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Abstract
Memory and language are important high-level cognitive functions of humans, and the study of conceptual representation of the
human brain is a key approach to reveal the principles of cognition. However, this research is often constrained by the availability
of stimulus materials. The research on concept representation often needs to be based on a standardized and large-scale database
of conceptual semantic features. Although Western scholars have established a variety of English conceptual semantic feature
datasets, there is still a lack of a comprehensive Chinese version. In the present study, a Chinese Conceptual semantic Feature
Dataset (CCFD) was established with 1,410 concepts including their semantic features and the similarity between concepts. The
concepts were grouped into 28 subordinate categories and seven superior categories artificially. The results showed that concepts
within the same category were closer to each other, while concepts between categories were farther apart. The CCFD proposed in
this study can provide stimulation materials and data support for related research fields. All the data and supplementary materials
can be found at https://osf.io/ug5dt/.
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Introduction

Whenwe think of "cat", we think of it as an animal, with a tail,
fur, and being a pet, etc. These are our brain's memory storage
and representation of the concept of "cat" and are expressed
through the form of language, which are called the semantic
features of a concept. Memory and language are very

important high-level cognitive functions of humans.
Researchers in many fields, such as psychologists, neurosci-
entists, and linguists, have been working hard to study their
internal mechanisms. According to the conceptual structure
account (Taylor, Devereux, & Tyler, 2011; Tyler & Moss,
2001), concepts can be expressed through their semantic fea-
tures (e.g., "is hairy", "is an animal") and statistical measures,
which are called conceptual structure statistics. Conceptual
structure statistics can provide information about the parent
category of a concept (for example, a cat is an animal) and
how different a concept is within that category (for example,
the uniqueness of the camel lies in its hump, which other
animals do not have).

Concepts and their semantic features are important contents
of memory. It has been found that distributed representations
of knowledge about each attribute of the concept are in the
corresponding areas of the brain (Binder, Desai, Graves, &
Conant, 2009; Fernandino et al., 2016; Lambon Ralph,
Jefferies, Patterson, & Rogers, 2017; Pulvermuller, 2013).
For instance, the visual attributes (such as shape and color)
are represented in ventral visual processing pathway including
the occipital cortex, the ventral occipito-temporal cortex, the
lateral occipital complex and fusiform gyri. The sound
attributes (such as the sound made by an object) are
associated with activation of the sound processing areas
including the superior temporal gyrus and left ventrolateral
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prefrontal cortex (vlPFC). Whether the concept can be
manipulated is represented in the areas processing motion
including junction of the left posterior medial temporal
gyrus (pMTG) and anterior occipital cortex (Fernandino
et al., 2016; Lambon Ralph et al., 2017).Moreover, the human
brain has two conceptual representation systems based on
sensation and language system, respectively (Wang, Men,
Gao, Caramazza, & Bi, 2020). When people recall informa-
tion, they also search through the semantic network.
Therefore, words that are semantically connected more close-
ly with other words (which share greater semantic similarity
with other words) are easier to be remembered (Xie,
Bainbridge, Inati, Baker, & Zaghloul, 2020). However, it is
still not clear how the human brain represents the relationship
between concepts.

There are several computationally generating approaches
to construct semantic spaces to represent the relationship be-
tween concepts. The word co-occurrence approach extrapo-
lates words' relationship using their frequency of occurrence
in the text (Van Rensbergen, De Deyne, & Storms, 2016). The
word2vec algorithm uses a neural network model to learn
word associations from a large corpus of text using vector with
a particular list of numbers to represent each distinct word, so
that mathematical function (such as cosine similarity) can be
used to calculate the semantic similarity between words
(Mikolov, Chen, Corrado, & Dean, 2013). Besides, several
semantic databases have been established. WordNet is a lex-
ical database of semantic relations between words in more
than 200 languages, which links words into semantic relations
including synonyms, hyponyms, and meronyms (George,
1995). HowNet is an online common-sense knowledgebase
which puts more emphasis on the relationships between con-
cepts (including inter-conceptual relationships and inter-
attribute relationships) than WordNet (Dong, Dong, & Hao,
2006). These semantic networks constructed by using Internet
big data have made outstanding contributions to many appli-
cation fields of artificial intelligence, such as natural language
processing (Skelac & Jandrić, 2020), information retrieval
(Leydesdorff & Vaughan, 2006), intelligent question and an-
swering (Yilmaz & Toklu, 2020), etc., and also provide rich
data support and data modeling for research on how the hu-
man brain represents the relationship between knowledge
(Armeni, Willems, & Frank, 2017).

