ANNEX

Al. Physical Quantities and Units

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>USUAL SYMBOL</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance</td>
<td>C</td>
<td>Farad (F)</td>
</tr>
<tr>
<td>Charge</td>
<td>Q</td>
<td>Coulomb (C)</td>
</tr>
<tr>
<td>Conductance</td>
<td>G</td>
<td>Siemens (S) = Ω^{-1}</td>
</tr>
<tr>
<td>Conductivity</td>
<td>σ</td>
<td>$S \text{ cm}^{-1} = \Omega^{-1} \text{ cm}^{-1}$</td>
</tr>
<tr>
<td>Current</td>
<td>I</td>
<td>Ampere (A)</td>
</tr>
<tr>
<td>Current density</td>
<td>J</td>
<td>$A \text{ cm}^{-2}$</td>
</tr>
<tr>
<td>Distance</td>
<td>d, l, w, x, y, z</td>
<td>Centimeter (cm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 micrometer (μm) = 10^{-4} cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 nanometer (nm) = 10^{-7} cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 angström (Å) = 10^{-8} cm</td>
</tr>
<tr>
<td>Electric field</td>
<td>$\mathcal{E} = -\nabla \Phi$</td>
<td>$V \text{ cm}^{-1}$</td>
</tr>
<tr>
<td></td>
<td>$\mathcal{E} = -d\Phi/dx \ (1 \text{ dimension})$</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>E</td>
<td>Joule (J)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electron-volt ($1 \text{ eV} = 1.6\times10^{-19}$ J)</td>
</tr>
<tr>
<td>Frequency</td>
<td>f</td>
<td>s^{-1}</td>
</tr>
<tr>
<td>Potential</td>
<td>V, Φ</td>
<td>Volt (V)</td>
</tr>
<tr>
<td>Resistance</td>
<td>R, r</td>
<td>Ohm (Ω)</td>
</tr>
<tr>
<td>Resistivity</td>
<td>ρ</td>
<td>$\Omega \text{ cm}$</td>
</tr>
<tr>
<td>Temperature</td>
<td>T</td>
<td>Kelvin (K)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0^\circ\text{C} = 273.15$ K</td>
</tr>
<tr>
<td>Time</td>
<td>t</td>
<td>Second (s)</td>
</tr>
</tbody>
</table>
Annex

A2. Physical Constants

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>MEANING</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_g (GaAs)</td>
<td>GaAs bandgap energy</td>
<td>1.42</td>
<td>eV</td>
</tr>
<tr>
<td>E_g (Ge)</td>
<td>Ge bandgap energy</td>
<td>0.67</td>
<td>eV</td>
</tr>
<tr>
<td>E_g (Si)</td>
<td>Si bandgap energy</td>
<td>1.124</td>
<td>eV</td>
</tr>
<tr>
<td>ε_0</td>
<td>Permittivity of vacuum</td>
<td>8.854×10^{-14}</td>
<td>F cm^{-1}</td>
</tr>
<tr>
<td>\hbar</td>
<td>Planck constant</td>
<td>6.63×10^{-34}</td>
<td>J s</td>
</tr>
<tr>
<td>\hbar</td>
<td>Reduced Planck constant</td>
<td>$\hbar/2\pi$</td>
<td>J s</td>
</tr>
<tr>
<td>k</td>
<td>Boltzmann constant</td>
<td>1.3805×10^{-23}</td>
<td>J K^{-1}</td>
</tr>
<tr>
<td>κ (GaAs)</td>
<td>Dielectric constant of GaAs</td>
<td>13.1</td>
<td>dimensionless</td>
</tr>
<tr>
<td>κ (Ge)</td>
<td>Dielectric constant of Ge</td>
<td>16</td>
<td>dimensionless</td>
</tr>
<tr>
<td>κ (Si)</td>
<td>Dielectric constant of Si</td>
<td>11.7</td>
<td>dimensionless</td>
</tr>
<tr>
<td>κ (SiO₂)</td>
<td>Dielectric constant of SiO₂</td>
<td>3.9</td>
<td>dimensionless</td>
</tr>
<tr>
<td>kT/q</td>
<td>Thermal voltage (at T=300K)</td>
<td>0.02586</td>
<td>V</td>
</tr>
<tr>
<td>L (GaAs)</td>
<td>Lattice parameter (GaAs)</td>
<td>5.6533×10^{-8}</td>
<td>cm</td>
</tr>
<tr>
<td>L (Ge)</td>
<td>Lattice parameter (Ge)</td>
<td>5.64613×10^{-8}</td>
<td>cm</td>
</tr>
<tr>
<td>L (Si)</td>
<td>Lattice parameter (Si)</td>
<td>5.43095×10^{-8}</td>
<td>cm</td>
</tr>
<tr>
<td>μ_n (GaAs)</td>
<td>Electron mobility (intrinsic GaAs)</td>
<td>8800</td>
<td>cm² V⁻¹ s⁻¹</td>
</tr>
<tr>
<td>μ_n (Ge)</td>
<td>Electron mobility (intrinsic Ge)</td>
<td>3900</td>
<td>cm² V⁻¹ s⁻¹</td>
</tr>
<tr>
<td>μ_n (Si)</td>
<td>Electron mobility (intrinsic Si)</td>
<td>1417</td>
<td>cm² V⁻¹ s⁻¹</td>
</tr>
<tr>
<td>m_0</td>
<td>Free electron mass</td>
<td>9.11×10⁻³¹</td>
<td>kg</td>
</tr>
<tr>
<td>μ_p (GaAs)</td>
<td>Hole mobility (intrinsic GaAs)</td>
<td>400</td>
<td>cm² V⁻¹ s⁻¹</td>
</tr>
<tr>
<td>μ_p (Ge)</td>
<td>Hole mobility (intrinsic Ge)</td>
<td>1900</td>
<td>cm² V⁻¹ s⁻¹</td>
</tr>
<tr>
<td>μ_p (Si)</td>
<td>Hole mobility (intrinsic Si)</td>
<td>471</td>
<td>cm² V⁻¹ s⁻¹</td>
</tr>
<tr>
<td>N_c (GaAs)</td>
<td>Effective density of states in cond. band (GaAs)</td>
<td>4.7×10¹⁷</td>
<td>cm⁻³</td>
</tr>
<tr>
<td>N_c (Ge)</td>
<td>Effective density of states in cond. band (Ge)</td>
<td>1.04×10¹⁹</td>
<td>cm⁻³</td>
</tr>
<tr>
<td>N_c (Si)</td>
<td>Effective density of states in cond. band (Si)</td>
<td>2.8×10¹⁹</td>
<td>cm⁻³</td>
</tr>
<tr>
<td>N_v (GaAs)</td>
<td>Effective density of states in valence band (GaAs)</td>
<td>7×10¹⁸</td>
<td>cm⁻³</td>
</tr>
<tr>
<td>N_v (Ge)</td>
<td>Effective density of states in valence band (Ge)</td>
<td>6×10¹⁸</td>
<td>cm⁻³</td>
</tr>
<tr>
<td>N_v (Si)</td>
<td>Effective density of states in valence band (Si)</td>
<td>1.04×10¹⁹</td>
<td>cm⁻³</td>
</tr>
<tr>
<td>n_i (GaAs)</td>
<td>Intrinsic carrier concentration (GaAs)</td>
<td>1.1×10⁷</td>
<td>cm⁻³</td>
</tr>
<tr>
<td>n_i (Ge)</td>
<td>Intrinsic carrier concentration (Ge)</td>
<td>2.5×10¹²</td>
<td>cm⁻³</td>
</tr>
<tr>
<td>n_i (Si)</td>
<td>Intrinsic carrier concentration (Si)</td>
<td>1.45×10¹⁰</td>
<td>cm⁻³</td>
</tr>
<tr>
<td>q</td>
<td>Electron charge (absolute value)</td>
<td>1.6×10⁻¹⁹</td>
<td>C</td>
</tr>
</tbody>
</table>

