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Abstract
Collecting experimental cognitive data with young children usually requires undertaking one-on-one assessments, which can be
both expensive and time-consuming. In addition, there is increasing acknowledgement of the importance of collecting larger
samples for improving statistical power Button et al. (Nature Reviews Neuroscience 14(5), 365–376, 2013), and reproducing
exploratory findings Open Science Collaboration (Science, 349(6251), aac4716–aac4716 2015). One way both of these goals can
be achieved more easily, even with a small team of researchers, is to utilize group testing. In this paper, we evaluate the results
from a novel tablet application developed for the Resilience in Education and Development (RED) Study. The RED-app includes
12 cognitive tasks designed for groups of children aged 7 to 13 to independently complete during a 1-h school lesson. The quality
of the data collected was high despite the lack of one-on-one engagement with participants. Most outcomes from the tablet
showed moderate or high reliability, estimated using internal consistency metrics. Tablet-measured cognitive abilities also
explained more than 50% of variance in teacher-rated academic achievement. Overall, the results suggest that tablet-based,
group cognitive assessments of children are an efficient, reliable, and valid method of collecting the large datasets that modern
psychology requires. We have open-sourced the scripts and materials used to make the application, so that they can be adapted
and used by others.
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Traditional one-to-one cognitive and behavioral assessments
remain the gold standard in most aspects of psychological
assessment. However, many standardized tools can be costly
to purchase, and time-consuming to administer and score.
This constrains the possible sample size of most studies,
which is increasingly at odds with using innovative new
methods (e.g., machine learning) that require larger sample
sizes, and against recent moves to ensure that psychological
science is robust and replicable (Button et al., 2013; Munafò
et al., 2017). Additionally, relying solely on one-to-one testing
imposes other limitations that may be more specific to the
sample being studied. For example, research with young chil-
dren frequently utilizes small convenience samples of families
with the time and interest to attend a lengthy one-to-one as-
sessment in a research lab, jeopardizing external validity
(Keiding & Louis, 2016).

For research that requires detailed cognitive performance
metrics with school-aged children, one alternative data-
collection approach is to test groups of children in schools.
This approach may reduce obstacles to research participation,
which is especially important for recruiting groups that are
typically under-represented in research, such as low socioeco-
nomic status families (Jacobsen, Nohr, & Frydenberg, 2010;
Sakshaug, Schmucker, Kreuter, Couper, & Singer, 2016;
Winding, Andersen, Labriola, & Nohr, 2014).

Despite the widespread adoption of group testing in educa-
tion (e.g., SATs, GRE), it has been less widely adopted in
developmental research. This might be explained by concerns
about reliability, distractibility, and low motivation during
group tests (Gregory, 2014; Murphy & Davidshofer, 2004).
Auditory distractions such as acoustic noise can impact task
performance in children (Joseph, Hughes, Sörqvist, & Marsh,
2018; Röer, Bell, Körner, & Buchner, 2018). However, class-
room noise may not impact test reliability nor decrease inter-
task correlations (Kanerva et al., 2019).

When adapted well, group tests can have excellent psycho-
metric properties. For example, the widely used assessment
tool WAIS-R has been adapted into a pencil-and-paper group
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test for ages 16+, the Multidimensional Aptitude Battery
(MAB-II). MAB-II test–retest reliabilities and task correla-
tions to individually tested WAIS counterparts are high
(Harrell, Honaker, Hetu, & Oberwager, 1987; Jackson,
1998; Luciano et al., 2003). For young children, the well-
validated CAT-4 pencil-and-paper group assessment covers
quantitative, nonverbal, and spatial reasoning domains, also
reports a high test–retest reliability (GL Assessment, 2012).
However apart from a few exceptions (e.g., Brankaer,
Ghesquière, & De Smedt, 2017), many popular assessments
are yet to be adapted for group testing.

Whilst pencil-and-paper assessments may be the simplest
tests to create for groups, they are limited in the types of tasks
that can be administered, and the types of outcomes that can
be measured (e.g., no reaction times or dynamic measures),
and require laborious manual scoring. Many of these limita-
tions are addressed by using computerized tasks. There may
be specific benefits for using computerized tasks, over and
above their paper-and-pencil counterparts. For example, they
permit audio instructions and reminders, reducing dependence
on reading skills. Existing studies have not found large differ-
ences in performance in pencil-and-paper compared to com-
puterized versions of common tasks (Piatt, Coret, Choi,
Volden, & Bisanz, 2016; Robinson & Brewer, 2016). But
computerized assessments can come with multiple technical
challenges of their own. For example, relying on a school’s IT
system for administering tests can be hampered by bandwidth
and browser issues (e.g.,Wassenaar et al., 2019).

Touch-screen tablet computers are another option for ad-
ministering group cognitive tests and benefit from being rela-
tively inexpensive and highly portable. The touch-screen in-
terface of tablets is also easy to use: even children aged 2–4
can accurately complete basic tasks (Azah, Aziz, Syuhada, &
Sin, 2014; Semmelmann et al., 2016). Preliminary evidence
suggests that young children prefer tablet assessments relative
to pencil-and-paper tests (Piatt et al., 2016). Automated, com-
puterized tasks are also less likely to suffer from experimenter
bias and errors in scoring and administration (Chapman,
Benedict, & Schiöth, 2018; Styck & Walsh, 2016). Self-
guided tests generally require less training to administer, and
can thus be more easily implemented in large cohort studies
(Bhavnani et al., 2019). However, few tools currently exist
specifically designed for testing children in groups, and little
psychometric work exists validating these assessments.

Well-established tablet applications for child cognitive test-
ing exist, however they are specifically designed for a re-
searcher to provide instructions and closely monitor adher-
ence. The NIH Toolbox is designed for testing cognition
across the lifespan, initially tested in a large sample aged be-
tween 3 and 85 years (Weintraub et al., 2013), and has since
been incorporated into other large research cohorts
(Akshoomoff et al., 2014; Thompson et al., 2019). For chil-
dren aged 2 to 5, the Early Years Toolbox contains five

cognitive tests with high internal consistency (Howard &
Melhuish, 2017).