However, in the research fields that investigate the neural
mechanism of knowledge representation with humans as re-
search objects, more researchers choose the data evaluated
directly by humans as experimental materials (De Deyne,
Navarro, Perfors, Brysbaert, & Storms, 2019; Jouravlev &
Mcrae, 2016; Scott, Keitel, Becirspahic, Yao, & Sereno,
2019). Though these approaches are more time-consuming
than the computationally generating norms mentioned above,
the semantic space reflected by these materials may be the
closest to the representation of knowledge in the human brain,

so it is more widely used in the fields of psychology and
neuroscience. Two methods are generally used to investigate
semantic representation in humans. One way is to give a word
as a clue, and let the subjects associate some other words
freely to generate the relationship between the concepts (De
Deyne et al., 2019), such as English Small World of Words
project (SWOW-EN) (See https://smallworldofwords.org).
This word assoc ia t ion approach revea ls menta l
representations that cannot be reduced to lexical usage
patterns. Another way to measure the relationship between
concepts is mainly based on the features shared between the
concepts. The more features shared between concepts, the
higher the similarity is (Cree & McRae, 2003; Griffiths,
Steyvers, & Tenenbaum, 2007; Jones & Mewhort, 2007;
Vigliocco, Vinson, Lewis, & Garrett, 2004). Generally, stud-
ies on semantic memory ask subjects to list the features of
concepts, called feature production norms (Toglia, 2009),
and then investigate how these concepts are represented in
memory according to the features of the concepts listed by
the subjects. Although a lot of related research has been done,
most researchers collected the concepts and features individ-
ually instead of using a normed dataset (Ashcraft, 1978;
Collins & Loftus, 1988; Mcnorgan, Kotack, Meehan, &
Mcrae, 2007; Mcwilliams & Schmitter-Edgecombe, 2008;
Toglia, 2009). Due to the difference of selected concepts
and subjects, this self-normed research cannot be compared
between each other directly. Therefore, the availability of
stimulating materials greatly limits the related research.

The study of human brain knowledge representation needs
to be based on a standardized and large-scale conceptual se-
mantic feature database. At present, several English concep-
tual semantic feature datasets have been established. The ear-
liest dataset was established byMcRae, Cree, Seidenberg, and
McNorgan (2005), who asked participants to describe 541
nouns, including animate objects (such as crocodiles) and in-
animate objects (such as airplanes). Subsequently, Vinson and
Vigliocco (2008) added verbs to the dataset, and collected 456
semantic features of nouns and verbs. Buchanan, Holmes,
Teasley, and Hutchison (2013) collected 1,808 nouns, verbs,
and adjectives. Recently, after years of hard work, Buchanan,
Valentine, and Maxwell (2019) have released the latest and
largest conceptual semantic feature dataset to date, containing
4,436 concepts, including nouns, verbs, adjectives, and other
types of vocabulary. The above-mentioned English conceptu-
al semantic feature datasets adopted a free description method,
that is, given a word, the subjects could freely describe the
features of the concept without any hints, and they wrote
down whatever features they thought of.

Devereux, Tyler, Geertzen, and Randall (2014) added
some concepts on the basis of the dataset established by
McRae et al. (2005), and expanded the dataset to 638 con-
cepts. Instead of letting the subjects describe freely, they
adopted the way of guiding word prompt. The guiding words
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were: is, has, does, made of, etc. The subjects could fill in the
corresponding features after each guiding word. According to
their research results, they concluded that the data collection
method with guiding words yielded more information than the
free description method, and they designed a web system that
could expand the dataset continuously.

Although there are not many English conceptual semantic
feature datasets, the number of Chinese datasets is more lim-
ited. Currently, only two Chinese datasets have been
established. One was assessed by Xiang, Lin, and Jiang
(2015), which contains only 50 nouns. The other one, assessed
by Gao, Lin, Jiang, and Lu (2016), contains only 30 verbs.
Both datasets used the free description collection method.
Compared with the English datasets, the related work of
Chinese datasets is far behind.

For language research, there are great differences in dif-
ferent languages. At the same time, in the study of memory,
people from different cultural backgrounds also have great
differences in concept coding. Firstly, different categories
of concepts have different typical representatives. For ex-
ample, when it comes to the concept of the word “bird”,
Chinese are more familiar with the sparrow, while North
Americans may first think of the robin. Secondly, the fa-
miliarity of different concepts is different for people with
different cultural backgrounds. For example, the concept of
“food” is a familiar superior category to everyone, but its
subordinate categories (various foods) vary greatly among
different cultures. People from different countries are only
familiar with their own food (“粽子-zongzi” is familiar to
Chinese but not to American). Finally, for the same con-
cept, people from different cultural backgrounds may en-
code it differently, such as “the cross (十字架)”. Therefore,
the study of the Chinese language system and the study of
the language, memory, and other cognitive functions of
native Chinese speakers need to use the Chinese conceptual
semantic feature dataset as the stimulus material, rather
than the English ones. Due to the limitation of the current
Chinese database, it is necessary to establish a Chinese
conceptual semantic feature dataset for relevant researchers
to promote the research on language and memory of
Chinese, which is the main purpose of this study.

