1899

1910

1913

1922

1923

1924

Cohen, L.H. (1932). The effect of refractory phase upon negative adaptation of

1933

1934

1935

1936

1937

1938

1939

Humphreys, L.G. (1939). The effect of random alternation of reinforcement on the acquisition and extinction of conditioned eyelid reactions. *Journal of Experimental Psychology, 25*, 141-158.

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

Franks, C.M. (1955). The establishment of a conditioning laboratory for the
Journal of Mental Science, 101, 654-663.
Warren, A.B., & Grant, D.A. The relation of conditioned discrimination to the MMPI
Vooks, V.W. (1955). Gradual strengthening of S-R connections or increasing number

Psychology, 52, 143-150.
objective test of hearing. Journal of Speech and Hearing Disorders, 21, 47-55.

Franks, C.M. (1957). Effect of food, drink and tobacco deprivation on the
conditioning of the eyeblink response. Journal of Experimental Psychology, 53,
117-120.
conditioning following interpolated presentations of the UCS. Journal of
Cynther, M.D. (1957). Differential eyelid conditioning as a function of stimulus
similarity and strength of response to the CS. Journal of Experimental
Psychology, 53, 408-416.
King, D.C., & Michels, K.M. Muscular tension and the human blink rate. Journal of
1958

1959

Braun, H.W., & Geiselhart, R. (1959). Age difference in the acquisition and
extinction of the conditioned eyelid response. *Journal of Experimental Psychology, 57*, 386-388.

1960

1961

function of reinforcement schedules and changes in them. *Proceedings of the National Academy of Science, 47*, 1860-1868.

1962

1963

1964

1965

Meiselman, H.L., & Moore, J.W. The effects of percentage reinforcement, UCS duration, and experience with procedure on the conditioned eyelid response.

1966

1967

1968

differential human eyelid conditioning. Psychonomic Science, 12, 58.
Suboski, M.D., & Greenner, R.T. (1968). Ready signal and definition of a CR in
classical eyelid conditioning. Psychological Reports, 23, 995-1001.
White, B.L., & Clark, K.R. (1968). Apparatus for eliciting and recording the eyeblink

1969

conditioning and probability learning as a function of puff intensity. Journal of
Cerekwicki, L.E., Kantowitz, B.H., & Grant, D.A. (1969). Replicability of and
optimal delay of reinforcement result in instrumental eyelid conditioning. Journal
of Experimental Psychology, 79, 189-190.
Fishbein, H.D., & Rees, J.F. (1969). The interaction effects of CS intensity and CS-
UCS interval in human eyelid conditioning. British Journal of Psychology, 60(3),
357-361.
stimuli varying in formal similarity. Journal of Experimental Psychology, 80, 9-
13.
Transfer of eyelid conditioning from instrumental to classical reinforcement and
relationship to neuroticism and extraversion. Behavioral Research Therapy, 3,
233-244.
variables and college achievement. Australian Journal of Psychology, 21 (1), 85-
89.
opposing instrumental contingencies. Journal of Experimental Psychology, 79,
547-551.
1970

