Bibliography

Bibliography

Bibliography

Bibliography

Bibliography

[116] M. G. McDermott, C. N. Sweeney, M. Benedek, J. J. Borelli, G. Dawe, and L. Raffaelli, “Integration of High-Q GaAs Varactor Diodes and 0.25-um GaAs MESFETs for Multifunction Millimeter-
Bibliography

[153] M. T. Jones, and J. T. Bolljahn, “Coupled Strip Transmission Line Filters and Resonators,” *IRE Trans. on Microwave Theory and
Techniques, vol. 4, pp. 75-81, April 1956.

Index

Numerics
1/f noise 37, 52, 55, 65
1-dB compression point 19, 106, 109, 110, 114

A
AC simulation 21, 23
ACI 8
ACPR 5, 19, 20, 22, 26, 134, 136, 140
Air bridges 75
A1GaAs/GaAs ii, vii, 37, 55, 56, 67, 88, 89
AM noise 40
Amplifier efficiency 10

B
Balanced FET mixers 49
Balanced mixers 50
Barkhausen criterion 60
Behavioral model 19
BJT 37, 57, 67, 88
BPF vii, 4, 9, 12, 15, 16, 21, 22, 93, 97, 109, 111, 121, 127, 130, 131, 132, 139
BSS 2
Built-in potential, 34, 73

C
CAD, 19, 21, 26, 93, 124, 139
Cascode 49, 80, 82
Cavity filter, vi, 4, 16
CDMA, 10, 17
Circuit envelope co-simulation 20
Class A 93, 115, 116
Class AB 116
Class B 116
Common gate inductive feedback 62
Common source capacitive feedback 62
Common-drain 78
Common-source 54, 62, 79, 80, 82, 83, 85
Conversion compression 30
Conversion gain 29
Coupled line 122, 128
Coupled strip line 123
CPW 126, 127, 128, 131
Cross modulation 28
Cross talk 7, 15
CS/CG 53, 54

EM 117, 119, 124, 125
Epitaxial base 57
Even mode characteristic
 impedance 123
Exponential schemes 8

D

DAC. See digital to analog converter
Double Balanced 50
 Doubly balanced diode-ring mixer 42
DBS v, 1, 3, 55, 134
DC offset 30
DDBM. See double doubly balanced mixer
DECT 9
DGFET. See dual gate FET
Digital to analog converter 15
Direct conversion 30
Direct to home v, 1, 3
Double conversion 15, 133
Double doubly balanced mixer 43, 44
 Double double balanced
 Schottky mixer 56
 Doubly Balanced FET mixers 50
 Doubly balanced dual gate FET mixer 51
DQPSK 8
DR 87
Drain mixing 46
DTK. See direct to home
Dual gate FET 45, 46, 47
 Dual gate mixer 21, 45, 46, 47, 49, 51, 93, 94, 97
Dynamic range, 30

E

E-B heterojunction 37

F

Feedback ii, 59, 60
 Feedback oscillator ii, 59
Flicker noise 55
FM noise 64, 65, 70
f_{max} 39, 57, 88, 89
Folded edge coupled strip line filter 124
Free running VCOs 66
Front end 4, 13, 18, 134
FSS 2
f_{r} 4, 39, 57, 88, 89, 91

G

GaAs ion implantation 55
Sallium doped YIG 67
Generation recombination 37
Gilbert cell mixer, 52, 56
GSM 8
Gunn diode 60
Gyromagnetic 69

H

Harmonic balance 93, 116
HBT ii, vii, 36, 37, 38, 39, 55, 56, 57, 58, 65, 67, 88, 89, 91
HEMT 35, 36, 46, 52, 55, 57, 65
Heterojunction ii, 36
HTS 87

I

IDSVD 74, 75
IIP3 19, 95, 99, 108, 137, 139
Image 54, 140
Image rejection 4, 54
IMD 29, 31, 51
InGaAs 36
INTELSAT, 1
IP3 43, 55, 56, 57, 92, 95
ISM 9
Isolation i, 30, 99
ITU v, 3