The present study collected semantic features of 1,410
concepts in Chinese by using guiding words. We provided
the features (including the frequency of each feature) of
each concept and calculated the similarities between each
two concepts. Concepts were further grouped into different
categories and compared between categories. Hierarchical
clustering was then used to examine the relationship be-
tween concepts. We also compared this dataset with a
widely used English version of conceptual semantic fea-
ture dataset (Devereux et al., 2014) to see whether the
present data make sense and the difference between the
Chinese and English versions.

Methods

Participants

Two hundred and four subjects (44 males) participated in this
experiment, aged between 18 and 57 (M = 23.495, SD =
4.806). All the participants were Chinese, and their native
language was Chinese. We also collected the region of each
participant, and the participants came from 25 provinces (116
from the north of China, 88 from the south of China, see Fig.
S1 in the “Supplementary materials_1_Figures” for detailed
geographical distribution of participants). On average, each
participant completed the assessment of 202 concepts. The
participants were paid after completing the tasks.

Materials

A total of 1,410 concepts were selected as experimental ma-
terials in this study. In order to cover common concrete con-
cepts as comprehensively as possible, we integrated multiple
word datasets: 1) concepts in the dataset created by Devereux
et al. (2014) (hereinafter referred to as CSLB); 2) concepts in
ImageNet (Deng, Dong, Socher, Li, & Li, 2009); 3) concepts
in the open Chinese lexicon (THUOCL) (Han et al., 2016)
with word frequency exceeding 10,000 in IT, finance and
economics, place names, historical celebrities, medicine, diet,
law, automobile and animal category. The English parts of
these concepts (CSLB and ImageNet) were translated into
Chinese, and the duplicated concepts were deleted. Finally,
we got 11,160 concepts. Three graduate students (all are na-
tive Chinese speakers) were then asked to rate the familiarity
(from 1 to 9, 1 for complete unfamiliarity and 9 for very
familiar) and concreteness (from 1 to 9) of each concept.
The concreteness was defined as whether the concept was
perceptible (for example, it can be seen or touched) and easy
to be imagined (the more concrete a concept is, the easier it is
to be imagined), so 1 means very abstract, imperceptible, and
hard to be imagined, while 9 means very specific, perceptive,
and easy to be imagined. The rating results of familiarity and
concre teness of each concept are shown in the
“Supplementary materials_2_Table1”. We selected 1,410
concepts with the highest familiarity (M = 8.85, SD = 0.53)
and concreteness (M = 8.97, SD = 0.22) scores as the formal
experimental materials.

Procedure

The research work of Devereux et al. has shown that the guid-
ing words method can collect more comprehensive data than
the free description way (Devereux et al., 2014). Before we
formally collected data, we did a pre-experiment and com-
pared the way with guiding words and the way of free descrip-
tion. Two groups of participants (N = 40) were recruited, and
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one group (n = 20) used the way of guiding word, while the
other group (n = 20) used the way of free description. The
instruction of guiding word way was shown below. The only
difference between the two methods was that no guiding
words were used in the free description group. We tested 15
concepts. The results showed that the guiding word group
spent more time (15 min) than free description group (12
min). Besides, the guiding word group provided more features
per concept (n = 25.87) than free description group (n =
17.00). Thus, the guiding word way may give participants
more clue to search features frommemory. Therefore, guiding
word method was used in the present study.

All data collection work was carried out through the
Internet. First, the participants were presented with experi-
mental task introduction in simplified Chinese. The instruc-
tion is as follows:

Hello, thanks for your participation. You will see some
words, and please describe each word, such as its appear-
ance, sound, smell, touch, or how to use it, when and
where to use it. You can also describe where it comes from
and the feelings it brings to you. Please fill in the corre-
sponding content under each guiding word (is-是, has-有,
can-可以, need-需要, like-像, ......-其他), and you can fill in
any content you want in the box below “......” (ellipsis).

Note:

1. Please fill according to your intuition;
2. Multiple words can be filled under each guiding word,

separated by spaces;
3. Please give all the features or attributes you can think of

as comprehensively as possible;
4. If you don’t know what this word means, or you don’t

know what feature it has, you can leave it blank.

When the participants understood the experimental
task, the formal experiment started. For each concept,
the interface is shown in Fig. 1. Participants need to fill
in the blanks with the features of each concept (without
time limit). Referring to the data collection method of
CSLB (Devereux et al., 2014), this study selected six
guiding words: "is-是, has-有, can-可以, need-需要, like-像,
......-其他". Participants can fill in the corresponding features
under the corresponding guiding words. "……" means "oth-
er", which can be filled in any features below. The concepts

were presented completely random among the participants.
Each concept was evaluated by at least 30 participants.