1971

1972

1973

1974

1975

1977

1978

1979

1980

1981

1982

1983

1984

1985

INDEX

A

Acquisition
amnesia and, 15, 212, 213, 217–218, 219
autism and, 150, 152, 155, 262
awareness and, 231, 233, 235–237
brain lesions and, 31
dystonias and, 201
in infants, 127
of latent inhibition, 37
motor impairments and, 193, 194–195, 197
obsessive-compulsive disorder and, 266
in PET studies, 60
of trace conditioning, 177
Activation maps, 81–82, 84
Aggregate predictions of conditioned stimulus (CS), 23, 25, 37
Aging, 11, 12, 13, 15, 163–179
awareness and, 244–245
complex conditioning procedures and, 178
delay conditioning and, 170–175
nondeclarative memory and learning and, 163–170
retention and, 178–179
trace conditioning and, 175–177, 178
Alcoholism, 212, 213
Alpha responses
amnesia and, 214, 216–217, 221, 223
autism and, 154–155
in fMRI studies, 85
in PET studies, 52, 57, 72
Alzheimer’s disease (AD), 9, 11, 13, 14, 15, 163, 164, 185, 198, 205, 206
description of, 179–181
fMRI and PET studies of, 73–74
markers of, 261
neurological test performance and, 180–181
Amnesia, 11, 14, 15, 42, 202, 205–223, 244
anterograde, 206, 261–262
dense, 164
discrimination learning and, 178, 207, 217–222
markers of, 261–262
retrograde, 206
trace conditioning and, 213–217, 232–237
Amphetamine, 27, 39, 42
Amplitude, 249, see also Conditioned response amplitude; Unconditioned response amplitude
Anatomic magnetic resonance imaging (MRI), 174–175
Animal models, see also specific animals brain lesions in, 30–38
clinical implications of EBCC in, 259–269
of memory, 206–207
in neural network approach, 27–41
pharmacological manipulations in, 39–41
Anterograde amnesia, 206, 261–262
Antisocial personality disorder (APD), 268
Anxiety disorders, 263–264, 268
Applied psychology, 257–258
Association cortex, 26–27
Associative learning, 1
cerebellar-hippocampal interactions in, 157
as a dependent variable, 259
developmental trends in, 145–147
Assumed group differences in conditionality, 265, 266
Ataxia, 7, 164
Attentional-configural model, 194
animal models in, 27–41
description of, 20–23
human data in, 41–43
mapping onto the brain, 23–27
Attentional model, 19, 20, 37, 39
Attentional system, 20, 22
Auditory cortex, 54, 57, 58, 60, 243
Autism, 7, 13, 14, 15, 143, 149–159, 196, 201–202
age and conditioning in, 150, 155
distributed brain processes in, 156–158
markers of, 261, 262
neuropathology, 149–150
nonassociative factors in conditioning, 152