Research on tablet applications specifically designed and
validated for group-testing children’s cognitive abilities, has
been relatively mixed. Pitchford & Outhwaite (2016) tested a
sample of Malawi and UK school children, aged 4 to 12 on
seven cognitive assessments including short-term memory,
working memory, and mathematics ability. Reported task re-
liability varied between 5% (working memory) to 73% (math-
ematics). The varying reliabilities of tasks highlight the im-
portance of task design and highlight the importance of
validation of novel measures. In contrast, Kanerva et al.
(2019) report on two novel tablet-based working memory
tasks in a large sample of 12-year-olds, finding a moderate
correlation between tests (r = .44) and correlations to school
grades (r = .42 & r = .36).

Study overview

The present study evaluated the effectiveness of using self-
guided tablet-based cognitive assessments to collect large-
scale datasets, using group testing in school classrooms.
While the code and materials used to generate the application
are publicly shared and freely available for researchers to use,
our primary goal here was to evaluate the general approach.
The cognitive assessment was created as part of a large longi-
tudinal study of children aged 7–9 years. The broader study
aimed to collect a large, demographically representative
dataset comprising behavioral, educational, cognitive, mental
health, demographic, home environment, and teacher-rated
measures. One group of children completed the assessments
in groups in classrooms, and a smaller second group complet-
ed the same assessments individually in a laboratory setting,
along with standardized cognitive tests (WASI-II).

We aimed to include a broad set of assessments in the
application, which were divided into core and supplementary
tasks. Core tests were chosen to tap key domains of cognition
that have been highlighted as important for learning and
school progress (Holmes, Bryant, & Gathercole, 2019), and
could also be easily adapted for tablet use. These included:
reading and arithmetic fluency, short-term memory, matrix
reasoning, visual search speed, and number discrimination.
We note that this list is not exhaustive. The supplementary
tests were more novel, and included at the end of the battery,
so not all children may have completed these if testing time
ran short. Evaluation of the tablet assessments is divided in
three sections: reliability, predictive validity, and measure-
ment invariance.

Reliability Our first goal is to determine the reliability of the
cognitive tasks. No psychological construct can be measured
perfectly without measurement error. Reliability coefficients
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specify the proportion of variance in an outcome that can be
attributed to “true” differences between individuals, as a pro-
portion of total variance (true and error variance; Revelle &
Condon, 2018). Reliability is a function of both task and
sample, as samples with more restricted cognitive variabil-
ity (e.g., because of a narrower age range), have lower
variance in true scores, which thus makes up a smaller
proportion variance in the observed score. Reliability was
assessed via internal consistency metrics, which depend on
correlations between different items (or split-halves) on the
same test.

Predictive validity Unlike reliability, the concept of validity
remains philosophically fraught, with no universally agreed
definition (Gregory, 2014; Lissitz, 2009; Markus &
Borsboom, 2013). There is no single test for validity, but
rather multiple sources of evidence should be acquired
(AERA, APA, & NCME, 2014). The first way we gathered
validity evidence was to estimate how strongly the tablet as-
sessments predict teacher-rated academic skills. As
Wasserman (2018, pg. 11) notes, academic ability has "long
been considered an independent criterion measure of intelli-
gence”, and indeed many of the first cognitive tests were de-
veloped for educational decision making. The strong correla-
tion between cognitive tests and academic performance re-
mains one of the most robust findings in the individual differ-
ences literature (Mayer, 2011; Roth et al., 2015). These effects
likely go both ways, with education also improving cognitive
abilities (Ritchie & Tucker-Drob, 2018). Secondly, we esti-
mated how strongly the tablet assessments predict a traditional
standardized assessment tool (WASI-II; McCrimmon &
Smith, 2013). In this case, children completed both assess-
ments individually at our laboratory, but the tablet assess-
ments remain fully automated requiring no researcher
administration.

Measurement invariance Does testing children in a group alter
the psychological construct being tested? For example, if chil-
dren are more inattentive when performing the tests in a class-
room setting, this could lead to increased measurement error and
alter inter-task correlations. Multi-group confirmatory factor
analysis was used to comparemeasurement properties of the tests
when the application is used in individual or group testing
(Millsap & Kim, 2018; Putnick & Bornstein, 2016). This ap-
proach requires an initial measurement model to compare across
groups. Various taxonomies of cognitive abilities permeate the
literature, along with different labels (e.g., executive functioning,
intelligence, etc.). No consensus prevails regarding the optimal
factor decomposition of cognitive task data (e.g., Rey-Mermet,
Gade, Souza, Bastian, & Oberauer, 2019; Karr, Areshenkoff,
Rast, Hofer, Iverson, & Garcia-Barrera, 2018). Before assessing
measurement invariance, we used exploratory methods to exam-
ine the factor/component structure of the tasks in the battery.

Methods

Open software and data

The study protocol was approved by the University of
Cambridge Psychology Research Ethics Committee
(PRE.2017.102). An Open Science Framework (OSF) repos-
itory (www.osf.io/xhejz/), contains analysis scripts, and the
application materials and scripts. The original study data is
not publicly available due to ethical constraints, but can be
shared on request. A synthetic dataset generated using the
synthpop R package (Nowok, Raab, &Dibben, 2016) is open-
ly available in the OSF repository.

The RED-App was programmed by the authors using the
Unity Game Engine. One benefit of using a game engine like
Unity is that the project can be exported to other platforms
(e.g., Windows, Android, macOS), enhancing its general ap-
plicability. In addition, running the experiment in an online
browser with a touch screen device can lead to decreased
display and response recording accuracy, and relies on a con-
sistent internet connection (Bridges, Pitiot, MacAskill, &
Peirce, 2020; Pronk, Wiers, Molenkamp, & Murre, 2020).
Materials have been shared for others to adapt or create new
tasks within the current app framework.