Data analysis

Preprocessing

For all the 1,410 concepts, we got a total of 381,119 original
descriptions. Each of the original description was checked one
by one and preprocessed (if necessary) as follows:

(1) Correct typos. Because the data were collected electron-
ically, most participants used pinyin input method,
which led to typos, such as "香蕉是职务 (banana is a
job)", but actually is "香蕉是植物 (banana is a plant)".
(In Chinese, “job-职务” and “plant-植物” are both pro-
nounced “zhiwu”.)

(2) Delete completely wrong descriptions (those are
completely against the common sense), punctuation
marks, strange characters, etc. For example, "电灯是食

物 (electric light is food)".
(3) Match the feature description to the correct guiding

word. During the data collection, there were multiple
guiding words, and some participants did not fill into
the guiding words properly. For example, "猫像动物 (cats
are like animals)" was changed to "猫是动物 (cats are
animals)".

(4) Delete adverbs of degree, such as "very". For example,
"热狗是非常香的 (hot dogs are very fragrant)" was
changed to "热狗是香的 (hot dogs are fragrant)".

(5) Unify expressions. In order to facilitate subsequent anal-
ysis, we referred to the data preprocessing methods of
CSLB (Devereux et al., 2014), and unified the expres-
sions of the inspected data. Many features were de-
scribed in different words, but the actual meaning was
the same (synonyms). The features with the same mean-
ing were unified into the same statement. For instance,
"是食物 (is food)", "是食品 (is food)", "是吃的 (is for eat-
en)", "是食用的 (is edible)" were all unified into "是食物

(is food)".
(6) Feature segmentation. Split combined features into inde-

pendent features referred to the method used in CSLB
(Devereux et al., 2014). Some participants used the form
of "adjective + noun" to describe concepts, such as: "玫瑰

是红色的花 (rose is a red flower)", which contains two
features, which can be split into "玫瑰是红色的 (rose is
red)" and "玫瑰是花 (rose is a flower)". Another example
is "汽车有四个轮子 (car has four wheels)", which can be
split into "汽车有轮子 (car has wheels)" and "汽车有四个

轮子 (car has four wheels)".
Fig. 1 Schematic diagram of data collection
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After preprocessing, there were 378,533 descriptions left
(2,586 fewer than original descriptions, which is 0.006%). All
the following processing and related results were based on the
data after preprocessing.

Within concepts

After the preprocessing, we calculated the overall information
of the Chinese Conceptual semantic Feature Dataset (CCFD),
including the number of effective feature descriptions and the
average number of features per concept. Then we counted the
features of each concept, how many participants effectively
described each concept (after deleting invalid descriptions),
and the frequency of each feature of each concept (that is,
how many participants mentioned this feature). In addition,
the sample coverage of each concept was calculated
(Canessa, Chaigneau, Lagos, & Medina, 2020). The higher
the sample coverage is, the more completeness the features
are. Since the number of participants describing each concept
after data preprocessing was not the same, we normalized the
frequency information of each concept by "(frequency of each
feature of the concept / number of participants describing the
concept) × 30".

Between concepts

In this study, we would like to investigate the features com-
mon to multiple concepts (shared features) and the features
unique to certain concepts (unique features). We calculated
the sharing degree of each feature, that is, the number of con-
cepts that have this feature. The features only belong to one or
two certain concepts were defined as unique features. Features
possessed by three or more concepts were shared features, and
the classification criteria were the same as CSLB (Devereux
et al., 2014). Then, we investigated the similarity between
concepts, which was a key point of this study. The 1,410
concepts have a total of 10,059 features; thus, each concept
has a 10,059-dimension feature vector with each element cor-
responding to the number of participants describing this fea-
ture. Principle component analysis (PCA) was used to central-
ize and reduce the dimension of feature vector to 645, which
explained 95% of the variance, then the cosine distance was
used to calculate the similarity between concepts.

Between categories

We investigated whether the concepts of different categories
were different within and between categories. There is no
uniform standard for the classification of concepts. Some stud-
ies on patients with brain injury have found that there are
obstacles to the identification of specific categories of con-
cepts, namely selective semantic impairment (Gainotti,
2000, 2005; Gainotti, Spinelli, Scaricamazza, & Marra,

2013). For example, the vast majority of patients with seman-
tic disorders, who have lesions in the mid-to-anterior ventral
and medial temporal regions bilaterally, are mainly restricted
to the animal domain but not to plants or artificial objects
(Gainotti, 2010), while damage to the left medial and inferior
temporal regions hinders the recognition of plants (Samson &
Pillon, 2003). In addition to these categories of living things
(animals, plants) and non-living things (artificial objects, nat-
ural objects), body parts are usually treated as a separate cat-
egory (Guido, 2015). According to these selective semantic
impairment studies, we identified five superior categories: an-
imal, artificial object, body part, plant, and natural object.
During the actual processing of classification, we found that
the food did not belong to any of the above categories (though
it could be sorted into artificial object, but many plants also
belong to food), so we made it a separate category. Although
transportation could be directly classified as artificial object, it
could also be further divided into vehicles, boats, and aircrafts.
Therefore, for the convenience of subsequent classification,
we also took transportation as a superior category. As a result,
all concepts were artificially divided into seven superior cate-
gories as: animal, transportation, artificial object, body part,
food, plant, and natural objects. To further distinguish more
detailed conceptual categories, we artificially divided the sev-
en superior categories into 28 subcategories (see Table 4 for
details. “Supplementary materials_2_Table1” shows the cate-
gory of each concept). Both the classification of superior cat-
egories and subcategories were determined by discussion
among the authors.