symptom variability in, 158

Awareness, 163, 229–250

background, 230–231

brain systems in, 242–243

concomitant measures of, 247

delay conditioning and, 169–170, 230, 231–242, 243, 245

as a dependent variable, 232–237

discrimination learning and, 219–221

dual-task studies and, 169

importance of response system, 245–246

issues to be resolved, 243–245

manipulation of, 237–242

measuring, 246–247

nondeclarative memory and learning and, 167–170

post-conditioning questions, 246–247

promoting, 238–242

questionnaire evidence on, 169–170, 234, 246–247

trace conditioning and, 42–43, 214, 230–243, 245

B

Baby Albert, 264

Balloon model, 77

Basal ganglia, 107–110, 164, 183, 200, 262

Basic psychology, 257–258

Behavioral inhibition system, 20, 23

Benton, 217

Blocked-trial functional magnetic resonance imaging (fMRI), 76

Blocking, 31–33

Blood Oxygenation Level Dependent (BOLD) contrast, 75, 77–79, 80, 83

Bottom-up approach, 9, 19

Brain, see also specific structures of

autism and, 156–158

awareness and, 242–243

mapping of attentional-configural model onto, 23–27

memory systems of, 10–11

theories of function, 11–12

Brain lesions, 30–38, see also specific brain structures

Brainstem, 192–195, 201, 206, 260

Bulimia nervosa, 268–269

Button push procedure, 245–246

C

CA1 region of hippocampus, 12, 20, 25, 26, 77, 179, 180, 182, 185, 209

CA3 region of hippocampus, 20, 25, 26, 180

CA4 region of hippocampus, 150

Carry-overeffects, 128, 131, 139

Cats, 36, 163

Cerebellar nucleus, 157, 184, 197, 198

Cerebellar cortex, 96

amnesia and, 207, 221, 222

in children, 147

delay conditioning and, 173–175

timing and, 105–107, 111

Cerebellar lesions, 7, 96, 164

amnesia and, 209, 210, 211, 212, 213

dual-task studies and, 97–98, 99

dystonias and, 200

motor impairments and, 192–195, 196, 201–202

in neural network approach, 23, 30, 41–42

in newborns, 145–146

timing and, 107

Cerebellum, 10, 15, 51, 260

aging and, 11, 13

Alzheimer’s disease and, 74

amnesia and, 206, 207, 221

autism and, 149, 156, 157, 158, 159

awareness and, 230, 242–243, 246

in children, 144–145, 146–148

delay conditioning and, 175

dual-task studies and, 97–99, 113

in fMRI studies, 74, 83, 84

Huntington’s disease and, 183, 262

interactions with hippocampus, 157

interaction with other brain areas, 158

in neural network approach, 23–25

in newborns, 145–146

nondeclarative memory and learning and, 166, 167

Parkinson’s disease and, 184

in PET studies, 57, 58, 64, 72

role in EBCC, 7–8, 95–97

timing and, 99–104, 108, 109, 110

Cerebral cortex

amnesia and, 206

Huntington’s disease and, 164, 183, 198, 262

in newborns, 145

Cerebrovascular dementia (CVD), 182, 185, 205, 206
Children, 12, 13, 15, 143–149, 158
 experimental procedures used for, 143–144
 neurodevelopmental aspects of EBCC in, 144–149
Choice reaction-time tasks, 97, 98, 169
Cholinergic agents, 40–41, 43
Cholinergic system, 26, 74, 179, 180, 182, 183, 185
Classical conditioning procedures, 2–4
Clinical psychology, 257–258
Cognition, 175
Cognitive theories, 265
Complex conditioning procedures, 178
Compound conditioned stimulus (CCS), 269
Computed tomography (CT), 209, 215, 217
Conditional discriminations, 43
Conditioned inhibition, 33, 140
Conditioned response (CR)
 aging and, 11
 Alzheimer’s disease and, 179–180
 amnesia and, 168–169, 207, 208–213
 anxiety disorders and, 263
 autism and, 154
 awareness and, 170, 231
 in children, 144
 defined, 2
 in dual-task studies, 98, 99
 in MRI studies, 77, 86
 in infants, 125, 128, 129, 130, 131–132, 133, 134, 138, 139–140, 146
 motor impairments and, 191, 192–195
 neviracetam and, 41
 in neural network approach, 23, 28, 29–30, 33, 37
 in PET studies, 52, 54–57, 72, 73
 slope analysis and, 102
 timing and, 96, 104, 105–107, 110–112
 Weber’s law and, 101
Conditioned response (CR) amplitude, 262
 autism and, 150–152
 in infants, 135–136
Conditioned stimulus (CS)
 aggregate predictions of, 23, 25, 37
 anxiety disorders and, 263
 in attentional model, 20
 autism and, 150, 154–155
 in children, 148–149
complexity of, 148–149
 compound, 269
 in configural model, 19
 defined, 2
dopaminergic agents and, 39
 in MRI studies, 84
 in infants, 123–124, 131, 140
 interval between US and, see
 Interstimulus interval
 motor impairments and, 191, 192, 193, 194, 195
 neural substrates and, 95, 96–97
 in newborns, 145
 in PET studies, 51, 61–62, 66
 procedures for, 2–4
 timing and, 104, 105–106, 110–112
 trace conditioning and, 175–177
Configural model, 19–20, 41
Configural system, 20, 22
Connectivity, 64–66
Contextual effects, 35, 37–38
Cortical lesions, 30, 33, 34, 35, 36, 38
Corticolumbic pathways, 148
Cross-sectional studies, 129, 138

D

Declarative memory and learning, 10–11, 157, 196, 202
 amnesia and, 206, 213, 214
 awareness and, 230, 231, 243
Delay conditioning, 41–42
 aging and, 170–175, 178
 awareness and, 169–170, 230, 231–242, 243, 245
 brain lesions and, 30–31
 in children, 148
 defined, 2
 hippocampal lesions and, 8
 in infants, 139
 motor impairments and, 199
 obsessive-compulsive disorder and, 266
 trace conditioning compared with, 175, 177, 214
Dense amnesia, 164
Dependent variable
 associative learning as, 259
awareness as, 232–237

