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Abstract
Ceiling and floor effects are often observed in social and behavioral science. The current study examines ceiling/floor effects in
the context of the t-test and ANOVA, two frequently used statistical methods in experimental studies. Our literature review
indicated that most researchers treated ceiling or floor data as if these data were true values, and that some researchers used
statistical methods such as discarding ceiling or floor data in conducting the t-test and ANOVA. The current study evaluates the
performance of these conventional methods for t-test and ANOVA with ceiling or floor data. Our evaluation also includes
censored regression with regard to its capacity for handling ceiling/floor data. Furthermore, we propose an easy-to-use method
that handles ceiling or floor data in t-tests and ANOVA by using properties of truncated normal distributions. Simulation studies
were conducted to compare the performance of the methods in handling ceiling or floor data for t-test and ANOVA. Overall, the
proposed method showed greater accuracy in effect size estimation and better-controlled Type I error rates over other evaluated
methods. We developed an easy-to-use software package and web applications to help researchers implement the proposed
method. Recommendations and future directions are discussed.
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Introduction

According to the definitions used in Uttl (2005) and Wang,
Zhang,McArdle, and Salthouse (2008), ceiling or floor effects
occur when the tests are relatively easy or difficult to the
extent that substantial proportions of individuals obtain either
the maximum or minimum score. As such, the true extent of
their abilities cannot be determined.

Ceiling or floor effects have been observed in various areas
of psychology and education research. In developmental psy-
chology, experimental tasks that are too difficult for younger

participants can cause a floor effect (Timeo, Farroni, &Maass,
2017). Similarly, performance tasks can be too easy, resulting
in a ceiling effect (e.g., Ulber, Hamann, & Tomasello, 2016).
This can also occur in educational settings where the perfor-
mance measure is an educational test (e.g., Dompnier et al.,
2015; Fantuzzo, Gadsden, & McDermott, 2011). In clinical
research, ceiling and/or floor effects can occur when examin-
ing severely symptomatic populations. For example, ceiling
effects were observed in symptom measures, and floor effects
occurred in resiliency and/or positive affect measures
(Muthen, 1990; Priebe et al., 2013). In cognitive psychology,
Uttl (2005) provided extensive examples of ceiling effects in
widely used memory assessments, with ceiling proportions
ranging from at least 25% for 9- to 15-item verbal list learning
tasks to more than 50% for the verbal paired-associates learn-
ing task.

Ceiling and floor data are censored data: Censoring is a
condition in which the values of measurements or
observations are only partially known. For example, the only
known information about ceiling data is that the true levels are
at or above the ceiling threshold. The exact levels are
unknown due to ceiling effects. Ceiling or floor effects can
be confused with other statistical terms. Two notable
examples are the presence of performance asymptotes and of
semicontinuous variables. Ceiling effects are different from
performance asymptotes (Miller, 1956): The asymptotic
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values are the largest true values that individuals can
demonstrate, whereas ceiling effects imply that the observed
scores are lower than the true levels that individuals can
demonstrate. A variable with ceiling effects is also different
from a semicontinuous variable that combines a continuous
distribution with point masses at one or more locations (Olsen
& Schafer, 2001): Values in a semicontinuous variable (e.g.,
alcohol use with many zeros) are all valid values, whereas the
ceiling threshold (the maximum observed score) is a proxy for
some larger true values (see Wang et al., 2008 for a detailed
discussion).

Methodological discussion and development with regard to
handling ceiling/floor effects, though sparse, have occurred.
Uttl (2005) demonstrated the attenuation in reliability and
validity when ceiling effects are present using empirical
data. Jennings and Cribbie (2016) also noted that ceiling ef-
fects result in weakened reliability and validity. Tobin (1958)
proposed the Tobit model to deal with limited-range responses
in regression, which uses the likelihood of the censored dis-
tribution for parameter estimation and hypothesis testing.
Wang et al. (2008) extended the model into the Tobit growth
model for longitudinal data analysis with ceiling/floor data
using Bayesian estimation, which has been applied in longi-
tudinal studies (e.g., Piccinin et al., 2013). In addition, with
regard to confirmatory factor analysis with censored data,
Muthen (1990) proposed a method to adjust the correlation
matrix using properties of doubly truncated bivariate normal
distributions. Schweizer (2016) proposed a method to tackle
the variance reduction problem due to ceiling effects in con-
firmatory factor analysis by multiplying a weight matrix onto
the sample covariance matrix. To our knowledge, however,
the impact of ceiling/floor effects on the t-test and ANOVA
and how to statistically deal with ceiling/floor data in this
context lack systematic evaluation and discussion. The t-test
and ANOVA are two of the most commonly used statistical
methods in behavioral and social sciences, especially in ex-
perimental studies. The high cost of experimental studies thus
warrants our current investigation.

To investigate how psychological and educational re-
searchers have statistically handled ceiling/floor data in t-tests
or ANOVA, a brief literature review was conducted.
PsychINFO returned 397 English articles published within a
five-year span that mentioned “ceiling effects” or “floor ef-
fects,” illustrating the presence of ceiling and floor effects in
the literature. Among the articles, we focused on reviewing
those that were published in journals with higher impact fac-
tors (i.e., five-year impact factor > 2). As examples, we
reviewed articles from the Journal of Experimental
Psychology, Psychological Science, American Educational
Research Journal, and Child Development.

After excluding papers on methodology and literature
review, 96 substantive articles were reviewed. Thirty-
three (34%) of the articles conducted t-tests and 50 (53%)

conducted ANOVA. Nineteen (57%) of the articles using
t-tests and 35 (70%) of those using ANOVA treated the
ceiling/floor values as if they were true values. That is,
researchers completely ignored ceiling/floor effects and simply
used the observed scores in the statistical data analysis.
Researchers in this case often mentioned ceiling/floor effects
only in the discussion section as a plausible explanation for
the lack of significant results. Of those who treated the ceiling/
floor values as if they were true values, seven articles using the
t-test and five articles using ANOVA reported the proportions
of ceiling/floor data or performed a normality test to evaluate
the severity of ceiling/floor effects (e.g., Coman & Berry, 2015;
Kim, Peters, & Shams, 2012), whereas the other articles did not
report the proportions. Some researchers—nine (27%) in stud-
ies using the t-test and ten (20%) in studies using ANOVA—
attempted to tackle ceiling/floor effects by adjusting the exper-
imental procedures. This was often done by excludingmeasures
that were observedwith ceiling/floor effects in their pilot studies
(e.g., Chiu & Egner, 2015). Other researchers—four (12%) and
five (12%) of the studies using t-test and ANOVA,
respectively—attempted to statistically handle ceiling/floor ef-
fects by simply discarding the ceiling/floor data. One article
(3%) where the t-test was used employed a modified log-
transformation to handle floor and ceiling effects (Sokol-
Hessner et al., 2015). Despite the prevalence in the psycholog-
ical, educational, and behavioral research literature, ceiling and
floor effects seem to have rarely been well addressed statistical-
ly in the context of the t-test and ANOVA.