Moreover, the ward minimum variance algorithm was used
for hierarchical clustering. Unlike the artificially categoriza-
tion approach according to domains, this is a data-driven ap-
proach based on the features of concepts. We compared the
results of the two classifications.

Studies have shown that different categories of objects
have different numbers of shared features. For example, ani-
mals havemore shared features (such as having eyes, ears, and
nose), while tools have fewer shared features but more unique
features (Clarke & Tyler, 2015). Human use different brain
regions to recognize different objects. Recognizing objects
with more shared features requires more participation of the
lateral posterior fusiform gyrus, while recognizing objects
with fewer shared features relies more on the medial posterior
fusiform gyrus (Tyler et al., 2013). Concepts that share more
features and prone to confusion are difficult to distinguish,
such as 海象 (walrus) and 海狮 (sea lion), which require more
involvement of the entorhinal cortex (Bruffaerts et al., 2013).
We compared the number of total features, number (and pro-
portion) of shared features, and number (and proportion) of
unique features between different subcategories and superior
categories. Because the subcategories were nested into the
superior categories, so we used the general linear model to
analyze the nested data.
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Results

Within concepts

In CCFD, there are 378,533 valid descriptions for 1,410 con-
cepts, with an average of 268 descriptions for each concept,
and an average of nine descriptions for each concept given by
each participant. The sample coverage of each concept is pre-
sented in the “Supplementary material_2_Table1” and the av-
erage sample coverage is 68.84%. The features of each con-
cept and the frequency of each feature are presented in the
“Supplementary material_3_Table2_All concepts and fea-
tures”. Among them, the features with frequency equaling to
1 were deleted as these features are not universal, which is the
same as the processing method of CSLB (Devereux et al.,
2014). Table 1 shows a schematic result of the concept "熊猫

(panda)". The average number of features of each concept
which belongs to CCFD and CSLB respectively are shown
in Table 2.

Between concepts

In this study, the concepts and features generated by normal-
ized results were used to form a concept feature matrix (see the
“Supplementary material_4_Table3_Concept feature matrix”
for details). The 1,410 concepts have a total of 10,059 fea-
tures. On average, each feature is shared by 5.17 (SD = 22.71)
concepts. Table 2 shows the average number of shared fea-
tures and unique features for each concept of both CCFD and
CSLB.We divided the number of shared features according to
the sharing degree, as shown in Table 3.

The similarity results between concepts are presented in the
“Supplementary material_5_Table4_Concept similarity ma-
trix”. The concepts used in this study have partially overlap
with CSLB. The overlapping concepts cover a total of 19
subcategories. We randomly selected six concepts from each
subcategory to calculate the similarity between concepts, as
shown in Fig. 2. Figure 2a shows the result of CCFD, and Fig.
2b shows the result of CSLB. We calculated the similarities
within and between each superior category of both CCFD and
CSLB (see Fig. S2 in “Supplementary materials_1_Figures”
for details). The results showed that, compared with CSLB,
CCFD had higher average intra-category similarity (CCFD:
0.26 > CSLB: 0.23) and lower average inter-category similar-
ity (CCFD: – 0.04 < CSLB: 0.03). Cosine distance was used
to calculate the correlation between CCFD and CSLB, and the
correlation between the two similarity matrices based on off-
diagonal pairs was 58.29% (including all the shared concepts).

Between categories

This study also hierarchically clustered all concepts based on the
features of the concepts. The results of hierarchical clustering are
detailed in the “Supplementary materials_6_Table5_Results of
hierarchical clustering”. For the whole view of hierarchical clus-
tering results, please see “Supplementary materials_7_Results of
hierarchical clustering”. All concepts were grouped into two
large clusters, which can be named as living things and non-
living things, respectively. Living things were further divided
into two clusters: animals and plants.We compared the clustering
results and human category judgments. The results showed that
the “animal” and “plant” categories were the same between the
two methods of classification. However, the concepts which

Table 1 The features and the corresponding frequency of the concept “panda” as an example