All values are given for $T = 300K$.
A3. Concepts of Quantum Mechanics

In this Annex the Reader is reminded of some concepts from quantum mechanics that will be used in this book.

1) A particle can be fully described by a function, called wave function. The wave function is noted $\Psi(x,y,z,t)$ and it contains all measurable information about the particle.

2) To each dynamic variable corresponds a quantum-mechanic operator:
 - To the position x corresponds the operator $\hat{x} \equiv x$ (A3.1)
 - To momentum p_x corresponds the operator $p_x \equiv \frac{\hbar}{j} \frac{\partial}{\partial x}$ (A3.2)
 - To the total energy E corresponds the operator $\hat{E} \equiv -\frac{\hbar}{j} \frac{\partial}{\partial t}$ (A3.3)
 - To the potential energy $V(x,y,z)$ corresponds the operator $\hat{V} \equiv V(x,y,z)$ (A3.4)
 where $j = \sqrt{-1}$ and where $\hbar = h/2\pi$, h being Planck's constant.

3) The wave function also gives the probability of finding the particle in a given region of space. If the wave function is real (i.e., not complex) the probability of finding the particle between positions a and b in one dimension (x) is given by:
 \[
 \text{probability} = \int_{a}^{b} \Psi^* \Psi \, dx \quad (= \int_{a}^{b} \Psi^2 \, dx \text{ if } \Psi \text{ is a real function})
 \]
 For all space in one dimension the particle must be somewhere between $x = -\infty$ and $x = +\infty$ and therefore, we obtain the normalization condition:
 \[
 \int_{-\infty}^{+\infty} \Psi^* \Psi \, dx = 1 \quad (\int_{-\infty}^{+\infty} \Psi^2 \, dx = 1 \text{ if } \Psi \text{ is a real function}) \quad (A3.5)
 \]
 Consider the total energy of a particle in a classical Newtonian physics approach. If the particle has a momentum p and a potential energy V, its total energy is given by:
 \[
 E = \frac{p^2}{2m} + V \quad (A3.6)
 \]
Annex

Note that $p = p(x,y,z)$, $p^2 = p_x^2 + p_y^2 + p_z^2$ and $V = V(x,y,z)$.

Applying these concepts to an electron having a mass m for the one-dimensional case one obtains Table A.1:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Classical mechanics</th>
<th>Quantum mechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Momentum</td>
<td>$p = mv$</td>
<td>$\frac{\hbar}{j} \frac{d}{dx}$</td>
</tr>
<tr>
<td>Kinetic energy</td>
<td>$\frac{p^2}{2m}$</td>
<td>$\frac{1}{2m} \frac{\hbar}{j} \frac{d}{dx} \left(\frac{\hbar}{j} \frac{d}{dx} \right) = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$</td>
</tr>
<tr>
<td>Potential energy</td>
<td>V</td>
<td>\hat{V}</td>
</tr>
<tr>
<td>Total energy</td>
<td>$E = \frac{p^2}{2m} + V$</td>
<td>$-\frac{\hbar}{j} \frac{\partial}{\partial t}$</td>
</tr>
<tr>
<td>Mass</td>
<td>$m = \frac{1}{d^2E/dp^2}$</td>
<td>$m = \frac{\hbar^2}{d^2E/dk^2}$</td>
</tr>
<tr>
<td>Velocity,</td>
<td>$v = \frac{dE}{dp}$</td>
<td>$V_k = \frac{1}{\hbar} \frac{dE}{dk}$</td>
</tr>
<tr>
<td>group velocity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this Table, k is a wave vector or a wave number that corresponds to the momentum of the particle.