The current study aims to systematically and quantitatively
examine the impact of ceiling/floor effects on t-tests and
ANOVA and compare different methods for handling these ef-
fects. In the remainder of the paper, we first discuss conventional
methods and propose an easy-to-use method for handling
ceiling/floor effects in t-tests and ANOVA. Next, we show the
impact of ceiling/floor data on the t-test and ANOVA when
conventional methods are used and compare the performance
of different handling methods with simulated data. Lastly, we
provide a real data example to illustrate the application of the
proposed method and compare the results from different
methods. We conclude the paper with recommendations and
future research directions.

Methods for handling ceiling/floor effects
in t-tests and ANOVA

As discussed earlier in the paper, conventional methods for
handling ceiling/floor effects in t-tests and ANOVA include
treating ceiling/floor data as true values and discarding
ceiling/floor data. The former leaves data as they are—cen-
sored. The latter results in truncated data. In this section, we
first review the t-test and ANOVA. We then hypothesize on
the impact of two conventional methods, introduce the
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censored regression model for handling ceiling and floor data,
and propose an easy-to-use method that utilizes the properties
of truncated normal distributions for the t-test and ANOVA
with ceiling/floor effects.

A review of the t-test and ANOVA

Given the scope of this paper, we focus on the two-independent-
samples t-test (referred to simply as “t-test” in this paper) and
one-way ANOVA. The t-test examines the difference between
two independent population means. DenoteM1 andM2 , s21 and

s22, and n1 and n2 as the sample means, sample variances, and
sample sizes of two groups. Welch’s t statistic can be computed
using the following formula:

t ¼ M 2 − M 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ s22
n2

s ð1Þ

This is a function of the first and secondmoment estimates of the
observed data in each group and the group sample sizes. The
critical t value can be found from a t distribution with a desired
alpha level (e.g., 0.05), and the degrees of freedom computed as
follows:

df ¼
s21
n1
þ s22

n2

� �2

1

n1−1
s21
n1

� �2

þ 1

n2−1
s22
n2

� �2 ð2Þ

We use Welch’s t test statistic instead of the pooled two-
sample t test statistic because the Welch’s t test is more robust
against violation of the homogeneity of variance (HOV) as-
sumption (Delacre, Lakens, & Leys, 2017; Welch, 1947).
Moreover, Cohen’s d, an effect size measure for the mean
difference between two groups, can be computed based on
the following formula:

bd≈ M 2−M1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2s21 þ n1s22
n1 þ n2

s ¼ t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

r
ð3Þ

One-way ANOVA examines differences between means of
two or more independent groups (Maxwell, Delaney, & Kelley,
2018). Similar to Welch’s t test, Brown-Forsythe’s F* statistic
(Brown & Forsythe, 1974), which is robust to violation of the
HOV assumption, can be computed using the individual group
variances as follows:

F* ¼ ∑k
j¼1nj M j−M

� �2
∑k

j¼1 1−
nj

N

� �
s2j

ð4Þ

Here, N is the total sample size, k refers to the number of
groups being compared, Mj and s2j are the sample mean and

variance of group j, respectively, and M is the grand sample
mean. Like Welch’s t statistic, F* is a function of the first and
second moment estimates of the observed data in each group
and the group sample sizes. The critical F value can be ap-
proximated from an F distribution with a desired significance
level, dfnumerator = k − 1, and dfdenominator = 1

∑k
j ¼ 1

g2
j

n j−1

where

g j ¼
1−

n j
Nð Þs2j

∑k
j¼1 1−

n j
Nð Þs2j

. An effect size measure for the overall

group mean differences is Cohen’s f2 (Maxwell et al.,
2018) et al., 2018):

bf 2 ¼ k−1ð ÞF*

N
ð5Þ

When group variance and sample size are equal between
groups, F and F* are identical, where F is the regular F test
statistic, calculated as the variance of Mj divided by the mean
of within-group variances 1. Subsequently, the effect size esti-
mates from F and F* would be identical given equal variance
and equal sample size between groups. When HOV is violated,
the effect size estimate from F would not be accurate because F
assumesHOV, and the effect size estimate fromF*may bemore
suitable.

As shown above, the computation in t-test and ANOVA de-
pends upon sample means and sample standard deviations.
Therefore, biased mean and standard deviation estimates lead
to biased test results and effect size estimates. This is shown
below when conventional methods for handling ceiling/floor
data are used (i.e., ceiling/floor data are treated as if they were
true scores or are removed from a data analysis).

Method 1: Treat ceiling/floor data as if they were true
scores

Some researchers ignore ceiling/floor effects and treat ceiling/
floor data as if they were true scores in data analyses. The data
utilized for analysis from this approach can be seen as censored
data (e.g., Wang & Zhang, 2011). More specifically, ceiling
effects result in a type of right-censored data, where true scores
that are larger than the ceiling threshold b (i.e., the maximum
score from a test) are not observed but are recorded as b. Floor
effects lead to a type of left-censored data: True scores that are
smaller than floor threshold a (i.e., the minimum score from a
test) are not observed but are recorded as a. When both ceiling

1 F* can be systematically smaller than F given large samples with small
variances where F is too liberal. F* can be systematically larger than F given
large samples with large variances where F is too conservative. Moreover,
when cell sample sizes are equal, F and F* are identical, but the denominator
degrees of freedom are different. See Maxwell et al., (2018) for more details.
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and floor effects occur, the data can be viewed as interval-cen-
sored, where true scores that are larger than b (the maximum
score) or smaller than a (the minimum score) are not observed
and are recorded as b and a, respectively. Let Y be a random
variable of the true scores and Y∗ be a random variable of the
observed scores with floor/ceiling effects. We have

y* ¼
a; if y≤a
y; if a < y < b
b; if y≥b

8<: ð6Þ

The impact of censoring on mean and variance estimates
has been studied previously (e.g., Cohen, 1959; Greene,
2002). Applying the findings to the context of ceiling/floor
effects, for example, with the normality assumption and a
finite floor threshold a, for Y ∼N μ;σ2ð Þ , we can obtain the
expected value and variance of the observed data y∗ as follows
(Greene, 2002):

E Y*	 
 ¼ Ψ að Þaþ 1−Ψ að Þð Þ μþ σλð Þ ð7Þ

Var Y*	 
 ¼ σ2 1−Ψ að Þð Þ 1−δð Þ þ α−λð Þ2Ψ að Þ
h i

ð8Þ

Ψ a−μð Þ
σ

h i
¼ Ψ αð Þ ¼ Prob y≤að Þ. λ ¼ ϕ αð Þ

1−Ψ αð Þ where ϕ is the

standard normal density function. In addition, δ = λ2 − λα.
The forms become complex for interval-censored Y*.
Numerically, using Eqs. (7) and (8), when the true mean
μ = 0, the true variance σ2 = 1 and the proportion of floor data
is 20%, the expected mean and the expected variance of ob-
served data y∗ are approximately .11 and .69, respectively,
which deviate from the true values of μ = 0 and σ2 = 1,
respectively.