Participants

The RED study was composed of two groups. A larger school
cohort, which is the focus of this paper, were recruited from
primary schools, and tested as a group in their usual class-
rooms, during 1-h sessions. Opt-out recruitment of children
from eligible class year groups was conducted. We also re-
cruited a second, smaller cohort tested at our laboratory in
Cambridge, England. This cohort completed the same tablet
cognitive assessments, along with brain scans (both structural
and functional magnetic resonance imaging, and resting and
task-based magnetoencephalography), a parent questionnaire,
and traditional standardized cognitive assessments (WASI-II).

The RED school cohort is composed of 535 children who
have completed at least one assessment, from six schools, and
22 classroom groups. Schools were located in the East of
England. Testing occurred between June 2018 and
March 2019. Participants from the school cohort were aged
from 7.29 to 9.87 years (M= 8.59 years, SD = 0.66). The RED
laboratory cohort is composed of 92 children (M = 8.49 years,
SD = 0.84) who completed the tablet assessments. There were
no exclusion criteria for participation in the large school co-
hort, although data was omitted where schoolteachers be-
lieved a child could not independently complete the tasks
without help from a teaching assistant. Both groups had a
similar mean neighborhood deprivation (rb = .031, 95% CI
[– .05, .11]), measured using the England Index of Multiple
Deprivation (Ministry of Housing, Communities, and Local
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Government, 2019). The distribution of deprivation in both
cohorts is provided in the OSF repository, under supplemen-
tary figures.

Because data are drawn from a large longitudinal study,
sample size was not determined from a power-analysis for
the analyses presented here. We planned a sample size of
600–800 and 100 for the school and laboratory cohorts, re-
spectively. Typical difficulties in recruiting schools applied
and limited the cohort size through dropout of individual head
teachers after their academy head agreed to take part, and
unexpected scheduling conflicts that required schools to drop
out after initially agreeing to take part. Practical constraints in
testing enough participants before a cut-off date (September
2019, to allow time for a 2-year follow-up investigation), lim-
ited the size of the laboratory cohort.

Tablet cognitive assessments

Thirty Apple iPads were used (on 9.7-inch, 1536 × 2048 res-
olution screens, model numbers: A1474, A1566, and A1822)
for testing. After the first testing session, privacy filters were
added to iPads to reduce distractions to children from nearby
tablets. Children were also given large over-ear headphones to
reduce external distractions and hear task instructions. We
provide a brief description of each task below (see Fig. 1).

All tasks are presented in a fixed order, detailed in the
accompanying GitHub repository (note the same order as
presented here), so that more tasks at start of the battery
were more likely to be completed. Completion rates for
the two academic achievement tasks (Reading &

Arithmetic fluency) and 5 “core” cognitive tasks (Visual
Search Speed, Forward Digit Recall, Dot-Matrix Recall,
Matrix Reasoning, & NSND) were high, but lower for other
tasks (see Table 1). In designing the task order, we also
aimed to alternate less subjectively enjoyable tests (e.g.,
matrix reasoning) with more enjoyable tests (e.g., Visual
Search Speed). Some tests incorporated feedback and
gamification elements which we hypothesized would in-
crease engagement with particularly repetitive tasks, whilst
other tests modeled on already standardized tasks (e.g., the
memory tasks) did not. Three “quiz” rounds including ques-
tionnaires were also interspersed between tasks.

Visual search speed Children are presented with an array of
cartoon cat faces that are either smiling or neutral, over two
rounds. In both rounds, they are asked to tap all the smiling cat
faces as quickly as possible. A round ends if all smiling cats
were found, the stop button is pressed, or two minutes have
passed. In the first round, tapping a smiling cat produces au-
ditory feedback (“meow!”) over the headphones, and visibly
marks it with a red cross. The second round is identical but
tapping a smiling cat does not leave a visual mark, requiring
children to remember targets they previously clicked.
Cancellation tasks feature in various large cognitive batteries
(e.g., Woodcock-Johnson-II) and are thought to assess pro-
cessing speed and visual attention (Dalmaijer, Van der
Stigchel, Nijboer, & et al., 2015). The task was scored by
calculating the 80%Winsorized (trimming the top and bottom
10% of values) mean time taken between successful cancella-
tions in the “marked” cancellation round.

Fig. 1. Screenshots from the novel tablet assessments
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Verbal short-term memory We implemented a standard digit
recall memory test (e.g., Alloway, 2007). Children are pre-
sented with a series of digits (visible on-screen and spoken
aloud over the headphones) in a sequence, and are asked to
repeat the sequence on a virtual number pad. Sequence length
begins at three digits and after getting at least four correct (out
of a possible six trials) they move up a level in span length (up
to a maximum of nine digits). The task was scored using the
number of correct sequences performed.

Spatial short-term memory We implemented a standard dot-
matrix memory test (e.g., Alloway, 2007). Children are pre-
sented with an empty 4x4 matrix, and a series of red square
dots light up in each box in a sequence. Children are then
asked to repeat the sequence by pressing the relevant squares
in each part of the matrix in the same order. The sequence
length then increases using the same rules like the forward
digit recall task, and is scored identically.

Go/no-go inhibitory control Children are asked to quickly tap
a target stimulus (a dog emoji) when it appears on the screen,
and to avoid pressing the distractor (a poop emoji). The order
and timings of stimulus presentation were randomized.
Pressing the target stimulus elicited a barking noise, and press-
ing the distractor elicited a fart noise. A feedback numerical
“score” was presented on the top right corner which increased
50 points for pressing a target stimulus and reduced 150 points
when pressing the distractor. We scored three outcomes: the

number of omission errors (failure to tap target), the number of
commission errors (tapping a distractor stimulus), and the
sensitivity index (d’).