Diagnostic and Statistical Manual of Mental Disorders (DSM-IV), 263

Diencephalon, 206, 220

Differential conditioning, 231–242, 243–244, 245

Discrimination, 2–3, 217–222, 260, 269

amnesia and, 178, 207, 217–222

brain lesions and, 33

conditional, 43

simultaneous and serial feature-positive, 33–35

Discrimination reversal

amnesia and, 178, 207, 218, 219, 220

brain lesions and, 33

in children, 149

Dopaminergic agents, 27, 39–40, 42, 44, 199

Dopaminergic system, 27, 164, 184, 197, 199–200

Dorsal accessory olive, 23, 25, 29

Double dissociation, 164, 202

Down’s syndrome, 156, 180, 185, 198, 261

Dualism, 254

Dual-task studies, 15, 97–99, 112–113

awareness in, 169

motor impairments and, 196

nondeclarative memory and learning and, 164–167

Dystonias, 200–201

E

Echo-planar imaging (EPI), 75, 80, 83, 84

Elderly, 147, see also Aging

Electroencephalography (EEG), 193, 197, 217, 259

Electromyography (EMG)

of infants, 121, 123–124, 125, 128, 131, 135, 136, 137, 138, 144

motor impairments and, 193, 195

Environmental model, see Model of the environment

EPISTAR, 75

Event-related functional magnetic resonance imaging (fMRI), 76

Evolutionary view, 263

Exposure with response prevention (ERP), 264

External validity, 258

Extinction

amnesia and, 208–209, 215, 218, 220, 223

autism and, 150, 152, 155

brain lesions and, 31

dystonias and, 201

motor impairments and, 193, 197

obsessive-compulsive disorder and, 266

in PET studies, 52–53, 54–57, 60–61

testing predictions about, 260

of trace conditioning, 177

Eyeblink Classical Conditioning: Volume II—Animal Models (Woodruff-Pak & Steinmetz), 5, 7

Eyeblink coding, 125

Eye size, 173

F

Facilitated conditioning

autism and, 152–155, 156, 157

motor impairments and, 197

Fast-spin echo (FSE) imaging, 84

Feedback system, 20, 22

Fetal alcohol exposure, 13

Fetishism, 269

FLASH, 75

α-Flupenthixol, 39

Fragile X syndrome, 156, 180, 185

Frontal cortex, 166

Functional magnetic resonance imaging (fMRI), 14–15, 71–89

blocked-trial, 76

with BOLD contrast, 75, 77–79, 80, 83

data acquisition and analysis in EBCC, 83–88

data acquisition in, 80

data analysis in, 80–83

PET compared with, 74–77

single-trial (event-related), 76

Functional networks, 51–67, see also Positron emission tomography

G

GABA, 147

Gene knockout mice, 145, 152–154, 159

Globose nucleus, 96, 104, 111

Globus pallidus, 198

Glucose metabolism, 63, 96–97, 104

Glutamate, 147

Golgi cells, 111

Gormezano, Isidore, 5, 6
H

Haloperidol, 27, 39–40, 42, 43, 108
Hemispheric Encoding Retrieval
Asymmetry (HERA) model, 61
Hilgard, Ernest, 4–5, 6
Hippocampal formation, 206
Hippocampal formation lesions
awareness and, 232
haloperidol and, 40
in neural network approach, 25, 30, 31, 33, 34, 35, 36–37, 43
nonselective, 25
Hippocampal lesions, 8
amnesia and, 214, 216, 219, 223
awareness and, 231
in children, 148–149
in configural model, 20
haloperidol and, 39–40, 43
in neural network approach, 25, 37–38, 42, 44
nonselective, 30, 39, 43, 44
selective, 39, 43, 44
Hippocampus, 12
Alzheimer’s disease and, 13, 74, 179–180, 185
amnesia and, 206, 207, 221–222
autism and, 149, 150, 155, 157
awareness and, 230, 242–243
cerebellum interaction with, 157
cerebrovascular dementia and, 182
in children, 144–145, 148–149
in fMRI studies, 74, 77, 83
Huntington’s disease and, 183, 262
long-term potentiation of synapses in, 41, 148–149, 155
motor impairments and, 191–192
in neural network approach, 25, 26, 28, 29
Parkinson’s disease and, 184
in PET studies, 72
role in EBCC, 8–9
trace conditioning and, 177
Hippocampus proper lesions, 30, 31, 33, 34, 35, 37, 38
selective, 25
History of classical conditioning, 4–7
Humans
agedifferences in EBCC, 170–179
Alzheimer’s disease effect on circuitry, 73–74
applications of EBCC to, 9–12
clinical implications of EBCC in, 259–269
dual-task studies in, 97–99
fMRI studies of, 72–73
in neural network approach, 41–43
neural structures and circuitry in conditioning, 7–9
PET studies of, 72–73
Huntington’s disease (HD), 73, 107, 164, 185, 198–199, 205–206
description of, 183–184
markers of, 261, 262

