allograft 426
pelvic diaphragm, division 315(fig.)
pelvic floor 244
muscles, release 333(fig.)
pelvic girdle, 406
rehabilitation, principles and complications 590
see also pelvis
pelvic osteotomy 207–8
pelvic resections 406–14
anatomic considerations 406
surgical technique 406–14
type I resection 406–9
type II resection 409
type III resection 409–14
pelvic sarcomas, surgical treatment, failures 152(fig.)
pelvic sidewall sarcomas 148–9
pelvic tumors, resection, abdominoinguinal incision 596–602
pelvis
anatomy 206–10, 320(fig.)
bony relation 204(fig.)
chondrosarcoma, adults 426
Ewing’s sarcoma, children 426
imaging 205–6
lesions, symptoms 204
malignant bone tumors, adolescents 426
muscle origins, transection 261(fig.)
muscles 426
neurovascular bundle 426
osteoarcoma 426
resection, classification 210
skeletal metastasis 223–4
utilitarian incision 434(fig.)
veins 426
viscera 325
periacetabular resections 426–38
anatomic considerations 426
functional and rehabilitation consideration 433–8
imaging studies 426–9
implants, description 429–32
limb sparing surgery, indications and contraindications 429
reconstruction following resection 432–8
surgical guidelines 432
surgical reconstruction, techniques 426
pericardial effusion 570(table)
Index

pericardial tamponade 570(table)
periformis m. 346(fig.)
perineural anesthesia 578–9, 580(fig.)
postoperative pain control 578–9
periostal osteosarcoma
Codman’s triangle 25, 27(fig.)
location 25
peripheral blocks 575
peripheral vascular disease 76, 218
hemipelvectomy 322, 323(fig.)
periscapular muscles, release 566(fig.)
periscapular region 182(fig.)
peritoneal sarcomatosis 152
local recurrence, mechanism 151(fig.)
peritonectomy
chemotherapy, intraperitoneal 157–8(fig.), 160–2(fig.)
procedures 157, 158(fig.)
peroneal artery 13(fig.), 496(fig.), 497(fig.), 513(fig.)
peroneal brevis m. 513(fig.)
peroneal longus m. 513(fig.)
peroneal m. 498(fig.)
exposure 498(fig.)
peroneal nerve 513(fig.)
peroneus longus m. 496(fig.)
peroneus longus tunnel 513(fig.)
peroxisome proliferator activated receptor ß 65
phantom limb pain 297, 306–7, 317, 324, 372–8, 578(fig.)
causalgia syndrome 297
clinical presentation 372
control 388
cortisol, role 374
deafferentation 373
epidemiology 372–3
etiologic 373
incidence
children vs. adults 372–3
mental illness associated with 373
metastatic disease, exacerbation 373
neuromatrix 374
opioids, long-term therapy, surgical interventions 377
pain, types 372
pathophysiology 373–4
preamputation 373
prevention 374–6
quiescent, during spinal anesthesia 373
somatosensory memory 372
neurophysiologic 372–3
treatment 376–8
visual analog scale 373
wind–up phenomenon 373–4
phantom limb sensations 358
children, incidence 372–3
hemipelvectomy 334
phantom sensations 372
phenol 32
phenoxyacetic acid 66(table)
photon therapy 118
phrenic nerve 575
Pi-mesons 100
"piecemeal" excision 157–8
pigmented villonodular synovitis 9
piniformis m. 208, 209(fig.), 236, 240(fig.), 241, 315(fig.), 412(fig.), 426
piroxican 604
plain radiographs
above knee amputation, level of amputation 354(fig.)
above/below elbow amputation 301
anterior flap hemipelvectomy 308
bone tumors 8
diagnosis 8
canine osteosarcoma 604
femur
giant cell tumor 32, 34(fig.)
pathological fracture 9(fig.)
primary lymphoma 12(fig.)
humerus, sclerosing osteosarcoma 522
lateral femoral condyle, fracture 143(fig.)
osteosarcoma 59, 60–1(figs)
distal femur 460(fig.)
proximal tibia 487(fig.)
parosteal osteosarcoma 25(fig.)