More generally, treating ceiling/floor data as if they were
true scores leads to attenuated variance estimates. When ceil-
ing or floor effects exist, the mean of the observed data is
expected to be smaller or larger than the true mean, respec-
tively. When both ceiling and floor effects exist, the impact on
the observed mean would depend on the proportion of ceiling
and floor data. Note that the impact of ceiling/floor effects is
“symmetrical” when Y has a symmetrical distribution (e.g., a
normal distribution). For example, when Y∼N μ;σ2ð Þ, μ = 0
and σ2 = 1, and the proportion of ceiling data is 20%, and the
expected mean and variance of observed data are approxi-
mately −.11 and .69, respectively.

With an attenuated sample variance s*2 and a biased sample
mean M* from ceiling/floor data, test statistics based on Eqs.
(1) and (4) for t-test and ANOVA may also be biased when
treating ceiling/floor data as if they were true values.
Subsequently, Cohen’s d and Cohen’s f2 estimates based on
Eqs. (3) and (5) may be biased when ceiling/floor data are
treated as true values.

Method 2: Remove ceiling/floor data

Some researchers have handled their ceiling/floor data by re-
moving the ceiling/floor data. The resulting data y′ can be
viewed as a kind of truncated data:

y
0 ¼

removed; if y≤a
y; if a < y < b
removed; if y≥b

8<: ð9Þ

That is, only scores between a and b, not including a and b,
are kept for statistical data analyses.

The impact of truncation on the expected mean and vari-
ance of y′ has been discussed in the literature (e.g., Aitkin,
1964). Applying the findings to the context of ceiling/floor
effects, when ceiling/floor values are removed, the variance
of y′ is expected to be smaller than the true variance. For data
with ceiling or floor effects, the deletion of ceiling or floor
values would make the expected mean of y′ smaller or larger
than the true mean, respectively. Specifically, when Y∼N
μ;σ2ð Þ and the ceiling and floor thresholds are b and a, re-
spectively, we derive that Y’ has a truncated normal distribu-
tion with the following mean and variance based on results
from Aitkin (1964).

E Y
0

� �
¼ E Y ja < Y < bð Þ ¼ μþ σ

ϕ αð Þ−ϕ βð Þ
Ψ βð Þ−Ψ αð Þ ð10Þ

Var Y
0

� �
¼ Var Y ja < Y < bð Þ

¼ σ2 1þ αϕ αð Þ−βϕ βð Þ
Ψ βð Þ−Ψ αð Þ −

ϕ αð Þ−ϕ βð Þ
Ψ βð Þ−Ψ αð Þ

� �2
" #

ð11Þ
where α ¼ a−μ

σ and β ¼ b−μ
σ . Numerically, for example, when

the true mean μ = 0, the true variance σ2 = 1, and the ceiling
proportion is 20%, the mean and variance of the truncated
variable Y′ are approximately −.35 and .58, respectively.

When ceiling/floor data are removed from data analyses,
the sample mean and variance estimates can be biased.
Therefore, we expect the test statistics and effect size estimates
for t-test and ANOVA from Method 2 to be biased.

Method 3: Censored regression for t-test and ANOVA
with ceiling/floor data

Censored regression has been proposed and demonstrated for
regression with censored or limited-range outcomes (Tobin,
1958). In a censored regression model, the outcome variable,
Y∗, as described in Eq. (6), is modeled with a censored distri-
bution. The corresponding underlying true model is yi ¼ xTi B
þϵi; where yi is the true score of the dependent variable for
person i, xTi is the design matrix, and B is a vector of
regression coefficients.
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Specifically, a censored regression model can be estimated
by maximizing the following likelihood function based on a
censored distribution, assuming ϵi∼N 0;σ2

ϵ

� �
(e.g.,

Henningsen, 2011):

logL ¼ ∑N
i¼1

h
Iai logΨ

a−xTi B
σϵ

� �
þ Ibi logΨ

xTi B−b
σϵ

� �
þ 1−Iai −I

b
i

� ��
logϕ

y*i −xTi B
σϵ

� �
−logσϵ

i
ð12Þ

whe r e Iai ¼ 1; if y*i ¼ a
0; if y*i > a

�
a nd Ibi ¼ 1; if y*i ¼ b

0; if y*i < b

�
.

Standard nonlinear optimization algorithms can be used to
maximize the log-likelihood function with respect to the pa-
rameter vector (BT,σϵ )

T. Likelihood ratio tests can be used for
significance testing.

Censored regression has long received attention among
methodological researchers.With its capacity to handle cen-
sored data in regression, it has the potential to handle ceiling/
floor effects in t-tests andANOVAusing reparameterization
(Tobin, 1958). However, we noted in our literature review
that censored regression has rarely been applied to t-test or
ANOVA with ceiling/floor data in psychological research.
To use censored regression for handling ceiling/floor effects,
for the t-test, the design matrix contains a vector of 1s for the
intercept and a vector of 0/1s (dummy coding of the group
membership) for the group mean difference coefficient. For
k-group one-way ANOVA, the formulation of the design
matrix is the same except that k − 1 vectors of 0/1s are needed
for dummy coding the k groups. Similarly, maximum likeli-
hood can be used to estimate the regression coefficients. To
implement censored regression, R package `censReg`
(Henningsen, 2011) can be used to potentially handle
ceiling/floor data in t-tests and ANOVA.

