Appendix: The Contents of CD-ROM

In the attached CD-ROM, we have included programs for simulating different Turbo Coding systems. In each case, we have included the end-to-end system including the source, encoder, channel and the decoder. The programs, in the CD-ROM are:

1 TCC

- TCC_Binary_UNIX.c: This program simulates the binary turbo convolutional code given in [7] and explained in Chapter 2 for the UNIX environment.
- TCC_Binary_PC.c: This program simulates the binary turbo convolutional code given in [7] and explained in Chapter 2 for the Windows environment.
- TCC_DVB-RCS_UNIX.c: This program simulates DVB-RCS turbo code given in Chapter 3 for the UNIX environment.
- TCC_DVB-RCS_PC.c: This program simulates DVB-RCS turbo code given in Chapter 3 for the Windows environment.
- TCC-3GPP_UNIX.cpp: This program simulates the 3GPP turbo code given in Chapter 2 for the UNIX environment.
- TCC-3GPP_PC.cpp: This program simulates the 3GPP turbo code given in Chapter 2 for the Windows environment.

2 BTC

- BTC_General_UNIX.c: This program simulates \((n, k)^2\) Reed-Muller turbo code for different values of \(n\) and \(k\) for the UNIX environment.
- BTC_ATM_UNIX.c: This program simulates the shortened \((32, 26)^2\) RM codes with different sizes \(\leq 676\) bits. This program can be, in particular, useful for designing codes for applications with ATM size cells for the UNIX environment.

3 Header Files

- ECHELON.h
- Encoder_RM64.h
- RM_64.h

Each program contains enough information concerning the choice of parameters and options. The authors appreciate receiving feedback from readers concerning the contents of the book and the programs. You may send your comments to y_gao@ece.concordia.ca
References


REFERENCES


REFERENCES


[114] Ken Gracie, Personal Correspondence.


REFERENCES


[160] Bo Yin, Trellis Decoding of 3D Block Turbo Codes, Master thesis, Concordia University, expected Fall 2002.


REFERENCES


Index

3GPP wireless standard, 20, 44
trellis termination, 45
8PSK constellation, 82
8PSK modulation, 77
A Posteriori Probability (APP), 24
A priori probability, 114
Additive White Gaussian Noise (AWGN) channel, 12
Algebraic decoding, 5
Algebraic-based decoding, 97
AND operation, 118
Applications
BTC, 142
Applications
PCCC
3GPP, 44–45
CDMA2000, 46
deep space, 46
ASIC, 21
ASK, 15
ATM cell, 131
ATM-like cell, 7
Augmented list decoding, 97–98, 104
Augmented transfer function, 9
Automatic Repeat reQuest (ARQ), 3, 23
Backward recursion, 113
Bandwidth efficient, 3
Bandwidth limited, 19
BCJR algorithm, 24–25
Binary code, 39
Binary input AWGN channel, 19
Binary linear code, 4
Binary Phase Shift Keying (BPSK), 12
Binary Symmetric Channel (BSC), 11
Bit Error Rate (BER), 12
Block code, 4
cyclic code, 5
generator matrix, 4
parity check matrix, 4
systematic code, 4
generator polynomial, 5
Block Turbo Code (BTC), xxiii, 97
applications, 142
performance, 139
Booleans function, 118
Bose-Chaudhuri-Hocquenghem (BCH) code, 1, 5
Canadian Institute of Telecommunications Research (CITR), xxiv
Canadian Space Agency (CSA), xxiv
Capacity achieving code, 1
Capacity, 11
Carrier phase recovery, 170
CDMA2000, 46
Channel capacity, 1, 10–11
Channel coding theorem, 1
Channel decoder, 3
Channel encoder, 3
Channel impairment
Carrier phase recovery
phase offset, 170
preamble size, 170
SNR mismatch, 164
System model, 163
Channel, 3
Additive White Gaussian Noise (AWGN), 12
binary input AWGN channel, 19
Binary Symmetric Channel (BSC), 11
discrete memoryless channel, 10
Chase algorithm, 98, 104
Circular Recursive Systematic Convolutional (CRSC) code, 25, 54
Circular state, 55, 80
Code alphabet, 4
Code matched interleaver, 41
Code
systematic code, 4	
turbo code, xxiii
BCH code, 1, 5
turbo code, xxiii
convolutional code, 7
Hamming code, 4
linear block code, 5
parallel concatenated convolutional code, 2
RM code, 20
RS code, 1, 6
turbo code, 2
Coded modulation, 3
Communication link, 2
Competing codeword, 108
INDEX