Features Frequency Features Frequency Features Frequency

need-bamboo 23 like-selenarctos thebetanus 7 is-toy 2

is-animal 22 need-air 7 like-cat 2

need-food 21 need-sleep 7 like-plush toys 2

is-National treasure 18 has-ears 7 like-lesser panda 2

like-bear 16 has-mouth 7 need-care 2

need-water 16 is-mammal 6 need-breath 2

can-climb trees 14 is-cute 6 need-fed 2

is-black 12 has-limbs 6 need-sunlight 2

is-white 11 can-acting cute 4 has-brain 2

need-protection 11 has-nose 4 has-many kinds 2

has-eyes 11 can-produce 3 has-feet 2

is-black and white 10 is-felidae 3 has-hand 2

has-black eye 8 has-legs 3 has-tail 2

has-hair 8 has-claws 3 has-teeth 2

can-be viewed 7 other-charmingly naive 2
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belong to “transportation, artificial object, body part, food and
natural object” judged by humanwere put into a big cluster in the
hierarchical clustering results. Interestingly, we could find some
associations in the results of hierarchical clustering. For example,
many kinds of vehicles (cars, ships, planes) and many kinds of
roads and bridges gathered in a cluster, which are related to
transportation. The various types of pens and hand-related con-
cepts (hand, arm, finger, palm) also clustered to reflect the asso-
ciation of using these pens by hands.

We also compared the hierarchical clustering results be-
tween CCFD and CSLB. Because there were too many con-
cepts, it was impossible to visualize them all here. Therefore,
we only visualized the hierarchical clustering results of the
animal category (Fig. 3). The results showed that CCFD had
a similar hierarchical structure in the animal category as
CSLB, which could be well divided into鸟 (bird) (green lines
and words), 昆虫 (insect) (red lines and words), 陆生动物 (ter-
restrial animal) (blue lines and words) and 水生动物 (aquatic
animal) (purple lines and words). As we can see from Fig. 3b,
some animals that live in the water (such as shark and dolphin)
were clustered with terrestrial animals but not with aquatic
animals in the CSLB.

The number of concepts in each category, the number of
shared features, unique features, and total features of the con-
cepts were analyzed in 28 subcategories and seven superior
categories, as shown in Table 4.

Considering the nested relationship between subcategory
and superior category, nested analysis of UNIANOVA was
used to examine the difference in the number of total features,
number (and proportion) of shared features and unique fea-
tures of the concepts of different subcategories as well as
superior categories. It was found that there were significant
differences in the number of shared features (F(21,1382) =
7.173, p < 0.001, η2 = 0.098), proportion of shared features
(F(21,1382) = 6.572, p < 0.001, η2 = 0.091), number of unique
features (F(21,1382) = 4.253, p < 0.001, η2 = 0.061), proportion
of unique features (F(21,1382) = 6.572, p < 0.001, η2 = 0.091)
and the total number of features (F(21,1382) = 3.956, p < 0.001,
η2 = 0.057) among subcategories. The results also showed
significant differences in the number of shared features

(F(6,1382) = 72.330, p < 0.001, η2 = 0.239), proportion of
shared features (F(6,1382) = 81.682, p < 0.001, η2 = 0.262),
number of unique features (F(6,1382) = 51.622, p < 0.001, η2

= 0.183), proportion of unique features (F(6,1382) = 81.682, p <
0.001, η2 = 0.262) and the total number of features (F(6,1382) =
27.817, p < 0.001, η2 = 0.108) among superior categories.
Figure 4 shows the proportion of shared features and unique
features of each subcategory (a) and superior category (b).

Because there are too many subcategories in this study (n =
28), we did not report the post hoc LSD multiple comparison
results of subcategory but only reported the results of superior
category. For the total number of features, animals ≥ transpor-
tation ≥ plants > food ≥ natural objects ≥ artificial objects ≥
body parts (“>” means significant difference, p < 0.05, “≥”
means no significant difference). There was no significant
difference between animals and transportation (p = 0.078),
transportation and plants (p = 0.113), food and natural objects
(p = 0.658), food and artificial objects (p = 0.055), natural
objects and artificial objects (p = 0.677), artificial objects
and body parts (p = 0.481), body parts and food (p = 0.115),
body parts and natural objects (p = 0.421), but there were
significant differences between the other pairs.

For the proportion of shared features, plants ≥ animals (p =
0.426) > food > transportation > artificial objects > natural
objects ≥ body parts (p = 0.143). The results of unique feature
proportion were just the opposite of shared features. From the
data we could see that animals and plants had relatively the
most shared features and the fewest unique features, while
natural objects and body parts had relatively the most unique
features and the fewest shared features.