The Schrödinger equation is basically the quantum mechanical equivalent of classical mechanics $E = \frac{p^2}{2m} + V$. For the one-dimensional case the quantum mechanical equivalent of total energy is:

$$-\frac{\hbar^2}{2m} \frac{\partial^2\Psi}{\partial x^2} + V(x,t)\Psi = -\frac{\hbar}{j} \frac{\partial \Psi}{\partial t} \tag{A3.7}$$

and, in three dimensions:

$$-\frac{\hbar^2}{2m} \nabla^2 \Psi + V(x,y,z,t)\Psi = -\frac{\hbar}{j} \frac{\partial \Psi}{\partial t} \tag{A3.8}$$

where ∇^2 is the Laplacian operator defined by:

$$\nabla^2 \Psi(x,y,z,t) = \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2}$$
If the potential energy function is time independent \(\frac{\partial V}{\partial t} = 0 \) one is able to construct a solution to the Schrödinger equation through the technique of separation of variables where the wave function is written as the product of a time-independent term, \(\psi(x,y,z) \) and a space-independent term, \(T(t) \), such that \(\Psi(x,y,z,t) = \psi(x,y,z) \ T(t) \). The introduction of these terms into (A3.8) yields:

\[
T(t) \left(-\frac{\hbar^2}{2m} \nabla^2 \psi(x,y,z) \right) + V(x,y,z) \ \psi(x,y,z) \ T(t) = \psi(x,y,z) \left(-\frac{\hbar}{j} \frac{\partial T(t)}{\partial t} \right)
\]

or

\[
\frac{1}{\psi(x,y,z)} \left(-\frac{\hbar^2}{2m} \nabla^2 \psi(x,y,z) + V(x,y,z) \ \psi(x,y,z) \right) = \frac{1}{T(t)} \left(-\frac{\hbar}{j} \frac{\partial T(t)}{\partial t} \right) \quad (A3.9)
\]

The left-hand term of this equation depends only on space, while the right-hand term depends only on time, which indicates that the separation of \(\Psi \) into the product of \(\psi \) and \(T \) was successful. We can now solve the Schrödinger equation for the variables \(\psi \) and \(T \) separately, and with this solution find \(\Psi = \psi T \). Equation A3.9 makes sense only if both terms are equal to a constant which we shall call \(E \), therefore, we can write:

\[
E \ T(t) = -\frac{\hbar}{j} \frac{\partial T(t)}{\partial t} \quad \Rightarrow \quad T(t) = \exp \left(-\frac{iEt}{\hbar} \right) \quad (A3.10)
\]

and therefore:

\[
\Psi(x,y,z,t) = \psi(x,y,z) \ \exp \left(-\frac{iEt}{\hbar} \right) \quad (A3.11)
\]

Introducing Expression A3.11 into A3.8 one obtains the time-independent Schrödinger equation:

\[
-\frac{\hbar^2}{2m} \nabla^2 \psi(x,y,z) + [V(x,y,z) - E] \ \psi(x,y,z) = 0 \quad (A3.12)
\]

where \(E \) is the (constant) energy of the particle, where the energy of the particle is given by:

\[
-\frac{\hbar}{j} \frac{\partial \psi(x,y,z,t)}{\partial t} = \psi(x,y,z) \left(-\frac{\hbar}{j} \frac{\partial T(t)}{\partial t} \right) = \psi(x,y,z) \ E \ T(t) = E \ \Psi(x,y,z,t)
\]
A4. Crystallography – Reciprocal Space

Most semiconductors are crystalline materials. Elemental semiconductor atoms such as silicon or germanium belong to column IV of the periodic table and have four electrons on their outer shell. In a crystal these atoms form four covalent bonds with neighboring atoms in order to complete their outer shell. Each atom is thus in the center of a tetrahedron, the corners of which are occupied by other similar atoms (Figure A.1).

![Silicon atom forming covalent bonds to other silicon atoms.](image)

The atoms in a crystal form a pattern that is repeated in the three directions of space with perfect regularity. That pattern is called the "unit cell". Silicon and germanium have the diamond lattice structure. This structure can be viewed as two interweaving face-centered lattices. In this case the unit cell is a cube (Figure A.2). The length of each cube side is called the "lattice parameter", which is equal to 5.43 and 5.64 Å in silicon and germanium, respectively.

In the unit cell presented in Figure A.2 atoms labeled "1" are completely enclosed in the unit cell. Atoms at the center of each of the six sides of the cell and labeled "1/2" belong half to the unit cell and half to an adjacent cell. Atoms located at the corners of the cube and labeled "1/8" have one-eighth of their volume included in the unit cell and contribute to seven other cells. Therefore, the unit cell contains $4 \times 1 + 6 \times 1/2 + 8 \times 1/8 = 8$ atoms. Semiconductors formed using elements from columns III and V of the periodic table, such as gallium arsenide (GaAs), have the zincblende crystal structure. The GaAs lattice cell can be viewed as two interpenetrating face-centered lattices, one containing gallium atoms, and the other containing arsenic atoms. It is also represented by Figure A.2 where atoms labeled "1" are gallium and atoms labeled "1/2" and "1/8" are arsenic (and vice-versa). The lattice parameter of GaAs is 5.65 Å.
The most basic property of a crystal is that the same pattern of atoms is repeated over and over again in the three directions of space. The position of any cell in the crystal is given by a vector \mathbf{l} defined by:

$$
\mathbf{l} = m\mathbf{a} + n\mathbf{b} + p\mathbf{c}
$$

where m, n and p are integer numbers, and \mathbf{a}, \mathbf{b} and \mathbf{c} are the vectors of the lattice parameters of the unit crystal cell (Figure A.3). In most semiconductors the cell is cubic and \mathbf{a},\mathbf{b} and \mathbf{c} have the same length.