For a two-independent-samples t-test using `censReg`, the
regression coefficient of the dummy-coded grouping variable
and its inference can be used for comparing two group means.
For ANOVA using `censReg`, an omnibus test statistic can be
obtained by comparing a full model containing the dummy-
coded group variables to the reduced intercept-only model. The
difference in the two 2*\times log-likelihood values can be cal-
culated and then compared with the critical χ2 value with k− 1
degrees of freedom. It is worth noting that `censReg` does not
provide effect size estimates for the t-test or ANOVA. For the
t-test, we propose using the t value of the grouping variable
coefficient for Eq. (3) to obtain a Cohen’s d estimate. For
ANOVA, we propose using coefficients in the full and reduced

censored regression models to obtain bθ j. Specifically, we have

bθ j ¼
cB0−cBþ

0 ; if j ¼ 1cB0 þ bBj−1−cBþ
0 ; if j > 1

(
ð13Þ

Here,cB0 and bBj−1 are the intercept and group effect coef-

ficient estimates from the full model. Specifically,cB0 andcB0

þ bBj−1 are the group mean estimates of the first group (refer-

ence group) and the jth group, respectively. cBþ
0 is the intercept

estimate of the reduced model—the grand mean M estimate.

Provided bθ j
0s; the following formula (e.g., Maxwell et al.,

2018) can be used to obtain a Cohen’s f2 estimate.

bf 2 ¼ ∑bθ2j=kbσ2
ϵ

Method 3 is expected to handle ceiling/floor effects well
for the t-test and ANOVA when group variances are equal.
We also expect that Method 3 can lead to more accurate test-
ing for mean differences and more accurate effect size esti-
mates than Methods 1 and 2. However, it is unclear how
sensitive themethod is to the HOV violation. This is evaluated
in the simulation study.

Method 4: Our proposed approach

Using properties from truncated normal distributions, we pro-
pose an easy-to-use method for the t-test and ANOVA with
ceiling/floor data. Using Eqs. (10) and (11), we derive the
mean and variance estimates of true scores for each groupwith
floor and ceiling thresholds a and b, under the normality as-

sumption. Let Me and se2 denote the proposed sample mean
and variance estimates of a group, respectively, that adjust
for ceiling/floor effects. We have

se2 ¼ s02

1þ
bαϕ bα� �

� bβϕ bβ� �
Ψ bβ� �

� Ψ bα� � −
ϕ bα� �

� ϕ bβ� �
Ψ bβ� �

� Ψ bα� �
0@ 1A2 ð14Þ

Me ¼ M 0 þ se�
ϕ bβ� �

−ϕ bα� �
Ψ bβ� �

−Ψ bα� � ð15Þ

M′ and s′ are the sample mean and sample standard devi-
ation of the truncated data after removing ceiling and floor

data. Recall that α ¼ a−μ
σ and β ¼ b−μ

σ : Thus, α and β are the
standardized floor and ceiling thresholds, respectively. In
practice, μ and σ are unknown, and thus α and β need to be
estimated. To estimate α and β for each group, we use the
proportions of floor and ceiling values of each group. For l
floor observations out of n total observations, bα ¼ Ψ−1 l=nð Þ.
For r ceiling observations out of n total observations,bβ ¼ Ψ−1 1−r=nð Þ. That is, the standardized floor and ceiling
threshold estimates correspond to the floor proportion and1-
ceiling proportion in the standardized normal cumulative
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distribution function. Thus, to obtain corrected mean and
variance estimates usingEqs. (14) and (15), only information
about summary statistics including the sample mean of trun-
cated data, sample variance of truncated data, group sample
size, and proportions of ceiling/floor data are required from
each group. When raw data are available, Eqs. (14) and (15)
can also be implemented through the function `rec.mean.var
(y*, floor, ceiling)` from our R package `DACF` on CRAN
(Liu &Wang, 2018). The input variable y* represents a vec-
tor of n observations with ceiling/floor effects, and ‘floor’
and ‘ceiling’ respectively represent the ceiling and floor
thresholds. Floor and ceiling percentages are estimated
based on the proportions of values at the specified ceiling
and floor thresholds, respectively. Then the function gives
the following outputs: (1) the calculated ceiling percentage,
(2) the calculated floor percentage, (3) the estimated mean
after adjusting for ceiling/floor effects, and (4) the estimated
variance after adjusting for ceiling/floor effects.Normality is
assumed in the estimation.

Our proposed mean and variance estimates can be used
in computing the t statistics, i.e., Eq. (1), and F* statistics,
i.e., Eq. (4), for the t-test and one-way ANOVA, respec-
tively. Under the normality assumption, asymptotically,
our method should produce accurate mean and variance
estimates, because mean and variance estimates form suf-
ficient statistics to describe normally distributed random
variables. Asymptotically, we expect our method with
corrected mean and variance estimates to yield accurate
estimates for the t statistic and the F* statistic. With im-
proved estimates for the t statistic and F* statistic, our
method is expected to yield less biased results than
Methods 1 and 2 for the effect size estimates (Cohen’s d
and f2). As our method uses Welch’s t test and Brown-
Forsythe’s F* test for ANOVA, our method is expected to
perform well when the homogeneity of variance assump-
tion is violated for the t test or ANOVA.

The proposed method calculates the degrees of free-
dom based on the after-truncation sample sizes. The ratio-
nale was that the proposed method utilizes full informa-
tion only from data points of n − r − l participants and
partial information from data points of r + l participants
of a group for the mean and variance estimation.
Specifically, the corrected mean and variance estimates
(Eqs. 14 and 15) are functions of mean and variance es-
timates using after-truncation data (n − r − l participants)
and the standardized floor and ceiling threshold estimates.
The thresholds are estimated using the ceiling and floor
percentage estimates based on data points of n − r and n
− l participants, respectively. This is a relatively conser-
vative approach for calculating the degrees of freedom,
which can help control the type I error rate. This feature
can be beneficial, especially given the “replication crisis”
in psychological and behavioral research.

Simulation Study 1: t-Test with ceiling data

Our first simulation study was designed to evaluate the per-
formance of the aforementioned methods for the two-
independent-groups mean t-test with ceiling data. As
discussed in Method 1 above, the results with ceiling data
are generalizable to floor data when the true population distri-
bution is symmetrical.