pelvic girdle lesions 208–7
pelvis and acetabulum tumors 426–9
posterior flap hemipelvectomy 325, 326(fig.)
proximal femur lytic lesion secondary to solitary renal cell carcinoma 219(fig.)
proximal fibula
chondrosarcoma 509(fig.)
ferosarcoma 507(fig.)
osteosarcoma 507(fig.)
proximal tibia, benign giant–cell tumor 16(fig.)
proximal and total femur resection 441–2(fig.)
radiology, treatment technique 121–5(fig.)
scapula, Tikhoff–Lindberg resection 556(fig.)
soft-tissue mass, detection 8
spine (L3 vertebra) osteosarcoma 11(fig.)
synovial sarcomas 21
thoracic, central chondrosarcoma 28, 30–1(figs)
total femur prosthesis 451(fig.)
total hip arthroplasty, infected 446(fig.)
truncal sarcomas 166
plasmocytoma, chest wall 169
"pleomorphic fibrosarcoma” 21
polycythemia 570(table)
polyethylene 393
polymermethacrylate (PMMA) 138, 140–1(figs), 142, 222, 228–9, 480, 494
internal fixation for pathological fracture, combined with 217, 220
polyvinyl chloride 66(table)
post-amputation phenomena 372
posterior cutaneous nerve 575, 576(fig.)
posterior flap hemipelvectomy 234, 306, 320–35
anatomic considerations 320(fig.)
clinical considerations 323–4
imaging studies 325–7
indications 321–3
ischemic necrosis 306
modified, variation of posterior flap 323(fig.)
rehabilitation and emotional support 324–5
posterior cutaneous nerve 257(fig.)
pathological fracture 234, 306, 320–34
posterior sacral foramina 310(fig.)
posterior sacral plate 418
posterior tibial artery 368(fig.), 496(fig.), 513(fig.)
posterior tibial nerve 368(fig.), 513(fig.)
catheter, transtibial amputation 375

posterior tibial vein 368(fig.), 496(fig.), 513(fig.)
postoperative analgesia 579
oncology patient 579
perineural anesthesia 579–8
pre-emptive analgesia 374
premedication 573
primarily vascularized tissue transplants 158–9
profunda brachial artery 532(fig.)
profunda brachial vein 532(fig.)
profundus artery 251(fig.), 356(fig.)
profundus femoral artery 313(fig.), 314(fig.)
ligation 10
profundus vein 251(fig.), 356(fig.)
progressive pulmonary fibrosis 572(table)
prolene mesh 174
pronator teres m. 540
prone position 270(fig.), 419(fig.)
propofol 574
propoxyphene 578
prostate 325, 330(fig.)
carcinoma, cryosurgery 144 (table)
prosthesis 324
above-knee amputation 358–9
assembly of 479(fig.)
custom made modular 442(fig.), 452
proximal femur 440, 441(fig.)
total femur 441(fig.)
femur 216(fig.)
hemipelvectomy 335(fig.)
hip disarticulation 349
infection around tumor 300
materials, reconstruction 174
stump-shrinker sock, below knee amputation 365–7
prosthetic–allo graft composites 440
prothrombin time 571
proton therapy 99–102
proton-beam radiotherapy 118
protons 118
proximal femoral osteotomy 475(fig.)
proximal femoral replacements 216(fig.)
proximal femur resection 10, 440–1
posterolateral incision 447(fig.)
solitary lymphoma 444(fig.)
proximal femur and hip joint, rehabilitation, principles and complications 589–90
proximal fibular resection 506, 508–9, 512(fig.)
proximal humerus biological and anatomic base 525(fig.)
dual suspension technique 527
functional compartment 194–8
glenohumeral joint 197
musculocutaneous and axillary nerves 197–8
neurovascular bundle 197
limb-sparing surgery 521
metastatic cancer 520
osteo sarcoma 520, 522(fig.)
infra- articular resection 551
modular replacement reconstruction 528(fig.)
prosthesis 520(fig.), 526
securing 533(fig.)
static suspension 537(fig.)
schematic reconstruction 527(fig.)
suspension: static/dynamic 227(fig.)