Matrix reasoningA two-part matrix reasoning assessment was
used to measure abstract problem-solving skills. In the first
part, children are presented with a series of abstract figures
and are asked to select which of five drawings would appear
next in the sequence. In the second part, children are presented
with five abstract figures and asked to identify the figure that
is different from the others. The task was scored by estimating
latent ability from an item response theory analysis of each
trial (detailed in the Data Analysis section).

Reading fluency Children are asked to read short statements
(mean character length = 30.8) and decide if the sentence is
correct or incorrect as quickly as possible. The statements are
designed to assess reading skill rather than knowledge, so are
relatively straightforward (e.g., “A dog can fly”). The task
ends after 3 min and is scored by the number of correct re-
sponses minus the number of incorrect responses.

Rhyme judgement Phonological awareness was assessed with
a rhyme judgement task. Each trial begins with a recorded
voice stating, “does X rhyme with Y, or Z”, with visual de-
pictions of each word being presented in line with the audio.
The child responds by clicking on the best rhyming image.
The presentation of the correct rhyme pair is left/right

Table 1 Descriptive statistics for tablet cognitive assessments

Task name N Predictive validity Reliability Time taken

r LB UB b* ω LB UB 10% 50% 90%

Visual Search Speed 526 – .38 – .46 – .30 – .35 .74 .68 .78 1.59 2.18 3.30

Verbal Short-Term Memory 532 .43 .35 .51 .40 2.28 4.36 6.82

Spatial Short-Term Memory 532 .45 .37 .52 .41 1.55 3.05 5.30

G/N-G - D' 362 .18 .06 .30 .19 .53 .43 .62 1.70 4.32 4.68

G/N-G - Omission Errors 362 – .41 – .50 – .30 – .36 .71 .65 .77 1.70 4.32 4.68

G/N-G - Commission Errors 362 – .13 – .24 – .01 – .07 .60 .51 .67 1.70 4.32 4.68

Matrix Reasoning 515 .48 .40 .55 .46 .76 .73 .78 2.55 4.17 6.38

Reading Fluency 535 .63 .57 .69 .66 .87 .85 .89 3.15 3.20 3.32

Rhyme Judgement 488 .27 .18 .36 .26 .68 .59 .76 1.11 3.52 4.25

Phonological Discrimination 275 .26 .12 .39 .23 .72 .67 .78 4.73 5.32 6.54

Arithmetic Fluency 535 .55 .48 .61 .52 .89 .87 .91 3.48 3.53 3.65

Non-Symbolic Num. Discrim. 515 .45 .37 .53 .42 .85 .83 .86 3.32 4.00 4.72

Line Estimation 193 .53 .42 .63 .53 .92 .90 .94 2.20 3.22 4.44

Liquid Equalization 348 .42 .32 .51 .41 .88 .85 .90 3.02 3.53 4.21

Note: this table only includes data from the school cohort. Predictive validity was assessed by the linear Pearson correlation with teacher-rated academic
ability, along with the lower and upper bounds of a 95% confidence interval (LB, UB). We also report the standardized regression coefficient (b*) for
each task predicting academic ability whilst accounting for age and normalized neighborhood deprivation, in a multivariable regression performed
separately for each task. The 10%, 50% (median) and 90% percentiles of time taken in minutes to complete each task are reported in the final three
columns.
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balanced across the whole set. The rhyming targets consisted
of two or three syllables, and could include ‘near-rhyme’
distractors for added difficulty. All words were matched for
word-frequency, age-of-acquisition and concreteness (so they
could be easily identified by images) using the Kuperman,
Stadthagen-Gonzalez, & Brysbaert (2013) database. Initially,
the task consisted of 22 items, though following an initial
analysis of the task data we reduced the number of items to
six (see Results). The task was scored identically to the matrix
reasoning task.

Phonological discrimination A phonological discrimination
task adapted from Davis et al., (2019) was used to test
children’s perceptual acuity of speech. For each trial, the
child hears a female-sounding “teacher” pronounce a
monosyllabic noun (e.g., “fan”), which is also visually
presented on a “whiteboard”. They then hear two male-
sounding aliens on either side of the whiteboard consecu-
tively repeat either the same or a different word with a
single articulatory feature change (“van”). The child is
asked to tap on the alien which repeated the teacher’s word
most accurately. Task difficulty is modulated by altering
how similar the Alien’s words sound. We selected 44 con-
crete word pairs and used a range of difficulties, using data
and materials provided by its authors. Response accuracy
was indicated by a bell with a high (correct) or low
(incorrect) pitched tone after selection. The task was
scored identically to the matrix reasoning task.

Arithmetic fluency Children are asked to solve as many arith-
metic problems as possible in 3 min, using a virtual number
pad. The task ends after 3 min and is scored identically to the
reading fluency test.

Non-symbolic number discrimination (NSND) This task re-
quires children to pick which of two clouds of dots is more
numerous, assessing a visual number sense (Odic & Starr,
2018). Task difficulty is modulated by altering the ratio of
numbers presented, as larger differences are easier to discrim-
inate. After three simple training rounds including verbal feed-
back, 116 testing trials are presented and used for scoring. Six
different ratios of dots are used (4, 2, 1.5, 1.3, 1.2, 1.1).
Response accuracywas indicated by a bell with a high (correct
response) or low (incorrect response) pitched tone after selec-
tion. Gebuis & Reynvoet (2011) script was used to generate
stimuli so that the number of dots presented is minimally
correlated with dot size or spatial extent. The task was scored
identically to the matrix reasoning task.

Line estimation Children are asked to mark points on a num-
ber-line, anchored at 0 and 100, where a given number would
be located. Forty trials were presented in a fixed order. The
task is scored by ranking each child on each problem by

accuracy (absolute difference between target number and the
line position selected), and normalizing the percentile ranks
on each trial using the procedure described below. Then, the
average normalized z-score on the 40 trials is calculated for
each child and normalized again.