In this simulation study, four factors were manipulated:
the population effect size (d = 0, .2, .5, .8, corresponding to
the null, small, medium, and large effects), population stan-
dard deviation ratio between two groups (SDR = 1 and 1.5,
corresponding to the scenarios where HOV is met and vio-
lated, respectively), sample size per group (n = n1 = n2 = 25,
50, 100, 200, 500), and ceiling proportion of the reference
group (Group 1 CP = 10%, 20%, 30%). In total, we have
4 × 2 × 4 × 3 = 96 conditions included in Simulation Study
1. Additional conditions that examine the impact of greater
heterogeneity of variance (SDR = 2), unbalanced design
(n2/n1 = ½ or 2 with n1 = 50 or 200), simultaneous ceiling
and floor effects (10% ceiling and 20% floor or 15% ceiling
and 15% floor with n = 50 or 200), and non-normal distri-
bution (lognormal outcomes) are included. The simulation
study design, data generation methods, and simulation re-
sults of those additional conditions are included in the on-
line supplemental materials, as the patterns are consistent
with the results we present here. The number of replications
for each condition was 1000.

We used the following evaluation criteria for evaluating the
performance of the methods: (1) Accuracy of effect size esti-
mation measured by bias (when the true effect size is null),bd−d, or relative bias (when the true effect size is non-null),bd−d
d . An estimator with its relative bias larger than 10%
(non-ignorable bias) is considered less than desirable
(Muthén & Muthén, 2002). (2) Type I error rate with a satis-
factory range from 2.5% to 7.5% (Bradley, 1978). (3)
Coverage probability of 95% confidence intervals containing
the true population mean difference with a satisfactory
range from 92.5% to 97.5%. The simulation study was
conducted in R.

Data generation

Group 1 (reference group) true data (free of ceiling effects)
were generated from the standard normal distribution,
Y 1∼N 0; 1ð Þ. With Eqs. (1) and (3), for a given Cohen’s d
and SDR, Group 2 (treatment group) true data were generated

from Y 2∼N d �
ffiffiffiffiffiffiffiffiffiffiffiffi
1þSDR2

2

q
; SDR2

� �
. Reference t test statistics

and reference Cohen’s d estimates were recorded using the
generated true data.
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We then introduced ceiling effects, with the ceiling thresh-
old determined by the standardized inverse cumulative normal
density function with 1-CP. For example, when Group 1
CP = 20% and 30%, the ceiling thresholds b are .842 and
.524, respectively. The same ceiling threshold is used across
the two groups. This aims to simulate a more realistic scenar-
io: the same measure with the same limited range of scores is
used in both the control and treatment groups. Accordingly,
Group 2 may have a higher ceiling proportion than Group 1
(see Table 1 for the ceiling proportions of Group 2, ranging
from 10% to 61%). For example, when d is positive, Group 2
has a larger population mean and thus Group 2 has a larger
ceiling proportion than Group 1 in a given simulation condi-
tion. For another instance, when SDR is greater than 1, the
ceiling proportion of Group 2 in a condition is larger than that
of Group 1 because Group 2 scores are distributed more wide-
ly than Group 1 scores. The ceiling proportions are faithful to
those observed in our empirical literature review, as men-
tioned in the introduction. Methods 1–4 (i.e., 1: treating ceil-
ing data as if they were true values, 2: removing ceiling data,
3: using censored regression for handling ceiling effects, and
4: our proposed approach) were applied to analyze the data
with ceiling effects.

Results

Results with n=50 or n=200 are summarized in Tables 2 (type
I error rates and coverage rates) and 3 (average bias in Cohen’s
d estimates). For the conditions with the other sample sizes,
the results shared a similar pattern and thus are included in the
online supplemental document.

When HOV was met, the Type I error rates from Methods
1–3 were satisfactory under the studied conditions (see
Table 2 when d = 0 and SDR =1). When HOV was violated,
the type I error rates from Methods 1–3 were inflated (see

Table 2 when d = 0 and SDR =1.5). For example, these can
be as high as 33.3%, 93.3%, and 11.4% when the ceiling
proportion of the reference group (CP) is 20% for Methods
1–3, respectively. The inflation was more severe with in-
creased ceiling proportions or increased group sample size.
As ceiling proportions increase, the biases in both mean and
variance estimates increase, resulting in more severe inflation
of type I error rates. As sample size increases, the biases in the
estimates become more visible as the confidence interval
widths become narrower. Among Methods 1–3, Method 2
(removing ceiling data) yielded the most inflated type I error
rates, followed by Method 1 (treating ceiling data as if they
were true values) and then Method 3 (censored regression).
Our proposed method (Method 4) became slightly conserva-
tive when ceiling proportions increased. However, Method 4
was the only studied method that had a type I error rate rang-
ing between .025 and .075 across most of the studied condi-
tions (the only exception was the t-test with 30% ceiling data
in the reference group when sample size per group was 25).

When HOV was met, the coverage rates from Methods 1
(treating ceiling data as if they were true values) and 2 (re-
moving ceiling data) were not satisfactory (under-coverage)
under most of the studied conditions (see Table 2 when d ≠0
and SDR =1). For example, these can be as low as 57.2% and
18.6%when theCP of Group 1 = 20% and d = .5 for Methods
1 and 2, respectively. The coverage rates deviated more from
the nominal value 95% as the ceiling proportion increased.
The deviations also increased when the HOV assumption
was not met (see Table 2 when d ≠0 and SDR = 1.5).
Between Methods 1 and 2, Method 2 performed worse in
coverage rates across the studied conditions. Censored regres-
sion (Method 3) yielded satisfactory coverage rates when
HOV was met. However, when HOV was violated, Method
3 had less than ideal coverage probabilities (see Table 2 when
d ≠0 and SDR = 1.5). For example, these can be as low as

Table 1 Treatment group ceiling proportions per population effect size and SDR (CP is the ceiling proportion of the reference group [Group 1])

t-Test: Group 2 ceiling proportion

SDR = 1 SDR = 1.5

D= 0 d = 0.2 d = 0.5 d = 0.8 d = 0 d = 0.2 d = 0.5 d = 0.8

CP = 0.1 10% 14% 22% 32% 20% 24% 30% 37%

CP = 0.2 20% 26% 37% 48% 29% 33% 41% 49%

CP = 0.3 30% 37% 49% 61% 36% 41% 49% 57%

ANOVA: Ceiling proportions of Group 2 (G2) and Group 3 (G3)

SDR = 1 SDR = 1.5

f2 = 0 f2 = 0.01 f2 = 0.0625 f2 = 0.16 f2 = 0 f2 = 0.01 f2 = 0.0625 f2 = 0.16

θ = 0 θ = .12 θ = −.12 θ = .31 θ = −.31 θ = .49 θ = −.49 θ = 0 θ = .13 θ = −.13 θ = .33 θ = −.33 θ = .53 θ = −.53
G2,G3 G2 G3 G2 G3 G2 G3 G2,G3 G2 G3 G2 G3 G2 G3

CP = 0.1 10% 12% 8% 16% 6% 21% 4% 20% 22% 17% 26% 14% 31% 11%

CP = 0.2 20% 24% 17% 30% 13% 36% 9% 29% 32% 26% 37% 22% 42% 18%

CP = 0.3 30% 34% 26% 41% 20% 49% 16% 36% 40% 33% 45% 28% 50% 24%
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78.1% when the CP of the reference group is 20%, d = .5, and
SDR = 1.5. Our proposed method (Method 4) yielded good
coverage rates across almost all the studied conditions (see
Table 2).