proximal humerus endoprosthesis 198–9, 527–42
proximal humerus and glenohumeral joint, rehabilitation, principles and complications 588–9
proximal humerus resection 520–42
anatomic considerations 521–3
indications 520
prosthetic replacement 527–42
proximal brachial plexus epineural catheter 580(fig.)
staging studies 523–6
surgical guidelines 526–7
proximal tibia and knee joint, rehabilitation, principles and complications 587–8
proximal tibia resection, with endoprosthetic reconstruction 486–503
anatomic considerations 486–90
contraindications 486
indications 486
rehabilitation 502–3
staging studies 490–4
surgical guidelines 494–503
proximal and total femur resection, with endoprosthetic reconstruction 440–56
discussion 455
methods 440
non-oncologic indications 440
preoperative evaluation 440–3
surgical technique 443–55
pseudoarthrosis 437(fig.)
pseudocapsular layer 194–8
pseudocapsule, sarcomas high-grade soft-tissue 4–5(figs)
"skip metastasis" 5
pseudocholinesterase 574
proximal humerus endoprosthesis 198–9, 527–42
proximal humerus and glenohumeral joint, rehabilitation, principles and complications 255–8
anatomy 259(fig.)
closure 263(fig.)
dissections 260(fig.)
incision 259(fig.)
reconstruction 262(fig.)
skin flaps 260(fig.)
transaction 261–2(figs)
de Querrain’s release, peripheral blocks, choice 576(table)
radial artery 300, 541(fig.)
radius nerve 198, 302(fig.), 526, 532(fig.), 540, 541(fig.), 576(fig.)
grafting 300
radial osteotomy 302(fig.)
radiation implants 96
radiation sickness 574
radiation therapy 4, 66(table), 85–125
abdominopelvic sarcomas, surgical use 162
bone sarcomas 107–16
chondroma 120–1
chondrosarcoma 29, 119–20
head and neck, trunk and breast carcinomas 171–3
intraoperative 99
retropertioneal sarcoma 104–7
osteosarcoma 116–19
palliation
isolated pathological fracture 217
metastatic disease to hand and foot 230
postoperative, tumor necrosis 327
preoperative effects and concerns 573(table)
presurgical treatment, second choice 572
radiotherapy 86
retropertioneal sarcoma, intraoperative radiation 104–7
soft-tissue sarcomas 48
local treatment, results 86–107
treatment technique 121–5
computer-assisted treatment plan 121
conference 121
patient positioning and immobilization 121
postoperative dose 122–4
postoperative target volume 122
preoperative dose 96(table), 122
preoperative treatment 121–2
radiotherapy planning 121
radiosensitivity
breast cancer 86(fig.)
glioblastoma cell lines 86(fig.)
sarcoma 86(fig.)
radiosensitizers 102–3
radiotherapy
adductor compartment tumors 244
below knee amputation 365
distal femoral tumors 338
gluteus maximus tumors 234
limb-sparing resection 264
posterior flap hemipelvectomy 323
problems associated with 585
side effects 570
radius 301
collateral ligament repair, peripheral blocks, choice 576(table)
excision, distal 576(table)
fracture, open reduction internal fixation 576(table)
ramus of pubis 343(fig.)
range of movement (ROM) of joints 585, 587
Rb-1 66
von Recklinghausen’s disease 166(table), 167
rectum 313(fig.), 315(fig.), 325
rectus abdominis flap 175, 176(fig.)
rectus abdominis m., division 598(fig.)
rectus abdominus m. 313(fig.)
primarily vascularized tissue transplants 188–9
rectus femoris flap 175
rectus femoris m. 255, 259(fig.), 261(fig.), 262(fig.), 311–12(figs), 313(fig.), 342(fig.), 356(fig.), 359(fig.), 406, 407(fig.), 412(fig.), 447(fig.), 448(fig.)
division 345(fig.)
reduced folate carrier 57
geriatric anesthesia
hypovolemia, contraindication 574
oncology patient 575
rehabilitation
above knee amputation 358–9
definition 584
hemipelvectomy 334–5
hip disarticulation 349
relaxation 578
technique 377
remifentanil 574
renal cell carcinoma 218, 219(fig.), 224(fig.), 520
angiotherapy 222(fig.)