Figure A.2: Atoms in the unit cell of silicon (diamond lattice structure).

Figure A.3: Unit cell of a cubic crystal lattice.
One can define three new vectors:

\[a^* = 2\pi \frac{b \times c}{a \cdot b \times c} , \quad b^* = 2\pi \frac{c \times a}{a \cdot b \times c} , \quad c^* = 2\pi \frac{a \times b}{a \cdot b \times c} \]

(A4.2)

Vectors \(a^* \), \(b^* \) and \(c^* \) belong to what is called the "reciprocal lattice". While vectors \(a \), \(b \) and \(c \) belong to real space and are measured in meters or centimeters, vectors \(a^* \), \(b^* \) and \(c^* \) belong to a space where the measurement unit is \(\text{meter}^{-1} \) or \(\text{centimeter}^{-1} \), which is called the "reciprocal space". Note that \(a \cdot a^* = b \cdot b^* = c \cdot c^* = 2\pi \) and \(a \cdot b^* = a \cdot c^* = b \cdot c^* = 0 \); \(a^* \) is thus parallel to \(a \) and perpendicular to \(b \) and \(c \), if there is such a thing as being parallel or perpendicular to a vector belonging to another space.

Figure A.4 represents vectors \(a^* \), \(b^* \) and \(c^* \). They are perpendicular to crystal planes (100), (010) and (001), respectively. Vectors perpendicular to planes (110) and (111) are represented as well. Any vector \(k \) in the reciprocal space obeys the following equation:

\[k = fa^* + gb^* + hc^* \]

(A4.3)

where \(f \), \(g \) and \(h \) are integer numbers.

Figure A.4: Main crystal planes of a semiconductor having a cubic lattice. Vectors \(a^* \), \(b^* \) and \(c^* \) belong to the reciprocal space and are represented here in the real-space unit cells for a visualization purpose only.
Problems

Problem A4.1:
a: Calculate the number of atoms in a cubic centimeter of silicon and germanium.

b: Calculate the number of atoms per square centimeter at the surface of an (100)-oriented silicon sample.

Problem A4.2:
Using Matlab place silicon atoms in the silicon unit cell in order to produce a 3D plot similar to Figure A.2. View it from different directions: random, (100), (110) and (111). The lattice parameter is 5.43 Å. Use commands [sx,sy,sz]=sphere(20) and surf1(sx,sy,sz) to draw the atoms. Use command line([X1 X2],[Y1 Y2],[Z1 Z2]) to plot the bonds between the atoms.

Problem A4.3:
Using Matlab place silicon atoms in 3x3x3=27 silicon unit cells in order to produce a 3D plot of the lattice. View it from different directions: random, (100), (110) and (111). The lattice parameter is 5.43 Å. Use commands [sx,sy,sz]=sphere(20) and surf1(sx,sy,sz) to draw the atoms. Use command line([XI X2],[Y1 Y2],[Z1 Z2]) to plot the bonds between the atoms.
A5. Getting Started with Matlab

◊ Matlab contains a powerful and user-friendly HELP function. For example:

```
help help
help graphics
help * or help +
```

will display a general help message, help on graphic functions, and help on operations such as multiplication and addition, respectively.

◊ Matlab is based on matrix operations. The following commands:

```
1  a = 1
2  b = a + a
```

will of course produce b=2 as a result, but internally both a and b are treated as 1 x 1 matrices, such that a = \[1\] and b = \[2\].

◊ Characters preceded by a percent sign (%) are treated as comments. Here is an example of commands:

```
1  clear % Clears all variables
2  A=[1 2;3 4] % Build a 2x2 matrix
3  B=A/A % Divide the A by itself
4  C=A*A % Multiply A itself
5  D=A .*A % Multiply the elements of A by themselves
6  E=A ./A % Divide the elements of A by themselves
7  a=1:2:12 % Generate a vector
8  b=a' % Transpose it
```

The resulting matrices and vectors are:

```
A = [1  2; 3  4]  B = [1  0; 0  1]  C = [7 10; 15 22]  D = [1  0; 9 16]  E = [1  1]

a = [1 3 5 7 9 11]  b =
```

Note the important difference between "*" and ".*" or "/" and "./"!
Using Matlab graphic results can be produced very easily. Here are some examples:

Plot sin(x) and cos(x)

1. clear %Clear all variables
2. X=0:0.1:2*pi; % x varies from 0 to 2π in steps of 0.1
3. SINE=sin(X);COSINE=cos(X);
4. plot(X,SINE,'-r',X,COSINE,'--b');
5. title('Sine and Cosine functions')

Note that x, sin(x) and cos(x) are vectors. There is no need for FOR or DO loops!