Liquid equalization This task is an adaptation of Piaget’s
equalization test (Silverman & Rose, 1982). Children are pre-
sented with two 2D empty glasses of water. They are asked to
pour an amount of liquid into a left glass, that would fill the
glass on the right up to a red line marking. Both the width of
the glass on the right and the height of the red line change on
each trial, so children have to utilize knowledge of 2D areas.
On each trial a feedback “score” is given depending on the
pouring accuracy. The task is scored identically to the line
estimation task.

Other assessments

Teachers completed a shortened Academic Performance
Questionnaire (APQ; Bennett, Power, Eiraldi, Leff, & Blum,
2009). We selected the three items, “compared to the average
student in your class, howwell is the child: (1) able to read orally,
(2) able to write short stories and class assignments, (3) able to
perform math calculations”. The second item was added after
visiting the first school, so is missing for 30 children. Teachers
answered questions using a digital visual analogue scale, an-
chored at “well below average” to “well above average”.
Sixteen teachers fully completed the questionnaire, with APQ
information on 446 children in total. Mean imputation on the
APQ was used for the 30 children with one missing item.
Teacher’s responses across the three itemswere highly consistent
(ω = .97, 95% CI [.94, .96]). Children in the laboratory cohort
completed the WASI-II vocabulary and reading subtests. For
both variables, a factor score was estimated using the ten Berge
method in the psych R package (Grice, 2001).

Data analysis

All analyses were conducted using R (v3.6.2), with scripts and
associated files openly available (https://osf.io/xhejz/). Two
approaches were taken to ensure computat ional
reproducibility. The R package renv (Ushey, 2020) was used
to manage R package dependencies, and will install the re-
quired the packages and versions used here. We also provide a
docker container which captures a compatible computational
environment for running the scripts (Nüst, Eddelbuettel,
Bennett, Cannoodt, Clark, Daróczi, ... Petegem, 2020).

All task outcomes (apart from the Go/No-Go d’) were nor-
malized. First, percentile ranks were estimated (ranging be-
tween 0 & 1) for scores on each test. A child who scored
higher than 90% of their peers would have a percentile rank
of 0.9. The percentile ranks were than mapped onto a standard
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normal distribution using the normal quantile function. This
typical procedure for standardizing score limits the influence
of univariate outliers, and maps raw scores onto an easily
interpretable scale (Gregory, 2014).

Reliability For tasks where all children complete an identical
set of items, Revelle’s omega total (ω) was used to determine
internal consistency from item-level factor analyses
(McNeish, 2018). The R package psych (v1.8.12, Revelle,
2018) was used to estimate omega (setting number of group
factors to 1), and custom code implemented non-parametric
percentile bootstrapping to estimate confidence intervals with
1000 resamples. For timed tests with number (in)correct out-
comes (Go/No-Go, Reading Fluency, Arithmetic Fluency),
the split-half reliability was estimated also using omega.
Internal consistency could not be estimated this way for the
short-term memory tasks because the task ended early when
participants gave consecutive incorrect responses.

For tasks with binary correct/incorrect trial outcomes
(Matrix Reasoning, Rhyme Judgement, Phonological
Discrimination, Non-Symbolic Number Discrimination), we
also estimated reliability using item response theory (IRT).
One advantage of IRT analyses is that measurement error is
estimated conditional on true ability level, rather than a con-
stant. For example, a multiple-choice mathematics test with
only very simple questions may be good at discriminating
between individuals with very poor mathematics ability, but
ineffective at discriminating between above-average students.
The mirt R package (v1.30, Chalmers, 2012) was used to fit a
two-parameter (slope and difficulty) IRT model, using the
Oake’s method for estimating parameters. The guessing pa-
rameter was fixed at the reciprocal of the number of choices
on a given test (e.g., 25% for a four-choice test). Items with a
negative discrimination parameter were removed from final
models. Expected a-posteriori factor score estimation was
used to calculate children’s performance on each task, using
the mirt::fscores function.

Predictive validity Multivariable regression was used to esti-
mate the extent to which numerous tablet cognitive assessments
can jointly explain teacher-rated academic ability, and the
WASI-II scores. The main outcome is the percentage of vari-
ance that can be explained by the tablet assessments. The ad-
justedR2metric was usedwhich corrects for bias in the standard
R2 (Ohtani, 2000). A bias-corrected and accelerated bootstrap
95% confidence interval for R2 was estimated using the “boot”
R package (6000 resamples; Davison & Hinkley, 2019).

For predicting teacher-rated academic ability, we separate-
ly reported prediction accuracy when using the two “achieve-
ment” tests (reading and arithmetic fluency) or the other five
core cognitive tests (Search Speed, Matrix Reasoning, Dot-
Matrix Working Memory, Forward Digit Span & NSND).
These analyses were separated as we were interested in the

extent to which the Academic Achievement outcome is best
explained by academic achievement tablet measures, com-
pared to the more general cognitive measures. All seven mea-
sures were also combined to estimate the overall variance
explained by tablet tasks. Due to low completion rates, we
did not include supplementary tests in these analyses because
the high rate of non-completion would reduce the sample size
for the analyses. Missing data were imputed for participants
with only one missing tablet assessment out of the seven. The
classification and regression trees imputation method from the
MICE R package was used (Van Buuren & Groothuis-
Oudshoorn, 2011).

The number of children each teacher rated varied from 10
to 32, with a mean of 26.24. If teachers systematically over- or
under- estimated children's performance, then observations
cannot be treated as statistically independent. To account for
potential non-independence, the R package lme4 was used to
fit random-effect models with restricted maximum likelihood
estimation (Bates, Mächler, Bolker, & Walker, 2015). The
intraclass correlation coefficient (ICC), the proportion of var-
iance explained by the random effects, is reported for each
model. Confidence intervals were calculated using lme4’s per-
centile bootstrap method. We used the same imputed data as
described above.