LDPC code, 187
MAP algorithm, 30
Mapping, 62
Marginal probability distribution, 10
Max-function, 34
Max-log-MAP algorithm, 36, 67, 114
triple-binary code, 85
correction coefficient, 159
Maximum a posteriori Probability (MAP), 2, 20,
xxiii–24, 29–30
trellis-base decoding of BTC, 112
Maximum Likelihood (ML), 12
Message passing, 1–2, xxiii
Minimal trellis for linear block code, 120
BCJR construction, 122
Massey construction, 123
Notations and definitions, 121
Minimum distance, 5
MPEG frame, 7
Multiple parallel concatenation, 43
Mutual information, 11
Non-uniform interleaver, 41
Order of transmission, 62, 82
Outer code, 18
Outer decoder, 102
Outer encoder, 99
PAM, 15
Parallel concatenated block code, 101
Parallel concatenated convolutional code, 2
Parallel Concatenated Trellis Coded Modulation (PCTCM), 91
Parallel concatenation, 1, 38
multiple parallel concatenation, 43
binary encoder, 39
Parity check matrix, 4
LDPC code, 179
Parity-check matrix, 188
Power constraint, 12
Power limited, 19
Product code, 100
Pseudo-random interleaver, 41
PSK, 15
Puncturing, 7, 42
puncturing map for double-binary code, 62
puncturing map for triple-binary code, 82
puncturing matrix, 43
QAM, 15
QPSK, 17, 62
Quantization, 2, 153
input data quantization, 155
dynamic-range, 155
quantization step, 155
uniform quantization, 155
Random block code, 178
Random coding, 1
Random interleaver, 41
Rate and puncturing map, 62
Recursive Systematic Convolutional (RSC) code, 25
Reed Solomon (RS) code, 6
shortened code, 7
Reed-Muller (RM) code, 20, 117
code parameter, 118
definition, 118
generator matrix, 118
trellis diagram of RM(8, 4) code, 124
Reed-Muller (RM) turbo code, 117, 125
satellite ATM applications, 131
decoder, 127
encoder, 125
Reed-Solomon (RS) code, 1
Regular binary LDPC code, 177, 179
Relative prime interleaver, 41
Reliability factor, 108
Reliability of decision, 106
Reliable communication, 13
S-random interleavers, 41
Satellite ATM transmission
shortened RM turbo code, 131
Satellite communication, 2, xxiv
Scaling factor, 109
Serial concatenated block code
iterative decoding, 102
Serial concatenation, 23, 48
block code, 99
decoder, 50
encoder, 49
Serial Concatenated Trellis Coded Modulation (SCTCM), 91
Shannon theory, 13
Shannon, xxiii
Shortened pattern, 131
Shortened Reed Solomon (RS) code, 7
Signal-to-Noise-Ratio (SNR), 15
SISO decoder, 29
SNR mismatch, 164
Soft decision decoding, 3
Soft Output Viterbi Algorithm (SOVA), 2, 36
Soft-Input Soft-Output (SISO), 25, 97
soft channel output, 27
soft information, xxiii
Soft-output calculation, 114
Spectral bit rate, 13
Spectral efficiency, 13
Square Euclidean distance, 104
Standard
3GPP, 20
d VBR-RCS, 20, 58
State diagram, 8
Symbol-by-symbol MAP, 29
Syndrome, 5
System model
channel impairment, 163
RM turbo code, 128
DVB-RCS, 59
triple-binary code, 78
Systematic recursive convolutional code, 19
Tail-biting, 42
tail bit, 42
Tanner’s graph, 182
Test pattern, 98, 104
Trellis code, 7
Trellis termination, 41, 45
trellis truncation, 42
Trellis-based decoding of BTC, 112
Triple-binary code, 77
treffer, 78
Turbo code, 2, xxiii
Turbo principle, 24, 38
Turbo Product Code (TPC), 97
Turbo Trellis Coded Modulation (TTCM), 90, 92
Turbo-like code, 10
Two-level permutation, 54
Uncertainty, 10
Unequal Error Protection (UEP), 99
Uniform interleaver, 41
Uniform quantization, 155
Viterbi decoder, 18
Wireless and Satellite Communications Lab., xxiii
Wireless communication, 2
CD-ROM Disclaimer

Copyright 2002, Kluwer Academic Publishers. All Rights Reserved. This CD-ROM is distributed by Kluwer Academic Publishers with ABSOLUTELY NO SUPPORT and NO WARRANTY from Kluwer Academic Publishers. Use or reproduction of the information provided on this CD-ROM for commercial gain is strictly prohibited. Explicit permission is given for the reproduction and use of this information in an instructional setting provided proper reference is given to the original source. Authors and Kluwer Academic Publishers shall not be liable for damage in connection with, or arising out of, the furnishing, performance or use of this CD-ROM.