Plot a spiral

1. clear; clf % Clear all variables; clear figure
2. R=0:0.1:5*pi; % R varies from 0 to 2π in steps of 0.1
3. SINE=sin(R);COSINE=COS(R);
4. plot(SINE.*R,COSINE.*R,'-b')
5. axis square
6. title('Spiral')
Plot a two-dimensional "Mexican hat"

clear; clf; % Clear all variables; clear figure

t=50; % number of mesh points in each direction
A=zeros(t); % build a 50x50 matrix array
for i=1:t;
 for j=1:t;
 r=sqrt(((i-t/2)/2)^2+((j-t/2)/2)^2);
 A(i,j)=sin(r)/r;
 end
A(t/2, t/2)=1; % center point of matrix is equal to 1
surf1(A) % Plot the 2D graph
shading interp;
colormap(pink);
title ('"Mexican hat function" ')
Matlab can be used to conveniently solve many matrix problems. Here is a simple example. Consider the circuit below. We need to find the value of currents I_1 and I_2, as well as voltage V_1.

\[
\begin{align*}
100\,\Omega \, I_1 + 50\,\Omega \, (I_1 + I_2) &= 10 \, V \\
100\,\Omega \, I_2 + 50\,\Omega \, (I_1 + I_2) &= 10 \, V \\
100\,\Omega \, I_2 - V_1 &= 0 \, V
\end{align*}
\]

or, in a matrix form:

\[
\begin{bmatrix}
150 & 50 & 0 \\
50 & 150 & 0 \\
0 & 100 & -1
\end{bmatrix}
\begin{bmatrix}
I_1 \\
I_2 \\
V_1
\end{bmatrix}
=
\begin{bmatrix}
10 \\
10 \\
0
\end{bmatrix}
\]

Using this simple program:

```matlab
A=[150 50 0;50 150 0;0 100 -1];
B=[10 10 0]';
IV=A\B
```

The solution is $IV = \begin{bmatrix} I_1 \\ I_2 \\ V_1 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0.5 \\ 5.0 \end{bmatrix}$ from which we infer $I_1 = I_2 = 500$ mA and $V_1 = 5$ V.
Here are some Matlab functions that can be useful to solve some Problems from this Book:

Concatenation and iterative equation solving:

If \(A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \) then writing \(B = [A A A] \) yields:

\[
B = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}
\]

The following example solves the equation \(x=\cos(x) \) iteratively and uses concatenation to plot the values of \(x \) at each iteration:

```matlab
clear
test=1;x=0;graph=[];
while test>le-4
    x2=cos(x);
test=abs(x2-x);
    graph=[graph x];
    x=x2;
end
('the solution is')
x
plot(graph)
xlabel('Iteration number');ylabel('X value');
```

![Graph of iteration number vs. X value](image)
If one tries to solve $x = 2\cos(x)$ using the iterative method described above, convergence will not be reached. Convergence can be improved by introducing a relaxation factor, α, used during each evaluation of a new x value. The value of α ranges between 0 and 1.

Instead of writing $x_2 = \cos(x)$
one can write $x_2 = x \cdot (\alpha - 1) + \alpha \cdot \cos(x)$

such that x_2 is some average value between the old x value and the newly calculated value for x.

The program below uses the values 0.2, 0.4, 0.6 and 0.8 for α. Convergence is obtained for the lower α values, but not for $\alpha = 0.8$. Not using a relaxation factor is equivalent to writing $\alpha = 1$, for which there is no convergence.

```matlab
1 clear;clf
2 graph2=[]
3 for alpha=0.2:0.2:.8
4     x=0;graph1=[];x=0;
5     for counter=1:12
6         x2=2*cos(x);
7         test=abs(x2-x);
8         graph1=[graph1 x];
9         x=x*(1-alpha)+alpha*x2;
10    end
11    graph2=[graph2 graph1];
12 end
13 plot(graph2,'-k')
14 xlabel('Iteration number');ylabel('X value');
```

17. Annex

Relaxation factor:
Diagonal matrices: The following program

```matlab
clear
t=6;
A=diag(ones(1,t),0)
B=diag(ones(1,t-1),1)
C=diag(ones(1,t-1),-1)
A=-2*A+B+C
A(1,1)=1;A(1,2)=0;A(t,t)=1;A(t,t-1)=0
```

yields:

\[
A = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & 0 \\
0 & 0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

A similar matrix is used in problems based on a numerical (finite-differences) simulation technique.

Numerical integration and differentiation:

The following program integrates and differentiates \(y = x^2 \):

```matlab
dx=0.01;
x=-5:dx:5;
y=x.^2;
integral=sum(y)*dx %Definite integral (from x=-5 to x=5)
integral_curve=cumsum(y)*dx;%Integral curve
% derivative=diff(y)./diff(x);
% Since the differentiation of an n-element
% vector produces an (n-1)-element vector we add
% a dummy "Not a Number"(NaN) at the end of the
% derivative vector, such that it has the same
% length as the x-vector:
derivative=[derivative NaN];
plot(x,y,'-b',x,integral_curve,'--r',x,derivative,'--k')
text(-4,80,'BLUE: y=x^2')
text(-4,70,'RED: integral of y')
text(-4,60,'BLACK: dy(x)/dx')
```
Note 1: On some computers some versions of Matlab may give you frustrating problems if you use uppercase letters in file names. So, it is good practice to use file names such as "test.m" instead of "Test.m", for example. The Problems in this Book were designed using the Student Edition of Matlab, version 5.0 for Macintosh, and version 5.3 for PC.