The same approach was taken to estimate prediction
accuracy for WASI-II. Note that because children were
tested in individual sessions, more tasks were completed
overall and there was fewer missing data on some tasks.
Therefore, in the regression model all task outcomes in
Table 1 were used apart from Line Estimation, Rhyme
Judgement and Liquid Equalization which has the lowest
completion rates (< 58%). For the remaining 11 task out-
comes, the same imputation method was used, but children
were excluded if tablet cognitive data was missing for
more than three variables.

Measurement invariance We assessed measurement invari-
ance using standard psychometric procedures employed in
the R functions Lavaan::cfa (v0.6-5, Rosseel, 2012) and
semTools::measurementInvariance (v0.5-2, Jorgensen,
Pornprasertmanit, Schoemann, & Rosseel, 2018), presented
in Table 2. This implements a standard multi-group confirma-
tory factor analysis approach for checking measurement in-
variance across the school and laboratory-tested cohorts. It
works by running confirmatory factor analyses in both groups,
and over a series of model changes, it constrains additional
parameters (i.e., loadings, intercepts, residual and means) to
be equivalent across groups. Constrained models are com-
pared against the unconstrained “configural model”, to com-
pare model fit indices. Multiple model fit indices are present-
ed, including Chi-square (χ2) and its corresponding p value,
comparative fit index (CFI), root mean square error of approx-
imation (RMSEA), and Akaike Information Criterion (AIC).
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Conventionally, changes in CFI of less than – 0.01, or
changes in RMSEA of greater than 0.01, are interpreted as
evidence of measurement invariance (Putnick & Bornstein,
2016). The model with the lowest AIC is said to be best. To
estimate uncertainty in CFI and RSMEA from sampling error,
we estimated percentile bootstrap confidence intervals (3000
repetitions).

Because this requires a measurement model to compare
across groups, the task factor structure was explored in the
school cohort first. Parallel analysis and Velicher’s minimum
average partial correlation (MAP) method were used to deter-
mine the optimal number of components/factors to explain
variance in task scores, using the psychR package.MAP finds
the number of components that minimize the average squared
residual correlations. Parallel analysis compares the variance
explained by each factor/component, to the variance ex-
plained when the data has been randomly permutated (repeat-
ed 1000 times). Factors/components are kept until they ex-
plain equal to or less variance than in the permutated datasets.

Results

The time taken to complete each task is reported in Table 1.
For most tasks, 90% of children completed them in under 5
min, though some tasks such as matrix reasoning and verbal/
visual short-term memory took slightly longer.

Reliability – omega total (ω)

Descriptive information on each task including internal con-
sistency, are presented in Table 1. Most tasks have good reli-
ability (between 68% and 92%), except for two of the Go/No-
Go outcomes.

Reliability - item response theory (IRT)

The two-parameter IRT model failed to converge (within <
30,000 iterations) for the NSND task. The larger number of

trials (116) in NSND requires estimating many parameters
(232), perhaps requiring a greater sample size. Instead for
NSND, a simpler Rasch model was used estimating only a
difficulty parameter.

A Test Reliability Function (Fig. 2) for each task was
computed using the mirt package, where the x-axis pre-
sents latent ability on a uniform scale. Despite adequate
omega reliability, the IRT analysis demonstrates that the
rhyme judgement task is largely poor at discriminating
between children above the 20% ability percentile.
Indeed, a strong ceiling effect is evident for this task, as
median participant accuracy was 95.4%. Other studies re-
port that ability to judge rhymes is at ceiling by the age of 5
years (Stanovich, Cunningham, & Cramer, 1984,

Sumner, 2018), which we did not overcome by employing
a greater number of syllables and near-rhyme distractors. This
illustrates the value of IRT modeling, as the high reliability
and validity metrics in Table 1 mask these limitations of the
test.

Our subjective experience with the assessment overlapped
with the above analysis of the rhyme judgement task during
data collection. Consequently, we added the phonological dis-
crimination test mid-way through data collection, to provide
an additional, more sensitive test of phonological skills. We
then reduced the number of trials to six in the rhyme judge-
ment task. As a result, both tests were not fully completed by
the whole sample. The other three assessments demonstrated
adequate reliability across ability levels, though the Matrix
Reasoning task would benefit from additional easier items
for this age-group.

Predictive validity: Academic ability

Pairwise correlations with academic ability for all tests are
reported in Table 1 and Fig. 3. We estimated how much var-
iance in teacher-rated academic ability, measured with the
APQ, could be explained by combining tablet assessments
using multivariable regression.

Table 2 Assessment of measurement invariance across the group-tested (N = 92, school) and individually tested (N = 535, laboratory) cohorts

Models χ2 Comparative Fit Index (CFI) Root mean square error of approximation AIC

χ2 df p CFI Δ LB UB RMSEA Δ LB UB

1. Configural 63.4 28 .971 .0635 11012

2. Loadings 73.8 34 .107 .967 – 0.004 – .024 .001 .0611 – 0.002 – .010 .010 11010

3. Intercepts 98.3 40 <.001 .952 – 0.015 – .038 – .005 .0682 0.007 – .004 .018 11023

4. Residuals 107 47 .273 .951 – 0.001 – .023 .001 .0638 – 0.004 – .008 .005 11017

5. Means 113 48 .015 .947 – 0.004 – .014 .001 .0657 0.002 – .001 .006 11021

Note: The lower (LB) and upper bounds (UB) of the 95% confidence interval for changes (Δ) in CFI & RSMEA are reported, calculated using non-
parametric bootstrap resampling (3000 repeats). Random sampling was performed within each group separately for each iteration.
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The reading and arithmetic fluency tests alone predicted
44.9% of variance (adjR

2 = 44.9, 95% CI [.38, .51], df =
411). The five main cognitive outcomes (Search Speed,
Matrix Reasoning, Dot-Matrix Working Memory, Forward
Digit Span & NSND) predicted 39.5% of variance (adjR

2 =
39.5, 95% CI [.33, .47], df = 404). Combining all seven tablet
assessments can explain just over half the variance in teacher-
rated academic ability (adjR

2 = 51.0, 95% CI [.44, .57], df =
402).