In terms of the average bias or average relative bias in
Cohen’s d estimates (Table 3), overall, Method 2 had the most
biased estimates, followed by Methods 1 and 3. The relative
biases from Method 2 were above 10% in most of the studied
conditions. For example, for the conditions with d = .2, n =
200, and CP of the reference group = 10%, the relative biases
in Cohen’s d estimates from Method 2 were −18% and
−185.0% when HOV was met (SDR = 1) and violated
(SDR = 1.5), respectively. When HOV was met and the CP
of the reference group ≤ 20%, the effect size estimates from
Methods 1 and 3 were acceptable (e.g., the highest relative
bias was −7.5% and −6.3% fromMethods 1 and 3, respective-
ly, when d = .8). However, the violation of HOV can lead to
biased effect size estimate from Methods 1 and 3. For exam-
ple, the relative biases were as high as −60.0% and −25.0%
from Methods 1 and 3, respectively, when d = .2, n = 200,
SDR = 1.5, and the CP of the reference group was as low as
10%. As the ceiling proportion increased, the effect size esti-
mates from Methods 1–3 became more biased. Our proposed
method (Method 4) yielded the most accurate effect size esti-
mates across all the studied methods under all the studied

conditions. Furthermore, the relative bias from Method 4
was all under 10%.

Simulation Study 2: ANOVA with ceiling data

Our second simulation study evaluated the performance of the
methods for three-group ANOVA with ceiling data. In this
study, four factors were manipulated: population effect size
(f2 = 0, .01, .0625, .16, corresponding to null, small, medium,
large effect sizes), population standard deviation ratio between
the group with a positive treatment effect and the other groups
(SDR = 1 and 1.5, representing the scenarios where HOV is
met and violated, respectively), sample size per group (n =
n1 = n2 = n3 = 25, 50, 100, 200, 500), and ceiling proportion of
the reference group (CP= 10%, 20%, 30%). Table 1 shows
the ceiling proportions for the treatment groups at different
population effect sizes. The ceiling proportions ranged from
4% to 50%. In total, we had 96 conditions in Simulation Study
2, and the number of replications for each condition was 1000.
Similar to Simulation Study 1, we include additional condi-
tions in the supplemental materials to investigate the impact of
greater heterogeneity of variance (SDR = 2), unbalanced de-
sign (n1 = n2×2 or n1 = n2/2 with n1 = 50 or 200), simulta-
neous ceiling and floor effects (10% ceiling and 20% floor

Table 2 Type I error rates and coverage probabilities in t-test with ceiling data

CP (Group 1) = 0% 10% 20% 30%

Reference 1 2 3 4 1 2 3 4 1 2 3 4

SDR = 1, n = 50 d = 0 .053 .057 .050 .060 .035 .050 .049 .051 .032 .049 .049 .056 .031

d = .2 .934 .937 .935 .927 .952 .939 .924 .931 .962 .916 .909 .936 .975

d = .5 .944 .912 .836 .937 .964 .848 .709 .942 .967 .695 .633 .944 .968

d = .8 .938 .835 .554 .940 .964 .559 .320 .941 .969 .215 .222 .949 .969

SDR = 1, n = 200 d = 0 .046 .043 .038 .042 .036 .044 .040 .043 .032 .038 .055 .040 .030

d = .2 .947 .939 .899 .944 .961 .916 .808 .948 .963 .850 .728 .951 .974

d = .5 .946 .852 .467 .951 .959 .572 .186 .954 .962 .187 .077 .950 .959

d = .8 .940 .531 .035 .938 .957 .043 .004 .934 .952 .001 .003 .939 .941

SDR = 1.5, n = 50 d = 0 .046 .071 .313 .065 .028 .120 .391 .064 .025 .170 .438 .092 .025

d = .2 .943 .880 .503 .934 .954 .787 .380 .917 .959 .655 .314 .898 .962

d = .5 .952 .727 .191 .934 .969 .418 .080 .916 .975 .140 .048 .897 .975

d = .8 .954 .379 .023 .931 .970 .050 .006 .892 .969 .003 .005 .836 .957

SDR = 1.5, n = 200 d = 0 .050 .167 .845 .072 .033 .333 .933 .114 .026 .495 .959 .175 .025

d = .2 .954 .639 .021 .927 .969 .316 .002 .857 .973 .111 .001 .773 .976

d = .5 .946 .196 .000 .880 .962 .009 .000 .781 .963 .000 .000 .654 .961

d = .8 .954 .002 .000 .817 .968 .000 .000 .680 .962 .000 .000 .512 .940

Note 1: 1 =Method 1 (treating ceiling data as if they were true values); 2 =Method 2 (removing ceiling data); 3 =Method 3 (censored regression); 4 =
Method 4 (our proposed method)

Note 2: When d = 0, the statistic is the empirical Type I error rate. Otherwise, it is the coverage rate

Note 3: Type I error rates that are outside the 2.5–7.5% range and coverage rates that are outside the 92.5–97.5% range are bolded
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or 15% ceiling and 15% floor with n =50 or 200), and non-
normal distribution (lognormal outcomes).

We used the following evaluation criteria for evaluating the
performance of the methods: (1) accuracy of effect size esti-
mation measured by bias (when the true effect size is null) or
relative bias (when the true effect size is non-null), and (2)
type I error rates. The simulation study was conducted in R.

Data generation

We first generated the true data that were free of ceiling ef-
fects. We generated Group 1 (the reference group, i.e., θ1 = 0)
true data from the standard normal distribution, N 0; 1ð Þ ,
θj represents the deviation of group j mean from the grand
mean. For convenience, we set Groups 2 and 3 to have a
positive and negative treatment effect of equal magnitude,
i.e., θ2 = -θ3. In addition, we set Group 2 standard deviation
based on the SDR value and fixed Group 3 standard deviation
to 1. Given a Cohen’s f2 and SDR, Group 2 and 3 true data
were generated accordingly.