renal insufficiency 218
renal tubular necrosis 572(table)
replacement endoprosthesis 220
resection arthrodesis 385, 386(fig.), 440
retinoblastoma 4, 166(table)
retractor, self–retaining 154(fig.)
retrogluteal space 234, 266, 320(fig.)
dissection 239(fig.)
retropertioneal sarcomas 148–9, 328(fig.)
resection 573
seeding to lungs vs. liver 152
surgical treatment/failure 152(fig.)
survival 153(fig.)
rhabdomyosarcoma 11, 149–50
adjuvant chemotherapy 51
adults
chemotherapy 167
head and neck 167
pterygoid region 167
radiation therapy 167
lymphatic supply of tissue vs. lymph node metastasis 150(table)
pediatric, CyVADIC regime 48
rheumatoid arthritis 577
rhomboid m. 558, 565(fig.)
rhomboid major m. 295(fig.), 296(fig.)
rhomboid minor m. 296(fig.)
rhomboids 199
rhu MABHER-2 66
Rizzoli Institute Study 51, 52(table), 62
regimen, intravenous vs. intra-arterial chemotherapy, osteosarcoma 64(table)
rocaserin 574
rotating hinge knee 392(fig.), 393
rotator cuff muscles 184, 188(fig.), 558–61
round ligament 340(fig.)
rozoxane (ICRF159) 102–3
S2-S4 nerve route division, urinary and fecal incontinence 421(fig.)
sacral alae 206
sacral plexus 207, 210
division 324
sacrectomy 416–23
abdominolateral sacral position 417(fig.)
sequential 418(fig.)
discussion 418–23
dural sac damage 418
indications 416–17
total 170
sacroiliac disarticulation 412(fig.)
sacroiliac joint 206, 220, 234, 238(fig.)
osteotomy 416
sacrosinous ligament 414(fig.), 420(fig.), 436(fig.)
sacrotuberous ligament 340(fig.), 341(fig.), 421(fig.)
sacrum 206, 208–9(figs), 238(fig.)
division 316(fig.)
level, importance 421(fig.)
nerve roots 314(fig.)
dissection 422(fig.)
distribution 423(fig.)
resection see sacrectomy
transsection, proximal 421(fig.)
tumor mass attached 416(fig.)
tumors 170, 416
saddle prostheses 212(fig.), 228(fig.), 429–32, 436(fig.)
surgical procedures, schematic 432–8
sampling error 40
saphenous vein 345(fig.), 340(fig.), 356(fig.), 599(fig.)
division 260(fig.)
Sarcoma Meta-Analysis Collaboration 53
sarcomas
cytogenetic analysis 66
emboli 150
growing 38, 39(fig.)
reactive zone 38, 39(fig.)
satellites, nodules 38, 39(fig.)
skip lesions 39(fig.)
metastatic disease 38
radiosensitivity 86(fig.)
retroperitoneal 103–7
intraoperative radiation therapy 104–7
sarcomatosis, exploration 156–7
sartorial canal 244, 245(fig.), 257(fig.), 258, 461
sartorius m. 213(fig.), 241, 245(fig.), 249(fig.), 250(fig.), 259–61(figs), 269(fig.), 270(fig.), 311–13(figs), 328(fig.), 340(fig.), 343–4(figs), 356(fig.), 406, 409–10(figs), 447–8(figs), 467, 480–l(fig.)
division 342(fig.)
prostheses, with soft-tissue covering 480(fig.)
satellite nodules, primary sarcoma 150
scapula 182(fig.), 520, 526
anteri or axillary mass, arising 549(fig.)
biopsy 193–4
Ewing’s sarcoma 554, 555(fig.)
osteotomy 534(fig.)
posterior muscular attachments, transection 295(fig.)
release following intra/extra-articular resection 566(fig.)
sarcoma 180
resections 190–200, 558, 559(fig.)
scapular replacement, prosthesis 199–200, 558, 559(fig.)