Discussion

This study established the first Chinese conceptual seman-
tic feature dataset with 1,410 concepts. All the concepts
are very familiar to Chinese native speakers. The CCFD
covers seven superior categories and 28 subcategories,
and each concept has about 37 features. According to the
features of concepts, the similarity analysis results showed

Table 2 Dataset overview of CCFD and CSLB (Devereux et al., 2014)

Number of concepts Number of features per concept Number of shared features (≥ 3) Number of unique features (≤ 2)

CCFD 1,410 36.85 ± 7.63 30.67 ± 7.93 6.18 ± 3.86

CSLB 638 35.53 ± 7.20 27.12 ± 6.52 8.41 ± 4.86

Table 3 The number of features with different sharing degree

Sharing degree > 200 150~199 100~149 50~99 10~49 3~9 2 1

Number of features 24 21 26 82 651 1,911 1,370 5,974
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Fig. 2 Similarity matrix of randomly selected concepts among 19
subcategories in CCFD (a) and CSLB (b). Each cell in the picture
represents the similarity between two concepts. The concepts from the
same subcategory (six randomly selected concepts from each
subcategory) gathered together, and the text on the left and bottom of

the picture represents the name of the subcategory (black words). The
concepts from the same superior category also gathered together. The
upper and right sides of the picture represent the names of the superior
categories (colored words)
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that the concepts in the same category were similar, while
the concepts between different categories were less simi-
lar, but they were not completely irrelevant, which is con-
sistent with our daily understanding of objects. Even for
objects from different categories, we can still generate
certain associations in non-category relationships, such
as chopsticks and noodles that often appear in the same
scene, the former belongs to tableware while the latter
belongs to food.

Although there are several English conceptual semantic
feature datasets (Buchanan et al., 2013; Buchanan et al.,
2019; Devereux et al., 2014; McRae et al., 2005; Vinson &
Vigliocco, 2008), the CCFD proposed in this study is the first
large-scale conceptual semantic feature dataset in Chinese.
Compared with the existing standardized English dataset, the
CCFD is considerable both in terms of data quantity and qual-
ity. The biggest difference between CCFD and English dataset
lies in the specific concepts and features, especially in the

Fig. 3 The results of hierarchical clustering of animals. (a) The results of CCFD. (b) The results of CSLB. The concepts chosen by the two are the same.
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category of food. The category of food contains some con-
cepts that people are very familiar with, but there are cultural
differences for the familiarity of specific food, such as 臭豆腐

(stinky tofu), 皮蛋 (preserved eggs), 冰糖葫芦 (iced sugar
gourd) and other concepts that only Chinese are familiar with.
Therefore, CCFD is more suitable for research in Chinese. By
comparing the Chinese and English conceptual feature
datasets, researchers can also systematically investigate the
differences between cultural differences, including the differ-
ences of concepts, the differences of features of the same
concepts, etc.

By analyzing the frequency of each feature mentioned in a
concept, we can see which features are core features and
which features are marginal features. How to define a concept

according to these features is also an important issue for lan-
guage and cognitive psychologists. According to the features
of these concepts, the concepts can be classified into different
categories or even classified by hierarchy categories.
However, how the human brain represents the category of
concepts and the hierarchical relationship of concepts remains
to be explored. The CCFD can provide data support for such
studies. Our study also found that the number of shared fea-
tures and unique features of different categories of concepts
were different. Natural organisms such as animals and plants
have more shared features, while the concepts of artificial
things such as tools have fewer sharing features, which is
consistent with previous research results (Clarke & Tyler,
2015).

Table 4 The number of concepts, shared features, unique features, and total features of the concepts in 28 subcategories and seven superior categories

Superior category Subcategory Number of concepts Number of shared features Number of unique features Number of features