Because teachers provided APQ ratings for multiple chil-
dren, this may violate the independence of errors assumption.
Therefore, we fitted a random intercept model with the seven
tasks described above as fixed effects. The random intercept
accounts for mean differences in teacher ratings between
classrooms, and explains 6% of variance in outcomes (σ2 =
.066, 95% CI [.02, .14], ICC = .060). Note that in the context
of mixed linear modeling the ICC is not indicative of reliabil-
ity. Importantly, the tablet assessments still explained just over
half the variance in teacher-rated academic ability (R2 = .55).
Both fixed and random effects could explain 61% of variance
in teacher ratings. Potentially there is a small tendency for
teachers to over- or under-estimate ability, but the cognitive
tests remain strong predictors of ability when accounting for
this.

Predictive validity: WASI-II

Children in the smaller laboratory cohort completed both the
tablet tasks and the WASI-II, a standardized cognitive test.
We used multivariable regression again to predict the
WASI-II factor scores. Due to the higher rates of task

completion in the laboratory cohort compared to the school
cohort, the three Go/No-Go outcomes and phonological dis-
crimination tasks were also added to the linear models. The 11
task outcomes combined predicted 42.4% of variance in
WASI-II factor scores (adjR

2 = 42.4, 95% CI [.31, .59], df =
62). This effect is large given the low correlation between
WASI-II tasks, which resultingly have a low estimated reli-
ability (omega total = .49).

Measurement invariance: Task factor structure

Before running measurement invariance analyses, it is impor-
tant to establish the latent variable structure of the tasks. We
used principal component analysis and exploratory factor
analysis, using data from the school cohort only. Data from
the seven tasks with the highest completion rates across the
two samples were used, including: Visual Search Speed,
Matrix Reasoning, Dot-Matrix Working Memory, Forward
Digit Span, NSND and Arithmetic and Reading Fluency).

The parallel analysis (see Fig. 4) suggested that a single
factor or component best explained task score variance, as
extracting additional components did not explain more vari-
ance than would be expected in randomly permutated
datasets. A single factor solution also minimized the MAP
(0.034).

Measurement invariance

As the previous section suggested a single-factor solution, we
fitted a multigroup confirmatory factor analysis (CFA) model
with a single latent cognitive factor on same seven tasks, in
school and laboratory RED cohorts. Measurement invariance
analyses test whether model fit is worsened by constricting
loading and intercepts to be equivalent across the two groups.
Results are also presented in Table 2.

First, we fitted a configural model allowing all parameters
to be freely estimated in each group. InModel 2, task loadings
on the latent factor are constrained to be equivalent across the
two groups. This did not significantly reduce model fit (p =
.107), and only marginally reduced comparative model fit
(ΔCFI = – .004) and root mean square error of approximation
(ΔRMSEA = – .002, 95% CI [– .008, .005]) measurement fit
indices. The AIC also suggests that Model 2 is the preferred
model. This suggests that tasks measure latent ability equally
well across the two groups. The third model constrains the
intercepts of task performance on latent ability; the expected
task scores when latent ability is zero. This tests whether
group differences in task performance cannot be explained
by latent ability alone. A significant (p < .001) decrease in
model fit is observed, with a moderate reduction in CFI
(ΔCFI = – .015, 95% CI [– .038, – .005]), although the
RSMEA did not increase above the conventional 0.1 threshold
(ΔRMSEA = .007, 95% CI [– .004, .018]). The fourth model
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constrained the item residuals, the remaining variance in each
item after partialing out latent ability. This did not change the
CFI (ΔCFI = – .001, 95% CI [– .023, .001]), or RMSEAmore
than the threshold amounts (ΔRMSEA = – .004, 95% CI [–
.008, .005]). The final model constrained the latent ability
means to be equivalent. Again, this did not change the CFI
(ΔCFI = – .004, 95%CI [– .014, .001]), or RMSEAmore than

the threshold amounts (ΔRMSEA = .002, 95% CI [– .001,
.006]). The Chi-square test does suggest that a significant
reduction in model fit occurred (χ2 = 113, p = .015).

While there is evidence for metric invariance, that overall
the tasks measure the latent g-factor equally well across the
groups, there may other important measurement differences.
Average performance (latent ability) and performance on
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individual tasks (task intercepts) appear to be invariant.
Inspection of Model 2 (Table 2) intercepts suggests that the
lab group performed on average better on matrix reasoning
(lab group intercept = .381, Bonferroni corrected p = .005).
There was also a non-significant trend for higher performance
in digit span (lab group intercept = .257, Bonferroni corrected
p = .053). Potentially, these tasks were more negatively im-
pacted by distractions in the classroom.

Ultimately, these results do not show that raw scores on lab
and individual testing can be directly compared. The relatively
wide confidence intervals suggest more evidence is needed to
draw robust conclusions. Crucially, however, there is also no
evidence that scores in either cohort are more informative than
the other, with no evidence of different task loadings across
groups. Indeed, estimated internal consistency from the seven
tasks in the laboratory (omega total = .78, 95% CI [.70, .84])
and school cohorts (omega total = .82, 95% CI [.80, .84]), are
comparable.