scapular resection 201
first reported 180
scapulectomy 290, 554–68
imaging studies 557
indications 557
partial 180, 184, 562–4, 565(fig.)
surgical guidelines 557–8
total 561–2, 565(fig.)
intra-articular 184
Scarpa’s fascia 340(fig.)
sciatic block 578
sciatic nerve 204, 207–9, 244–5, 266, 270(fig.), 272–3(figs), 280, 306(fig.), 325, 332(fig.), 344(fig.), 346(fig.), 356(fig.), 359(fig.), 409, 411(fig.), 423, 426, 435–6(figs), 444, 448(fig.), 451(fig.), 453(fig.)
catheter
epineural, postoperative pain relief 339
transfemoral amputation 375
exploration 239(fig.)
identification 447(fig.)
local anesthetic distribution 375(fig.)
MRl, posterior thigh compartment 267
resection 241
sheath resection, complete 277
sparing, sacrectomy 420(fig.)
tumor involvement 9(fig.)
sciatic notch 207–9, 234, 241, 332(fig.), 409, 411(fig.)
cicatricial pain 208(fig.)
segmental reconstruction, skeletal metastasis 222
segmental replacement prostheses 225(fig.)
Selick manoeuvre 574
semimembranosus m. 266, 270–2(figs), 275(fig.), 280, 344(fig.)
semimembranosus tendon 356(fig.)
semideltoides m. 266, 271(fig.), 272–3, 275(fig.), 280, 344(fig.), 356(fig.)
sepsis 218
amputation 223
staphylococcal 81
seromas 365
prevention 323
postoperative formation 236, 240–1(figs)
serratus anterior m. 200, 203, 295(fig.), 296(fig.), 558
sevoflurane 571, 574
shoulder
arthroscopy, peripheral blocks, choice 576(table)
closed reduction dislocation of, peripheral blocks, choice 576(table)
functional compartment 194–8
local anesthesia, choice 576(table)
surgery, technique 195(fig.)
total shoulder replacement, peripheral blocks, choice 576(table)
shoulder girdle
anatomy 180
patient demographics and clinical outcomes 180–6
radiation, induced 291
reconstruction 180, 198
removal 290
resections 180–6, 200–1
type I 181, 183(fig.), 184
type II 181, 183(fig.), 184
type III 181, 183(fig.), 184–5
type IV 181, 183(fig.), 185
type V 181, 183(fig.), 185–6, 189(fig.)
type VI 181, 183(fig.), 186, 190(fig.)
tumors 181(fig.)
histological classification and anatomic location 182(table)
tumors, resectability determination 192–4
biopsy 192–3
clavicle 194
proximal humerus 193
scapula 193–4
"shrinki ng-field" technique 89
sigmoid colon 325
Sims position 578
skeletal metastasis
anatomic sites 223–30
femoral shaft 228–9
humerus 229–30
knee and elbow, distal lesions 230
pelvis and acetabulum 223–4
proximal femur (hip) 224–8
hot spots 216
pain, new onset 216
pathologic fractures, management/principles 221–2
surgical treatment, principles 220–3
amputation 223
composite osteosynthesis 222
cryo surgery 222
joint replacement 222
role 216–17
segmental reconstruction 222
tumor excision 222
skeletally immature patient 352–4
expandable implants 390–2
skin flaps 260(fig.)
forequarter amputation 294(fig.)
posterior compartment tumors 270–1(figs)
skip lesions 38, 39(fig.)
skip metastasis 5, 8(fig.)
definition 5
small bowel adhesions 155
small bowel enterotomy 155
small saphenous vein 496(fig.)
small-cell osteosarcoma 27
SNX-11, intrathecal injection, phantom limb pain 377
sodium channel blockers 376
sodium citrate 573
soft-tissue sarcomas 17–22
biological behaviour 4–8
dissemination 7, 11(fig.)
grading 4
joint involvement 7, 10(figs)
metastasis, liver and lung 7
metastatic pattern 7–8, 11(fig.)
presentation, extracompartamental 5, 8(fig.)