Note 2: Some people may find the font size in Matlab plots too small for easy reading. Plot properties such as font size and line width can be modified using the following commands:

```matlab
set(0,'defaultaxesfontsize',14) sets the axes font size to 14
set(0,'defaulttextfontsize',14) sets the text font size to 14
set(0,'defaultlinelinewidth',14) sets the plot linewidth to 2
set(0,'defaultaxeslinewidth',14) sets the axes linewidth to 2
set(0,'defaultaxesfontname','Arial') sets the axes font name to Arial
set(0,'defaulttextfontname','Arial') sets the text font name to Arial
```
A6. Greek alphabet

<table>
<thead>
<tr>
<th>LETTER</th>
<th>LOWERCASE</th>
<th>UPPERCASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha</td>
<td>α</td>
<td>A</td>
</tr>
<tr>
<td>Beta</td>
<td>β</td>
<td>B</td>
</tr>
<tr>
<td>Gamma</td>
<td>γ</td>
<td>Γ</td>
</tr>
<tr>
<td>Delta</td>
<td>δ</td>
<td>Δ</td>
</tr>
<tr>
<td>Epsilon</td>
<td>ε</td>
<td>E</td>
</tr>
<tr>
<td>Zeta</td>
<td>ζ</td>
<td>Z</td>
</tr>
<tr>
<td>Eta</td>
<td>η</td>
<td>H</td>
</tr>
<tr>
<td>Theta</td>
<td>θ</td>
<td>Θ</td>
</tr>
<tr>
<td>Iota</td>
<td>ι</td>
<td>I</td>
</tr>
<tr>
<td>Kappa</td>
<td>κ</td>
<td>K</td>
</tr>
<tr>
<td>Lambda</td>
<td>λ</td>
<td>Λ</td>
</tr>
<tr>
<td>Mu</td>
<td>μ</td>
<td>M</td>
</tr>
<tr>
<td>Nu</td>
<td>ν</td>
<td>N</td>
</tr>
<tr>
<td>Xi</td>
<td>ξ</td>
<td>Ξ</td>
</tr>
<tr>
<td>Omicron</td>
<td>ο</td>
<td>O</td>
</tr>
<tr>
<td>Pi</td>
<td>π</td>
<td>Π</td>
</tr>
<tr>
<td>Rho</td>
<td>ρ</td>
<td>P</td>
</tr>
<tr>
<td>Sigma</td>
<td>σ</td>
<td>Σ</td>
</tr>
<tr>
<td>Tau</td>
<td>τ</td>
<td>T</td>
</tr>
<tr>
<td>Upsilon</td>
<td>υ</td>
<td>Y</td>
</tr>
<tr>
<td>Phi</td>
<td>φ</td>
<td>Φ</td>
</tr>
<tr>
<td>Chi</td>
<td>χ</td>
<td>X</td>
</tr>
<tr>
<td>Psi</td>
<td>ψ</td>
<td>Ψ</td>
</tr>
<tr>
<td>Omega</td>
<td>ω</td>
<td>Ω</td>
</tr>
</tbody>
</table>
A7. Basic Differential Equations

In the examples below, A and B are given constants, and \(C_n (n=0,1,2,3,4) \) are integration constants. Integration constants can be numerically determined by applying boundary conditions to the general solution of the equation.

\[\frac{dF(x)}{dx} + Ax + B = 0 \]

To solve:

\[dF(x) = -(Ax + B) \, dx \quad \Rightarrow \quad \int dF(x) = - \int (Ax + B) \, dx \]

which yields the general solution: \(F(x) = -\frac{A}{2} x^2 - Bx + C_1 \)

\[\frac{dF(x)}{dx} + A \, F(x) + B = 0 \]

To solve:

\[dF(x) = -(A \, F(x) + B) \, dx \]

or:

\[\frac{dF(x)}{AF(x) + B} = -dx \quad \Rightarrow \quad \frac{A \, dF(x)}{AF(x) + B} = -A \, dx \]

Noting that \(d(AF(x) + B) = A \, dF(x) \) and using a change of variables where \(AF(x) + B = y \) we can write:

\[\frac{d(y)}{y} = -A \, dx \quad \Rightarrow \quad \int \frac{d(y)}{y} = -A \int dx \]

The integration results in: \(\ln(y) = \ln(AF(x) + B) = -Ax + C_0 \)

Therefore, the general solution is:

\[F(x) = \frac{\exp(-Ax + C_0) - B}{A} \]

or, noting \(C_1 = \frac{\exp(C_0)}{A} \):

\[F(x) = C_1 \exp(-Ax) - \frac{B}{A} \]
To solve:
\[\frac{d^2 F(x)}{dx^2} = A \]

we integrate a first time to find:
\[\frac{dF(x)}{dx} = Ax + C_1 \]

and then integrate a second time to obtain the general solution:
\[F(x) = \frac{A}{2} x^2 + C_1 x + C_2 \]

To solve:
\[\frac{d^2 F(x)}{dx^2} = A F(x) \text{ with } A > 0 \]

we must find a function that is equal to its second derivative, multiplied by a positive constant. The only function satisfying this condition is the exponential function, since:
\[
\frac{d^2(C_1 \exp(Bx))}{dx^2} = \frac{d}{dx} \frac{d(C_1 \exp(Bx))}{dx} = C_1 B \frac{d(\exp(Bx))}{dx} = C_1 B^2 \exp(Bx)
\]

and
\[
\frac{d^2(C_2 \exp(-Bx))}{dx^2} = \frac{d}{dx} \frac{d(C_2 \exp(-Bx))}{dx} = -C_2 B \frac{d(\exp(-Bx))}{dx} = C_2 B^2 \exp(-Bx)
\]

Comparing the initial differential equation and the possible solutions, we find that \(A = B^2 \). Therefore, the general solution is:
\[F(x) = C_1 \exp(\sqrt{A} \ x) + C_2 \exp(-\sqrt{A} \ x) \]