animal insect 32 34.94 ± 7.69 4.91 ± 3.80 39.84 ± 8.19

terrestrial animal 78 40.38 ± 6.56 4.54 ± 2.72 44.92 ± 7.21

bird 33 36.61 ± 5.88 4.12 ± 2.23 40.73 ± 6.30

aquatic animal 53 37.77 ± 6.60 3.77 ± 2.21 41.55 ± 6.71

total 196 38.15 ± 6.92 4.32 ± 2.74 42.47 ± 7.35

transportation vehicle 35 33.60 ± 6.49 6.86 ± 3.93 40.46 ± 7.29

boat 7 33.57 ± 12.61 9.57 ± 3.36 43.14 ± 11.85

aircraft 11 30.73 ± 4.45 8.36 ± 3.38 39.09 ± 5.61

total 53 33.00 ± 7.14 7.53 ± 3.83 40.53 ± 7.64

artificial object tableware 28 32.25 ± 7.24 6.04 ± 3.11 38.29 ± 7.40

electric appliance 88 26.86 ± 6.56 7.59 ± 3.99 34.45 ± 8.51

dress 99 30.59 ± 6.00 5.70 ± 3.00 36.28 ± 6.20

tool 261 26.52 ± 6.43 8.27 ± 3.97 34.79 ± 7.01

furniture 41 30.68 ± 7.13 6.10 ± 3.36 36.78 ± 7.57

building 28 23.29 ± 5.75 9.11 ± 4.13 32.39 ± 5.18

musical instrument 21 25.48 ± 6.15 5.76 ± 2.79 31.24 ± 6.45

toy 31 23.77 ± 6.18 7.23 ± 4.39 31.00 ± 7.03

weapon 26 29.54 ± 4.55 6.04 ± 2.42 35.58 ± 5.88

medical supplies 15 25.13 ± 6.59 8.06 ± 3.24 33.20 ± 5.31

sports equipment 18 26.61 ± 7.10 7.50 ± 3.65 34.11 ± 8.40

total 656 27.48 ± 6.74 7.35 ± 3.83 34.83 ± 7.18

body part body part 44 23.50 ± 7.14 10.55 ± 3.84 34.05 ± 6.75

food solid food 100 31.87 ± 6.09 4.75 ± 2.85 36.62 ± 6.65

drinks 58 30.47 ± 5.59 5.41 ± 3.12 35.88 ± 6.77

meat 31 30.61 ± 6.23 4.29 ± 2.60 34.90 ± 7.17

seasoning 25 28.84 ± 6.93 5.48 ± 2.45 34.32 ± 7.41

total 214 30.95 ± 6.12 4.95 ± 2.86 35.90 ± 6.85

plant flower 58 31.05 ± 4.80 3.83 ± 2.26 34.88 ± 5.42

vegetable 71 37.25 ± 6.07 3.15 ± 2.44 40.41 ± 5.95

tree 25 33.60 ± 6.59 5.00 ± 2.68 38.60 ± 6.30

fruit 57 37.37 ± 5.79 3.47 ± 2.54 40.84 ± 6.20

total 211 35.15 ± 6.34 3.64 ± 2.50 38.79 ± 6.39

natural object natural object 36 25.50 ± 9.08 9.83 ± 4.77 35.33 ± 9.64
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A lot of research on memory and language use semantic
priming paradigm. Researchers manipulate priming effect by
manipulating the correlation between priming words and tar-
get words. Compared with unrelated cues, related cues enable
subjects to recognize target words more quickly (Schacter,
Dobbins, & Schnyer, 2004). How to determine the degree of
correlation between concepts, and then choose the appropriate
priming words and target words, is the key to related research.
In this study, the similarity between concepts was calculated
by their features. Future research on semantic priming para-
digm can use the present results as one of the indicators to
measure the correlation between priming words and target
words. In conclusion, the CCFD provides rich data support
for semantic priming paradigm.

In addition to the standardization of datasets in language
and memory research, computational modeling of memory
also needs large-scale datasets to describe semantic memory
accurately. The field of artificial intelligence also pays atten-
tion to the semantic features of concepts. Researchers try to
use a knowledge graph as an abstract carrier to represent the
cognitive content of knowledge on the dataset system, so as to
serve the fields of machine translation and intelligent question
and answering (Balaid, Abd Rozan, Hikmi, &Memon, 2016).
The number of concepts in knowledge graph dataset is much
larger than that in artificially evaluated dataset, but the features
of these concepts are usually extracted from the massive
Internet data, and the relationship between them is represented
by logical structures. This is different from the human brain's

Fig. 4 Proportion of shared features and unique features of each subcategory (a) and superior category (b). The color in this figure is the same as the color
index in Fig. 2
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learning and representation of concepts. The human brain
does not acquire and store all the features of a concept simul-
taneously, but acquires each feature of the concept at different
time in life. Moreover, the learning process can be divided into
fast learning processes and slow learning processes. When the
content of new learning information is consistent with the
existing knowledge structure, it can be quickly integrated into
the neocortex.When it is inconsistent with existing knowledge, it
takes a long time to be processed in the medial temporal cortex
and hippocampus, and then slowly integrated into the neocortex
(Kumaran, Hassabis, & McClelland, 2016). Various modal fea-
tures of the concept are represented distributely in the neocortex
(Binder et al., 2009), such as the image of a dog in the visual
cortex, the bark in the auditory cortex, and the semantic repre-
sentation of the dog's features in the anterior temporal lobe
(Wang et al., 2020). Although the representation of concepts
by the human brain is not completely accurate, it has strong
flexibility, which is also an important embodiment of human
brain intelligence. Therefore, although there are massive datasets
in the field of artificial intelligence and they can also construct a
meaningful semantic space, theymay not be suitable to study the
representation of knowledge in the human brain. Instead, the
representation of human brain knowledge may guide the estab-
lishment of a brain-like knowledge map to better serve the field
of artificial intelligence.

We hope the CCFD can provide standardized data to sup-
port the researchers in the fields of linguistics, psychology,
neuroscience, artificial intelligence, and so on. We will con-
tinue to expand the content of CCFD. On the one hand, we
will expand the data collection for different age groups, such
as the data for children of all ages, so as to investigate the
learning process of concepts in the natural state; on the other
hand, we will expand the number and types of concepts, in-
cluding verbs and adjectives as well as abstract concepts, to
further investigate the cognitive process of language.
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