Discussion

We found that 7 to 9-year-olds can quickly and reliably com-
plete cognitive assessments using an automated tablet appli-
cation - requiring minimal researcher assistance. Ninety per-
cent of the sample can complete the seven core tasks in under
34 min (Table 1). Reliability was high for most assessments,
around 70–90%. These assessments had strong predictive va-
lidity, explaining over half the variance in teacher’s ratings of
academic ability. This compares favorably to a meta-analytic
estimate that standard intelligence tests predict just over 19%
of variance in school grades (Roth et al., 2015). Some indi-
vidual tasks had low reliability and predictive validity, and
could be refined or replaced in future applications. For exam-
ple, the item response theory analysis found that the rhyme
judgement task was too easy for most children. Two outcomes
from the Go/No-Go task had low reliability (53% and 60%),
though this is not uncommon for inhibitory control tasks
(Enkavi et al., 2019; Hedge, Powell, & Sumner, 2018;
Rouder, Kumar, & Haaf, 2019). In a smaller laboratory group
who completed the tablet assessments individually, tablet per-
formance explained 43% variance in a traditional cognitive
ability assessment (WASI-II).

Analyses of measurement invariance do not show that the
tablet assessments are less reliable or predictive of latent abil-
ity when used as group tests in schools, compared to when
assessments are completed individually. However, there were
some small differences. Differing task intercepts indicated that
the lab sample performed better on the matrix reasoning task,
and that the two samples had different mean latent ability
levels. Potentially, the contrasting sampling procedures be-
tween the two samples could explain differences, though it
is uncertain why this would impact performance on an

individual task. Potentially, the more distracting school envi-
ronment may decrease performance on specific tasks that re-
quire more attention, such as matrix reasoning.

We expect our results can be replicated within certain
boundary conditions. It is likely that using different tasks,
or similar tasks with different stimuli or procedures will af-
fect the individual reliabilities, inter-task correlations &
meanperformance. For example, changes in stimuli sets used
in non-symbolic number discrimination tasks can have
strong impacts on measured performance (DeWind &
Brannon, 2016; Smets, Sasanguie, Szücs, & Reynvoet,
2015). However, regardless of the specific tasks employed,
single factors extracted from broad task batteries (“g-fac-
tors”) tend to converge on very similar estimates of cognitive
ability. Indeed, Spearman termed this phenomenon “the in-
difference of the indicator” (Johnson, Bouchard, Krueger,
McGue, & Gottesman, 2004; Thorndike, 1987; Vernon,
1989). Additionally, g-factors have been identified across a
wide range of populations (Warne & Burningham, 2019).
Therefore, we expect general cognitive ability estimates de-
rived from large, heterogenous batteries of tasks to be similar
across studies, even when using somewhat different tasks.

Despite the success of our measurement tool, group testing
presents additional, somewhat unique, challenges. Making sure
that tasks are intuitive and easy to use without help is essential.

Although some of the tasks presented here included
accuracy feedback and points systems, the current evi-
dence is highly mixed regarding its effects on engagement
(Attali & Arieli-Attali, 2015; Ling, Attali, Finn, & Stone,
2017) and accuracy (Beckmann, Beckmann, & Elliott,
2009; Betz, 1977; Delgado & Prieto, 2003). More broad-
ly, the gamification of cognitive tests has been suggested
to improve engagement and data quality, but the existing
evidence base is limited (Dockterman et al., 2020;
Lumsden, Edwards, Lawrence, Coyle, & Munafò, 2016).
We recommend extensive piloting under observation dur-
ing the development of any self-administered tasks. The
results from these assessments may not generalize if the
testing environment is highly chaotic. Distractions can be
minimized by using over-ear headphones and privacy
screen filters on the tablet screen. Adding secondary tests
or games at the end of a battery can keep children who
finished early occupied, and avoid distracting others.

By including questionnaires in the application, children’s en-
vironments and mental health can also be measured, allowing
researchers to quickly generate evidence that is of current policy
interest, for example on the effects of environmental exposures
(e.g., Bignardi et al., 2020; Dalmaijer, Bignardi, Anwyl-Irvine,
Smith, Siugzdaite, Uh, ... Astle 2019). One relatively unexplored
application of group-based testing with tablets is as a cost-
effective “screener” for the early detection of cognitive difficul-
ties. This could help recruitment of children with particular cog-
nitive profiles for subsequent studies, or to identify children who
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might find learning more difficult in a conventional classroom
setting, which would permit subsequent in-depth assessment and
earlier targeted interventions (Gaab, 2019). However, screeners
require higher evidence of reliability and practical utility. For
example, even an “excellent” reliability of 90% would corre-
spond to a 95% confidence interval of ± 9.3 points (assuming
an IQ-like scale with a standard deviation of 15; Revelle &
Condon, 2018). Further improvements to reliability could be
possible by utilizing more sophisticated modeling techniques
(Farrell & Lewandowsky, 2018; Haines et al., 2020), or adaptive
testing procedures (Harrison, Collins, & Müllensiefen, 2017).

An alternative, promising approach to the one outlined here
is to utilize remote online testing, and developmental re-
searchers are increasingly exploring this option due to the
COVID-19 epidemic disrupting laboratory research (Dillon,
2020). As popular online participant recruitment services do
not include under 18-year-olds, researchers rely on slower,
traditional recruitment approaches. As with other convenience
samples, representativeness is an issue (McCredie & Morey,
2019). One innovative approach is to utilize online digital
educational content, for example Math Garden is a popular
educational tool containing multiple games for children to
practice math problems (Brinkhuis, Cordes, & Hofman,
2020). Data gathered using these applications can produce
large and detailed longitudinal datasets, which can be used
to test learning theories (e.g., Hofman et al., 2018).

Conclusions

The importance of measurement is often overlooked in psy-
chological research, which can be seen in the proliferation of
“Questionable Measurement Practices” (Flake & Fried,
2019). More efficient measurement practices, such as de-
scribed in this paper, can also advance the field by allowing
larger samples of cognitive data to be rapidly acquired, which
are required for making robust inferences. Here, we outline a
methodology for rapidly acquiring large datasets of cognitive
data in school-aged children. With 2–4 researchers overseeing
data collection, data on up to 30 children can be acquired in an
hour, or 150 children in a school day. Cognitive data collected
in this way has good reliability and validity evidence.
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