Since \(\sinh(y) = \frac{\exp(y) - \exp(-y)}{2} \) and \(\cosh(y) = \frac{\exp(y) + \exp(-y)}{2} \), we can also write:
\[F(x) = C_3 \sinh(\sqrt{A} \ x) + C_4 \cosh(\sqrt{A} \ x) \]
To solve: \(\frac{d^2 F(x)}{dx^2} = -A \ F(x) \) with \(A > 0 \)

we must find a function that is equal to its second derivative, multiplied by a negative constant. The only functions satisfying this condition are the sine and cosine functions since:

\[
\frac{d^2(C_1 \sin(Bx))}{dx^2} = \frac{d}{dx} \frac{d(C_1 \sin(Bx))}{dx} = C_1 B \frac{d(\cos(Bx))}{dx} = -C_1 B^2 \sin(Bx)
\]

and

\[
\frac{d^2(C_2 \cos(Bx))}{dx^2} = \frac{d}{dx} \frac{d(C_2 \cos(Bx))}{dx} = -C_2 B \frac{d(\sin(Cx))}{dx} = -C_2 B^2 \cos(Cx)
\]

Comparing the initial differential equation and the possible solutions, we find that \(A = B^2 \). Therefore, the general solution is:

\[
F(x) = C_1 \sin(\sqrt{A} \ x) + C_2 \cos(\sqrt{A} \ x)
\]

Using \(\cos(y) = \frac{e^{iy} + e^{-iy}}{2} \) and \(\sin(y) = \frac{e^{iy} - e^{-iy}}{2j} \) we can write:

\[
F(x) = \frac{C_1}{2} \left(\exp(j \sqrt{A} x) + \exp(-j \sqrt{A} x) \right) - \frac{jc_1}{2} \left(\exp(j \sqrt{A} x) - \exp(-j \sqrt{A} x) \right)
\]

or:

\[
F(x) = C_3 \exp(j \sqrt{A} \ x) + C_4 \exp(-j \sqrt{A} \ x)
\]
INDEX

-A-
absorption coefficient 77
acceptor atom 31, 33
acceptor level 77
accumulation 170
accumulation layer 171
activation energy 383
amorphous silicon 382
anisotropy 389
Auger recombination 78
avalanche 298
avalanche multiplication 117, 298, 299

-B-
ballistic electron 348
band curvature 140
band discontinuity 317
band-to-band recombination 74
band-to-band tunneling 335
bandgap 15, 38, 39, 63, 325
bandgap engineering 316
base 252
BiCMOS 399
bipolar transistor 251
bird's beak 380
BJT 251
Bloch theorem 9
body effect 194
body factor 194, 196, 205, 229
Boltzmann relationships 42, 65
Born-von Karman boundary conditions 5, 338
breakdown voltage 117
Brillouin zone 22, 25
built-in potential 97
buried collector 257, 399
buried oxide 228

-C-
capture cross section 82
carrier freeze-out 36, 48
carrier lifetime 80, 85
CBiCMOS 399
channel 154, 160, 168
channeling 369
charge sheet 140
charge storage 123
CMP 381, 391
collector 252
common-base gain 255, 264, 265, 270
common-emitter gain 256, 270
conduction band 15, 27, 74
conductivity 56
continuity equations 64, 65, 68
Coulomb blockade 355, 357, 359
Coulomb gap 357
Coulomb oscillations 353
critical field 200
current gain 256
current mirror 311
cutoff frequency 148
CVD 381
cyclic boundary conditions 5
Czochralski growth 364

-D-
damascene process 391
Deal-Grove model 376
Debye length 172
deep depletion 181
deep level 33
degenerate semiconductor 40
density of states 25, 336, 344, 346
depletion approximation 99, 142, 176, 318
Index

depletion capacitance 120
depletion charge 177
depletion region 98, 102, 140
depletion-mode device 161
depletion-mode MOSFET 187
depth of focus 385
DIBL 231
diborane 382
dichlorosilane 382
diffusion 59, 370, 373
diffusion capacitance 120, 121, 304
diffusion coefficient 59, 107
diffusion current density 59
diffusion length 105, 107, 110, 282, 371
dimensionless scaling factor 216
diode 95
direct-bandgap semiconductor 74
donor atom 31, 32
donor level 77
dopant 32
doping impurity 32
drain 153, 160
drain saturation current 157, 162
drain-induced barrier lowering 231
DRAM 165, 213
drift current 56
drift-diffusion equations 60, 62
drive-in 373
dry etching 389, 390
dynamic conductance 127
dynamic resistance 127

effective mobility 196
Einstein relationships 61
EKV model 207
electron affinity 140, 317
electron-hole pair 73
emitter 252
emitter efficiency 269, 282
energy 412
energy band diagram 316
energy gap 16
energy subband 339
enhancement-mode device 161
enhancement-mode MOSFET 187
epitaxy 257, 381
EPROM 224
excess carrier lifetime 80
excess carriers 80
external generation 129
extrinsic semiconductor 31

-F-
fall time 124
FAMOS 224
feature size 384
Fermi level 17, 18, 26, 37, 38, 40, 140, 146, 184, 348
Fermi potential 37, 38
Fermi-Dirac distribution 26, 34, 333
Fick's law 371
field implantation 380
field oxide 380
fill factor 132
flash memory 227
Flat energy bands 170
flat-band voltage 186
float-zone refining 365
floating gate 224
FLOTOX 226
forward bias 96, 104
free electron 1
Index