I

Indeterminacy, 254
Infant Learning Project, Duke University, 120
Infants, 12, 15, 119–141, 146–147, see also Newborns
developmental phenomena of EBCC in, 139–141
empirical studies of, 127–134
experimental procedures used for, 143–144
eyeblink coding in, 125
general protocol and apparatus in study, 123–125
maintaining state in, 120–123
Inhibitory conditioning, 33
Integration, 12
historical obstacles to, 257–258
implications for, 269–270
philosophical obstacles to, 254–256
possibility of, 258–259
Internal validity, 258
Interpositus nucleus, 104, 106, 107, 111
Interstimulus interval (ISI)
awareness and, 232–233, 248
in childhood studies, 144, 147–148, 158
delay conditioning in aging and, 171–172
in infant studies, 13, 139, 146
motor impairments and, 195
Parkinson’s disease and, 184
timing and, 104, 105–106
trace conditioning in aging and, 175–177
Ipsilateral interpositus nucleus, 96
K

Ketamine, 196
Korsakoff’s Syndrome, 206, 208, 209, 212, 213

L

Larsell’s hemispheric lobule VI (HVI), 105
Latency, see also Onset latency; Peak latency
amnesia and, 211, 216, 223
autism and, 152, 155, 156, 158
awareness and, 248
in children, 148
Huntington’s disease and, 262
in infants, 135–136
motor impairments and, 195, 199, 201
timing and, 105–107
amnesia and, 207
dopaminergic agents in, 40–41
schizophrenia and, 43
Lateral septum, 26, 29
Learned irrelevance, 140
Learning theory models, 263–265, 267
Limbic system, 150, 157
Longitudinal studies, 129, 138
Long-term potentiation (LTP), 41, 148–149, 155

M

Magnetic resonance imaging (MRI), 8, 13
amnesia and, 215
anatomic, 174–175
autism and, 149
of children, 148
functional, see Functional magnetic resonance imaging
Markers of psychopathology, 260, 261–262
Maudsley-Obsessional-Compulsive Inventory (MOCI), 266
Mecamylamine, 41
Medial septum, 26, 28–29
Medial-temporal lobe lesions, 10–11
Alzheimer’s disease and, 164
amnesia and, 15, 167, 168, 206, 209, 212, 213, 216, 218–220, 221
nondeclarative memory and learning and, 163, 164
Memantine, 196
Memory
declarative, see Declarative memory and learning
nondeclarative, 10–11, 163–170, 202, 229, 230
procedural, 206
recognition, 169
theories of, 10–11
Memory recognition tasks, 97, 98
Mental retardation, 144, 156
Mice, 6, 13, 145, 152–154, 159, 163
Model of the environment, 20, 22–23
Monkeys, 163
Motor cortex, 10, 164, 166
Motor impairments, 15, 191–202
brainstem damage and, 192–195
cerebellar lesions and, 192–195, 196, 201–202
substantia nigra and neostriatum damage and, 196–200