Reference F* test statistics and reference Cohen’s f2 esti-
mates were recorded using the generated true data. We then
introduced ceiling effects to the data using a similar procedure
as that described in Simulation Study 1. Methods 1–4 were
applied to analyze the data with ceiling effects.

Results

Tables 4 (for type I error rates) and 5 (for average bias or
average relative bias in effect size f2 estimates) summarize
the simulation results with n = 50 and n = 200. As the results
showed a similar pattern for the conditions with the other
sample sizes, those results are included in the online supple-
mental document. For the additional conditions in the supple-
mental materials, the patterns that emerged are consistent with
the conditions presented here.

Type I error rates from Methods 1–3 were satisfactory un-
der the studied conditions when HOV was met (see Table 4
when SDR = 1). When HOVwas violated, inflated type I error
rates from Methods 1–3 were observed (see Table 4 when
SDR = 1.5). For example, when the CP of the reference group
was 20%, the type I error rates were as high as 36%, 96%, and
13% for Methods 1–3, respectively. The inflation was more
severe at higher ceiling proportions. Similar to the t-test re-
sults, among Methods 1–3, Method 2 (removing ceiling data)
yielded the most inflated type I error rates, followed by
Method 1 (treating ceiling data as if they were true values)
and then Method 3 (censored regression). Method 4 was the
only studied method with a type I error rate ranging between
.025 and .075 across most of the studied conditions (the only
exception was that a type I error rate of 18% was observed
when n = 25, SDR = 1, and CP= 30%)

Table 3 Average bias in Cohen’s d estimates in t-test with ceiling data

CP (Group 1) = 0% 10% 20% 30%

Reference 1 2 3 4 1 2 3 4 1 2 3 4

SDR = 1, n = 50 d = 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

d = .2 5.0 0.0 −15.0 5.0 5.0 0.0 −25.0 0.0 5.0 −5.0 −30.0 0.0 5.0

d = .5 0.0 −2.0 −18.0 0.0 2.0 −4.0 −24.0 −2.0 0.0 −8.0 −30.0 −6.0 2.0

d = .8 0.0 −2.5 −20.0 −2.5 1.3 −7.5 −28.8 −6.3 1.3 −12.5 −32.5 −10.0 1.3

SDR = 1, n = 200 d = 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

d = .2 0.0 0.0 −15.0 0.0 0.0 −5.0 −25.0 −5.0 0.0 −10.0 −35.0 −5.0 0.0

d = .5 2.0 −2.0 −18.0 0.0 2.0 −6.0 −28.0 −2.0 2.0 −10.0 −34.0 −6.0 2.0

d = .8 0.0 −2.5 −21.3 −2.5 0.0 −7.5 −28.8 −6.3 0.0 −13.8 −35.0 −11.3 0.0

SDR = 1.5, n = 50 d = 0 0.0 −0.1 −0.3 −0.1 0.0 −0.2 −0.4 −0.1 0.0 −0.2 −0.5 −0.1 0.0

d = .2 5.0 −55.0 −190.0 −20.0 5.0 −85.0 −235.0 −45.0 5.0 −110.0 −265.0 −60.0 5.0

d = .5 2.0 −28.0 −96.0 −12.0 4.0 −42.0 −118.0 −22.0 4.0 −56.0 −132.0 −32.0 4.0

d = .8 1.3 −20.0 −73.8 −10.0 6.2 −31.3 −88.8 −18.8 7.5 −41.3 −98.8 −27.5 6.2

SDR = 1.5, n = 200 d = 0 0.0 −0.1 −0.3 0.0 0.0 −0.2 −0.4 −0.1 0.0 −0.2 −0.5 −0.1 0.0

d = .2 5.0 −60.0 −185.0 −25.0 5.0 −90.0 −230.0 −45.0 5.0 −115.0 −260.0 −60.0 5.0

d = .5 0.0 −28.0 −96.0 −14.0 4.0 −44.0 −118.0 −24.0 4.0 −56.0 −134.0 −34.0 4.0

d = .8 1.3 −20.0 −73.8 −10.0 6.2 −31.3 −90.0 −20.0 6.2 −41.3 −100.0 −27.5 7.5

Note 1: 1 =Method 1 (treating ceiling data as if they were true values); 2 =Method 2 (removing ceiling data); 3 =Method 3 (censored regression); 4 =
Method 4 (our proposed method)

Note 2: Relative biases larger than 10% are bolded

Note 3: Absolute bias is reported for the null effect condition; percentage relative bias is reported otherwise
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Similar to the findings from Simulation Study 1, f2 esti-
mates were least accurate with Method 2 (removing ceiling
data; see Table 5). For example, for the conditions with
f2 = .0625, n = 200, and CP of the reference group = 10%,
the relative biases in f2 estimates from Method 2 were
−27.3% and −70.8% when HOV was met (SDR = 1) and vio-
lated (SDR = 1.5), respectively. When the CP of the reference
group < 30% and HOV was met (SDR = 1), f2 estimates from
Methods 1 and 3 were acceptable. However, when the CP of
the reference group = 30%, biases in f2 estimates fromMethod
1 became non-ignorable (e.g., the relative bias was −12.1%

when f2 = 0.0625 and n = 200). When HOV was violated,
Methods 2 and 3 produced biased effect size estimates. For
example, when n = 200,CP of the reference group = 20%, and
f2 = 0.0625, the relative biases from Methods 2 and 3 were
−44.6% and −12.3%, respectively. Our proposed method
(Method 4) yielded the most accurate effect size estimates
across all the studied methods under all the studied ANOVA
conditions. Moreover, the relative bias from Method 4 was
under 10% for most of the studied conditions except when
CP = 30%, f2 = .01, n = 50, and SDR =1, where the relative
bias from Method 4 was 16.7%.