J

JDC 8
Johnson noise 55

L

Lange couplers 46
Lattice matching 37, 55
LC 87, 99, 112
LC matching 112
Lesson 64
Link budget analysis 23
LMDS 2, 55
LNA vi
LNB 91
LO radiation, 16
LO rejection, 9, 41, 46, 125, 132
LO-RF isolation, 13, 30, 46, 98
Low temperature co fired ceramic
iii, vi, vii, 4, 9, 16, 21, 93, 121, 124, 125, 127, 128, 129, 130, 131, 137, 139, 140
Low power tunable active inductor 82, 83
LPF 16
LPTAI. See low power tunable active inductor
LTCC. See low temperature co fired ceramic

M

Marchand balun 43
MBE 36
Mesa type 74, 75
MESFET ii, vi, vii, 4, 34, 35, 36, 46, 52, 55, 56, 57, 62, 66, 67, 71, 72, 73, 75, 77, 78, 81, 85, 86, 87, 88, 89, 91, 116, 119, 137, 139
Metal insulator metal 81, 91, 95, 99, 112
MIM. See metal insulator metal
Modulator, i, 7
Modulation accuracy, 7
MoM 101, 124, 125, 126
MSS 2
Multi layer vi, 127, 130, 139
LTCC substrate 127, 130, 139

N

NADC 8
Negative resistance ii, 60, 61
NF. See noise figure
NiCr resistors 91
Noise figure 24, 31, 36, 57
Non inverting amplifier 82

O

ODU 3
One port Model ii, 60
OQPSK 8
Orbital slots v, 3
Out of band Emission 25
Output power spectrum 65, 134, 135

P

PAE 119
PCS 8
Peak to average ratio 10, 115
Phase noise vi, 4, 14, 15, 21, 55, 60, 63, 64, 65, 67, 72, 78, 85,
Index

87, 88, 89, 91, 92, 100, 101, 102, 103, 105, 116
Phased array 4
Physical models 47
PLL 17, 78, 89
Positive feedback amplifier 86
Post tuning drift ii, 63, 66
Pulling ii, 65, 66
Pushing ii, 65
Push pull 116

Source follower 78
Spectral emission 9
Spurious ii, 25, 31
response, 43, 92
SSB 16, 64, 88
phase noise 64, 88
Strip line filter iii, vi, 4, 121
Surface state problem 88
System performance vi, 4, 19, 22, 25, 26, 139, 140

Q

QPSK 7, 8, 10, 19, 20, 23, 25, 115, 134
constellation 23
Quadrature hybrid 50

R

Reactive matching 108
Recessed gate 35
Re entrant self shielding magnetic circuit 69
Reflection coefficient line, vi, 4, 91, 99, 100
RF-IF isolation 97, 98
Rollet stability factor 61

T

TAI 63, 81, 82, 83, 85, 87, 89
TCR 77
TDMA 17, 25
Third order products 31
Three terminal device, 32, 39, 60
TOM3 116
Transmitter, i, ii, 7, 19, 25, 26, 91, 92, 119, 121, 140
Trapping detrapping 37
Turn on voltages 44
Two port Model ii, 59
Two step transmitter 17
Two terminal device 32, 60
Two tone intercept point
intermodulation distortion 31

U

Up conversion, vi, 9, 11, 12, 13, 14, 15, 16, 17, 65, 93, 111
USB 109

V

Varactor diodes 88
Varactor tuned oscillator, 76, 77
VCO pulling 12, 16, 17
Voltage standing wave ratio 66
VSAT v, vi, 1, 2, 3, 4, 16, 23, 25, 129

Schottky barrier diode 29, 32, 33, 50, 57, 77
Self aligned 38
Self mixing 12, 30
Semi insulating substrate 38, 74
Si BJT 57, 67, 88
SiGe, 37, 38, 39, 55, 56, 57, 58
Signal to noise ratio 31, 54
Single crystal YIG 67
Single diode mixers 40, 41
Single Gate Mixer 45
Singly balanced mixer 41
SNR 31
Index

VSWR. See voltage standing wave ratio

Y

YIG ii, 63, 67, 68, 69, 70, 71, 72, 73, 87, 88

sphere 67, 68, 69
tuned oscillator ii, 67