N

Nefiracetam, 41
Negative patterning, 35
Neocortex, 242
Neostriatum, 184, 196–200
Neural network approach, 3, 9, 19–44, see also Attentional-configural model
Neural structures and circuitry, 7–9
Neural substrates, 95, 113, 205
of EBCC, 96–97
in newborns, 145
of timing, 104–112
of trace conditioning, 175
Neuronal activity, 27–30
Newborns, 143, 145–146
Nicotine, 39, 41, 42
Nictitating membrane (NM) response, 1, 5–6, 9, 30, 51, 179, 191, 207
Nonassociative factors
in age differences in EBCC, 173
in autism conditioning, 152
Nondeclarative memory and learning, 10–11, 163–170, 202, 229, 230
Nonselective lesions
hippocampal, 30, 39, 43, 44
hippocampal formation, 25
Novelty, 27, 29–30, 37, 39, 40, 42
Novelty system, 20, 23
Nucleus accumbens, 27

O

Obsessive-compulsive disorder (OCD), 264–268
Occasion setting, 19, 20, 34, 36
Occipital cortex, 10, 11, 166
Olivocerebellar pathway, 152–154
Olivopontocerebellar atrophy (OPCA), 193
Onset latency, 102–103
amnesia and, 221
awareness and, 249
in infants, 135
Overshadowing, 31–33

P

Paired conditioning
amnesia and, 208, 209, 210, 211, 212, 213, 214
in dual-task studies, 166, 169
in infants, 124, 128, 129, 130, 131, 132, 133, 134, 135–136, 139, 140
motor impairments and, 199
in PET studies, 52, 54, 55, 57, 61
Paraphilia, 269
Parkinson’s disease (PD), 10, 14, 110, 164, 197–198, 199–200, 202
description of, 184–185
markers of, 261
Partial least squares (PLS), 53–54, 55, 57, 58, 60, 62
Pavlov, Ivan, 2, 4
pcd mice, 145, 154
Peak latency, 102–103
amnesia and, 150
awareness and, 249
in infants, 135
timing and, 166
Peak procedure task, 108–110
Perforant pathway, 148
Pharmacological manipulations
motor impairments and, 196
in neural network approach, 39–41
Photocell system, 195
Physostigmine 40, 41
Picture viewing task, 266, 267–268
Plasticity, 64–66, 242, 243
Positive patterning, 35
Positron emission tomography (PET), 8, 12, 13, 14–15, 19, 51–67, 71–77, 96–97
autism and, 149
of children, 148
comparison with other learning studies, 63–64
comparison with other studies, 63
fMRI compared with, 74–77
laterality of learning-related changes, 54–57
methods, 52–53
motor impairments and, 196
of newborns, 146
replication, 57–58
Potentiometers, 52, 144
Prediction tests, 263–265
Prefrontal cortex, 58, 60–34, 64, 72, 167
Procedural memory, 206
Protein kinase C-gamma isoform (PKCg) gene knockout mice, 154
Psychopathology
markers of, 260, 261–262
prediction tests from learning theory models of, 263–265
theory and integration in, 12
Putamen, 197, 200
Pyramidal cells, 12, 26, 28, 179–180, 185, 191