-G-
GaAs 74, 75, 315
gallium arsenide 16, 74, 363
gas-phase diffusion 373
gate 154, 160
gate-induced drain leakage 233
generation 63, 73, 76, 113
germanium 16, 126, 363
GIDL 233
gradual junction 133
group velocity 349, 412
Gummel number 280, 285
Gummel plot 292, 297
Gummel-Poon model 275

-H-
Hall coefficient 58
Hall effect 57
Hall voltage 58
halo 233
HBT 320
HEMT 321
heterojunction 95, 316
high-k dielectrics 231
HIPOX 377
hole 20, 23
homojunction 95, 316
hot electrons 218
hybrid-π model 308

-I-
ideal diode 107
ideality factor 116, 147
IGFET 165, 166
III-V semiconductors 76
impact ionization 79, 116, 218
indirect-bandgap semiconductor 19, 75
InP 315
integration density 165
inter-subband scattering 351
interface states 146, 186, 205
interface traps 146, 186, 205
internal potential 41
interstitials 51
intrinsic carrier concentration 29, 30
intrinsic energy level 30
intrinsic semiconductor 29
ion implantation 367
ionized impurity 34
iterative equation solving 422

-J-
JFET 153
 Junction Field-Effect Transistor 153
 junction potential 97, 102, 318

-K-
kinetic energy 412
Kirk effect 292

-L-
Landauer formula 349
Laplacian operator 412
laser diode 95, 326
lattice parameter 414
LDD 221
leakage current 113, 160
LED 324
lifetime 87
light-emitting diode 74, 95
linear growth coefficient 376
LOCOS 379, 396, 402
long-base diode 110
low injection 277
low-K dielectric 392
low-level injection 86, 108
LPCVD 381
lucky electron 220

-M-
magnetic field 57
mask 384
MESPET 159, 323
metal contact 80
metallization 391
metallurgical junction 97, 252
minority carrier lifetime 86
MIS 167
mobility 54, 55
MODFET 321
momentum 2, 412
Moore's law 165
MOS 167
MOS capacitor 170
MOS transistor 165
MOSFET 165
multiplication coefficient 218
multiplication factor 79, 117, 298
-N-
N-type semiconductor 33, 36
N-well 394
native oxide 376
negative resistance 335
neutral base 252
NPN 252
numerical aperture 385
-O-
OED 377
ohmic contact 149
operator 411
output characteristics 191
output conductance 158
overetching 389
overlap capacitance 222
oxidation 374
-P-
P-type semiconductor 33, 36
P-well 394
pad oxide 380
parabolic band approximation 23, 26
parabolic growth coefficient 377
particle-in-a-box 5
Pauli's exclusion principle 26
PECVD 381
phonon 51, 75, 78, 325
phosphine 382
photodetector 133
photoelectric effect 139
photolithography 384
photon 74
photoresist 384
PiN diode 132
pinch-off 157, 162, 218
PN junction 95
pn product 113
PNP 251
Poisson equation 62, 99, 101, 142, 176
polycrystalline silicon 382
polysilicon 184, 382
polysilicon depletion 230
population inversion 327
potential barrier 104, 141, 143, 161, 333
potential energy 412
potential well 4
projected range 368
punch-through 231
punchthrough 215, 289
-Q-
quantum dot 337
quantum wire 337, 349
quasi-Fermi level 66, 114
-R-
radiative recombination 74, 78, 324
rapid thermal annealing 374
reciprocal lattice 416
Index

reciprocal space 2, 416
reciprocity relationship 266
recombination 63, 73, 113
recombination centers 76, 77, 80
relaxation factor 423
relaxation time 52
resistivity 56
reticle 385
reverse bias 96, 104
reverse recovery time 124
Richardson constant 146
RIE 390
RTA 374

-S-
SALICIDE 392
saturation 191
saturation current 190, 195, 264, 273
saturation drain voltage 157, 162
saturation velocity 200, 292
saturation voltage 190, 195
Schottky contact 139
Schottky diode 139, 160
Schottky effect 145
Schrödinger equation 1, 337, 412, 413
SDE 221
segregation coefficient 377
selectivity 389
semi-insulating substrate 160
SET 358
shallow trench isolation 380
short-base diode 118
short-channel effect 213, 233
SiC 315
SiGe 321
silane 381
silicide 392
silicon 16, 126, 363
silicon nitride 380
SIMOX 370
single-electron transistor 353, 358
small leakage current 158
SOI 228, 370
solid solubility 374
source 153, 160
source and drain extension 221
space-charge region 98, 140
SRH recombination 82
step junction 97
STI 381
stimulated emission 326
straggle 368
strong inversion 178
substrate current 218
subthreshold current 202
subthreshold slope 204
subthreshold swing 204
surface mobility 196
surface recombination 79, 80, 88, 89, 283
surface recombination rate 88
switching time 123

-T-
TFT 382
thermal energy 32
thermal velocity 82
thermal voltage 61
thermionic emission 145
threshold implant 406
threshold voltage 155, 183, 187, 193
transconductance 159, 162, 195, 307
transistor effect 254
transit time 302
transition capacitance 120, 304
transition region 99, 103, 113, 317
transport equations 62, 65
transport factor in the base 269, 281
transport model 274
trichlorosilane 364
triode 191
triode regime 191
tunnel diode 331
tunnel effect 117, 331, 333
tunnel junction 353
Two-Dimensional Electron Gas (2DEG) 323

V

cancies 51
 valves 15, 74
velocity saturation 200
VLSI 391

W

wafer stepper 385
wave function 338, 340, 342, 411
wave number 2, 12
wave vector 3, 15, 74
weak injection 107, 108
weak inversion 179
wet etching 388
work function 139, 184, 185, 317

Z

Zener breakdown 117
Zener diode 118