biochemistry and natural history 4–8
annual incidence, USA 4
classification 4
diagnosis 4
incidence 4
life, quality of 4
risk factors 4
survival 4
symptoms and signs 4
by site 148(table)
chemotherapy 48–56
adjuvant 51–3
combination therapy 49–51
development 48–9
neoadjuvant 53–6
definition 17–18
grading, pathologic 18
growth pattern 39(fig.)
isolated limb perfusion, tumor necrosis factor 82–3
lymph node involvement 264
pathologic characteristics 18–22
radiotherapy
computer assisted treatment planning 121
hands and feet 124–5
limb-salvage, role of 88–9
patient positioning and immobilization 121
planning 121
postoperative target volume 124
pre/postoperative dose 122–4
preoperative 94–107
preoperative treatment, volume 121–2
radiation alone 87–8
radiobiologic parameters 86(table)
radical 17
wide 13–17
unresectable, thigh tumors 339
upper extremity 180, 182(fig.)
soleus m. 480–1(figs), 496(fig.), 515(fig.)
tumor 281–2(figs), 284(fig.)
spinal anesthesia 374, 574
quiescent phantom pain 373
spinal block 575
spinal cord compression syndrome 570(table)
spinal cord stimulation 376(table), 377, 578
spinal systems 220
splints 586
sprouts 373
stamp neuronic injections 376(table)
Statinski clamp 293
steam sterilization 605
Steinman pin 79(fig.)
fixation 224, 226–8(figs)
stellate ganglion block 575
sternoclavicular joint 294(fig.)
sternoceleidomastoid flap 174
stump
desensitizing 376(table)
ultrasound 376(table)
stenosis 376(table)
stenotome 372
subclavicular artery 197
subclavicular vein 197
subscapularis m. 195(fig.), 532(fig.), 533(fig.), 549(fig.), 554
substance P 374
succinylcholine 572(table)
sufentanil 574
super-added phantom sensations 372
superficial femoral artery 260(fig.), 262(fig.), 313(fig.), 314(fig.)
angiography 10
exploration 474(fig.)
silent atherosclerosis 308
transsection 312(fig.)
superficial femoral vein 260(fig.), 262(fig.)
superficial peroneal m. 496(fig.)
superior gemellus m. 239–40(figs)
superior pubic ramus 314(fig.)
osteotomy 435(fig.)
superior pubic ramus, osteotomy 413(fig.)
superior vena cava syndrome 570(table)
supraacetabular osteotomy 412(fig.)
supraclavicular triangle transsection 295(fig.)
suprascapular tumors 198, 557
supraspinatus m. 534(fig.), 536(fig.)
supraspinosus m. 554
Swan–Ganz catheter 573
sweats 570(table)
Swiss Institute of Nuclear Research 100
SWOG 49
sympathectomy 376(table)
sympathetic blockade 376(table)
symphysis pubis 218, 221–2
subtypes 66
treatment, ifosfamide 49
tachykinins 374
Task Force on Pain Management of the American Society of
Anesthesiologist 571
taxanes 49
technetium-99
bone scans 219–20
methylene diphosphonate functional imaging 59
telescopy, phantom limb 372
telethermometer 76(fig.)
TENS 376(table)
tensile strength 585
tensor fascia lata 261(fig.), 311–12(figs), 332(fig.), 340(fig.), 342(fig.),
343(fig.), 346(fig.), 406, 410(fig.), 435(fig.)
division 345(fig.)
flap 175, 176(fig.)
teres major m. 191(fig.), 290, 293, 565(fig.)
teres minor. 191(fig.), 534(fig.), 536(fig.), 565(fig.)
Texas A&M Variable Energy Cyclotron (TAMVEC) 100
thalamic stimulation 376(table)
thalidomide 66
thalium scan 465
thalamotomy 201 59
thigh 266–77
anteriour musculature see quadriceps muscle group tumors
medial (adductor) compartment 244, 245(fig.)
posterior compartment tumors
anatomic considerations 266
indication and contraindications 267
muscles 272(fig.)
staging studies 266–7
surgical technique, guidelines
closure 276(fig.)
cross-section 270(fig.)
dissection 274(fig.)
incision, skin flaps 267, 270(fig.)
skin flaps, creation 271(fig.)
transsection 273(fig.), 275(fig.)