Q

Questionnaires, 169–170, 234, 246–247

R

Rabbits, 5–47, 8, 9, 51, 95, 96, 146, 148, 149, 157, 163, 184, 191, 249, b260
Alzheimer’s disease model of, 179, 180
cholinergic agents and, 40, 41
delay conditioning and, 30, 173–174
discrimination learning and, 219, 221
motor impairments in, 197
timing and, 104, 105, 106
trace conditioning and, 177, 214, 216, 217, 231
Rats, 6, 9, 30, 36, 41, 139, 140, 146, 163, 263
Recall questionnaires, 246–247
Recognition memory, 169
Symmetry, 36–37
Rats, 6, 9, 30, 36, 41, 139, 140, 146, 163, 263
timing and, 107
Recall questionnaires, 246–247
Recognition memory, 169
Symmetry, 36–37
Reductionism, 254
Regional cerebral blood flow (rCBF), 52, 53, 54–56, 59, 61, 63, 75
Repeated-measures designs, 15, 97, 104, 112–113
Repetition priming, 10, 11, 164, 166–167, 168, 206
Research literature, 6–7
Response timing, 150–152
Retention, 191, 208, 213, 231
aging and, 178–179
in infants, 139–140
in newborns, 145
Retrieval, 163
Retrograde amnesia, 206
Rey Figure, 217
Rotary pursuit tasks, 98, 164, 166, 167–168
Schizophrenia, 43
Scopolamine, 40, 43, 179
Selective lesions
hippocampal, 39, 43, 44
of hippocampus proper, 25
Sensitization, 244
Sensory preconditioning, 35–36
Serial feature-positive discrimination, 33–35
Serotonin, 149
Silent video viewing, see Video viewing task
Simple conditioning, 33–35, 36
Simultaneous feature-positive discrimination, 33–35
Single-cue conditioning, 243, 244
Single-trial functional magnetic resonance imaging (fMRI), 76
Slope analysis, 101–104, 113, 248, 249
Spiral scanning, 80, 83, 84
Startle response, 25, 125
Statistical Parametric Mapping (SPM), 76, 81–82, 83
Striatum, 8
motor impairments in, 196–200
in neural network approach, 29
in PET studies, 72
timing and, 107
Substantia nigra, 164, 184, 196–200
Symmetry, 36–37
Telangiectasia, 7
Temporal lobe lesions, 43, see also Medial-temporal lobe lesions
Thalamus, 200
Timed-interval tapping, 97–99, 102–104, 112–113
Timing, 96, 99–104
neural substrates of, 104–112
slopes analysis and, 101–104, 113
Weber's law and, 99–101, 105, 109–110, 113
Top-down approach, 9, 19
Torticollis, 200, 201
Trace conditioning, 11, 22, 42, 44
aging and, 175–177, 178
autism and, 157
awareness and, 42–43, 214, 230–243, 245
brain lesions and, 30, 31
in children, 148, 149
defined, 2
hippocampal lesions and, 8
Transitivity, 36–37
Trials-to-criterion (TTC), 127, 130, 131, 132–133, 135, 136, 137, 138
Two-factor learning theory, 264
Unconditioned response (UR)
Alzheimer's disease and, 179–180
amnesia and, 207
anxiety disorders and, 263
autism and, 152
in dual-task studies, 166
in fMRI studies, 77, 85
in infants, 125, 128, 129, 131
motor impairments and, 191, 192, 193, 194
Parkinson’s disease and, 184
in PET studies, 52, 72
Unconditioned response (UR) amplitude
amnesia and, 211
dystonias and, 201
in infants, 136–137
motor impairments and, 195, 197, 199
Unconditioned stimulus (US)
anxiety disorders and, 263
in attentional model, 20
autism and, 150, 154
in children, 148
in configural model, 19
defined, 2
dopaminergic agents and, 39
in fMRI studies, 84
in infants, 123–124, 131, 135, 136–137, 140
interval between US and, see
Interstimulus interval
motor impairments and, 191, 192, 193, 194, 195, 197
in neural network approach, 22–23, 25, 26, 28–29, 33, 34, 35, 37, 42–43
neural substrates and, 95, 96, 97, 98
in newborns, 145
in PET studies, 51, 57, 61–62, 66
timing and, 105, 110–112
trace conditioning and, 175–177
Unpaired conditioning
amnesia and, 210
in dual-task studies, 166, 169
in infants, 124–125, 128, 129, 130, 131, 132, 133, 134, 140
in PET studies, 52–53, 54, 55, 57

V
Ventral striatum, 29–30, 73
Ventral tegmental area (VTA), 27, 29
Vermal lobules VI and VII, 149
Video recordings, 124, 125, 131, 135, 136, 138, 144
Video viewing task, 97, 98, 166, 169, 209, 233–234, 239
Visual search task, 266, 267–268
Voluntary responses, 247–249

W
Wagner, Alan, 5
Warrington Recognition Test, 211, 215
Weber fraction, 101, 105
Weber’s law, 99–101, 105, 109–110, 113
Wechsler Adult Intelligence Scale (WAIS), 208
Wechsler Adult Intelligence Scale-Revised (WAIS-R), 211, 215, 217
Wechsler Memory Scale-Revised (WMS-R), 211, 215, 217
Word-stem completion, 164, 165, 166, 167
Writer’s cramp, 200, 201