thorax
606(table)
three-in-one block 577
thrombocytopenia 218, 221, 570(table), 572(table), 573
thrombopoietin 51, 65
thumb, peripheral blocks, choice 576(table)
thyroid carcinoma 219(fig.)
angiography with embolization 222
thyroid tumor 218
tibia
bone cyst (aneurysmal) 15(fig.)
osteotomy 367(fig.), 498(fig.)
proximal
allograft replacement 493(fig.)
ankylosis 486
arthroplasty 503
bony sarcomas 486

cross-section 496(fig.)
prosthesis 488(fig.), 493(fig.)
proximal, biopsy tract 42(fig.)
proximal tibia canal, preparation 476(fig.)
tibial nerve 280, 284(fig.), 356(fig.), 496(fig.)
tibial osteotomy, femur preparation 476(fig.)
tibialis anterior m. 496(fig.)
tibiofibular joint 486–8
resection 498(fig.)
Tikhoff–Lindberg resection 180–1, 185, 196(fig.), 291(fig.), 520
scapula 55–6(figs), 558(fig.), 564(figs), 566
soft-tissue defect 453–5
soft-tissue defect, infected 446
total femoral replacement 349
total femur prosthesis 451(fig.)
reconstruction 445(fig.)
total femur resection 440–1, 444, 446, 449(fig.)
transverse rectus abdominis muscle flap 175, 176(figs)
trapezius flap 174
trapezius m. 199, 290, 293, 295(fig.), 296(fig.), 534(fig.), 536(fig.), 558, 565(fig.)
tumor lysis syndrome 570(table)
tumor necrosis factor 56, 75
tumor suppressor genes 66
UCLA trials 52, 58(table)
chemoradiation for soft-tissue sarcomas, preoperative 95(table)
neoadjuvant chemotherapy 54, 55(table)
ulcerative stomatitis 572(table)
ulna 301
ulnar artery 300, 541(fig.)
ulnar nerve 302(fig.), 540, 551(fig.), 575, 576(fig.)
grafting 300
ulnar osteotomy 302(fig.)
ulnar vein 541(fig.)
unicameral bone cyst, cryosurgery 144(table)
upper extremity
local anesthesia, choice 576(table)
surgical procedures, blockers 576(table)
ureters 325, 328(fig.)
urethra 315(fig.), 325, 330(fig.), 426
urinary tract infection 218
urogenital diaphragm 315(table)
uterus 325
vascular endothelial growth factor (VEGF) 66
vastus intermedius m. 255, 259(fig.), 262(fig.), 356(fig.)
vastus lateralis m. 255, 259(fig.), 262(fig.), 356(fig.), 445, 453(fig.), 454(fig.), 475
femur, release from 312(fig.)
reflexion 445, 447–8(figs)
vastus medialis fascia 255
vastus medialis m. 249(fig.), 251(fig.), 255, 259(fig.), 262(fig.), 356(fig.), 478(fig.), 480–1(fig.), 496(fig.), 498(fig.)
vaccination 54
vaccine 325
vena cava 325
venography 192
brachial 297
posterior flap hemipelvectomy 327
vertebral body cages 220
vinblastine, toxicity 572(table)
vincristine 49, 52(table)
amputation, prior to 373
combination therapy 49, 50(fig.)
Ewing’s sarcoma 108, 109(table)
vinyl chloride 4
visceral sarcomas 148–9
vitamin K, deficiency 218
vomiting 574
vomtiting 574
Waldermar–Linn prosthesis 228(fig.)
saddle 430(fig.)
Watson–Jones approach 141(fig.)
weakness 570(table)
weight loss 570(table)
WHC/WCI, neoadjuvant chemotherapy, study design 56(table)
wide local excision
brachytherapy 96–9
gluteus maximus tumors 234
local recurrence risks following resection 91–3
soft-tissue sarcomas 86–8
Wieberdink grading system, regional toxicity, isolated limb perfusion 81(table)
wrist, local anesthesia, choice 576(table)
Zickel rods 229
zinc chloride 32