Table 5 Average bias in Cohen’s f2 estimates in ANOVA with ceiling data

CP (Group 1) = 0% 10% 20% 30%

Reference 1 2 3 4 1 2 3 4 1 2 3 4

SDR = 1, n = 50 f2 = 0 0.014 0.014 0.016 0.014 0.014 0.014 0.017 0.015 0.015 0.014 0.02 0.015 0.017

f2 = .01 0.024 0.0 −4.2 4.2 4.2 0.0 0.0 4.2 8.3 −4.2 4.2 8.3 16.7

f2 = .0625 0.079 −2.5 −22.8 0.0 0.0 −6.3 −30.4 1.3 0.0 −11.4 −34.2 1.3 1.3

f2 = .16 0.173 −1.7 −23.1 0.6 0.6 −6.4 −33.5 1.2 0.0 −11.6 −39.9 1.7 0.6

SDR = 1, n = 200 f2 = 0 0.003 0.003 0.004 0.003 0.003 0.003 0.004 0.003 0.004 0.003 0.005 0.004 0.004

f2 = .01 0.013 0.0 −15.4 0.0 0.0 −7.7 −23.1 0.0 0.0 −7.7 −23.1 0.0 0.0

f2 = .0625 0.066 −3.0 −27.3 0.0 0.0 −7.6 −37.9 0.0 0.0 −12.1 −45.5 0.0 0.0

f2 = .16 0.165 −2.4 −27.3 0.0 −1.2 −7.3 −38.8 0.0 −1.2 −13.3 −46.7 0.0 −1.2
SDR = 1.5, n = 50 f2 = 0 0.013 0.016 0.04 0.016 0.014 0.019 0.054 0.018 0.015 0.022 0.067 0.021 0.017

f2 = .01 0.024 −25.0 4.2 0.0 0.0 −29.2 50.0 −4.2 4.2 −29.2 95.8 −8.3 8.3

f2 = .0625 0.079 −26.6 −60.8 1.3 −5.1 −38.0 −59.5 −7.6 −5.1 −46.8 −55.7 −16.5 −3.8
f2 = .16 0.174 −17.2 −58.0 6.3 −4.6 −27.0 −65.5 −1.7 −5.2 −35.6 −68.4 −8.6 −4.6

SDR = 1.5, n = 200 f2 = 0 0.003 0.006 0.028 0.005 0.003 0.009 0.042 0.006 0.004 0.013 0.054 0.008 0.004

f2 = .01 0.014 −42.9 0.0 −14.3 0.0 −50.0 71.4 −28.6 0.0 −50.0 128.6 −35.7 0.0

f2 = .0625 0.065 −30.8 −70.8 0.0 −4.6 −44.6 −70.8 −12.3 −4.6 −53.8 −67.7 −21.5 −3.1
f2 = .16 0.164 −19.5 −63.4 4.9 −5.5 −29.9 −72.0 −3.7 −6.1 −39.0 −76.8 −11.0 −5.5

Note 1: 1 =Method 1 (treating ceiling data as if they were true values); 2 =Method 2 (removing ceiling data); 3 =Method 3 (censored regression); 4 =
Method 4 (our proposed method)

Note 2: Effect size estimates with their relative biases larger than 10% are bolded. Relative biases were computed using the reference values

Note 3: Absolute bias is reported for the null effect condition; percentage relative bias is reported otherwise

Table 4 Type I error rates in ANOVA with ceiling data

CP (Group 1) = 0% 10% 20% 30%

Reference 1 2 3 4 1 2 3 4 1 2 3 4

SDR = 1, n = 50 .05 .05 .05 .05 .04 .05 .05 .05 .03 .05 .05 .05 .03

SDR = 1, n = 200 .04 .05 .04 .05 .03 .05 .05 .04 .03 .05 .05 .05 .03

SDR = 1.5, n = 50 .05 .07 .32 .05 .04 .11 .40 .06 .03 .16 .46 .09 .03

SDR = 1.5, n = 200 .06 .18 .88 .07 .03 .36 .96 .13 .03 .56 .97 .21 .03

Note 1: 1 =Method 1 (treating ceiling data as if they were true values); 2 =Method 2 (removing ceiling data); 3 =Method 3 (censored regression); 4 =
Method 4 (our proposed method)

Note 2: Type I error rates that are outside the 2.5–7.5% range are bolded
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Illustration with an empirical data analysis

To illustrate the methods, a subset of the real data from
Salthouse (2004) and Wang et al. (2008) were used.
Wechsler Memory Scale III Word List subsets were adminis-
tered to participants (N= 608) aged 19 to 97 in three sessions.
In each session, the task was for participants to recall 12 un-
related words that were presented immediately before the task.
The procedure was performed four times using the same
words in the same order. For our purposes, we only used the
trial 4 data from the first session. Additionally, the sample was
divided into three age groups to examine cross-sectional age
differences in memory: younger adult group aged 18–39 (n =
135); middle-aged adult group aged 40–59 (n = 236); and
older adult group aged 60–97 (n = 237).

Table 6 displays the ceiling proportions and group mean
and standard deviation estimates for the three age groups
using Methods 1, 2, and 4. The younger adult group had a
higher ceiling proportion, followed by the middle-aged adult
and older adult groups. The younger adult group had higher
mean estimates than the other two groups. The older adult
group had greater variance estimates than the other two
groups. An F test was conducted to compare the sample var-
iance of the middle age group to that of the older adult group.
The results revealed that the variance of the middle age group
was significantly smaller than that of the older adult group
(95% confidence interval estimate of the variance ratio was
[.48, .88]). Thus, the HOV assumption was violated in the
current example. All four methods were applied to compare
the means of the middle-aged adult group and the older
adult group with a t test, and to compare the three
group means with ANOVA. The main results of the
analysis are shown in Table 7.

In t-tests, all methods except for Method 2 (removing ceil-
ing data) yielded statistically significant results. Middle-aged
adults had significantly different average scores from older
adults. Method 2 resulted in a considerably smaller effect size
estimate. Although results from Method 1 (treating data as if
they were true values), Method 3 (censored regression), and
our proposed method (Method 4) agreed in statistical signifi-
cance, the widths of the confidence interval estimates differed.

Our proposed method is implemented in our R package
`DACF`. For the t test, `lw.t.test(x1, x2, floor, ceiling)` takes
in `x1` and `x2`, vectors of group 1 and group 2 data, respec-
tively. In addition, ‘floor’ and ‘ceiling’ represent the floor and
ceiling thresholds, respectively, such as the minimum and
maximum scores of the measurement scale. For example, here
we used `lw.t.test(mid, old, 0, 12)`, where ‘mid’ and ‘old’
contain the data vectors of scores observed for middle-aged
and older adults, respectively.

For ANOVA, Brown-Forsythe F* tests were conducted.
All methods reported a statistically significant mean differ-
ence among the three groups. Treating ceiling data as if they
were true values produced the largest F* value, whereas re-
moving ceiling data resulted in the smallest F* value. For
censored regression, because a likelihood ratio test (chi-
square test) was conducted to compare the group means, de-
viance is shown in place of the F* statistic for censored re-
gression in Table 7. Removing ceiling data produced the
smallest effect size estimates, whereas censored regression
and treating data as if they were true values resulted in effect
size estimates that were close to those from our proposed
method. Based on the simulation results under the HOV vio-
lation scenarios, our proposed method (Method 4) is recom-
mended for both the t-test and ANOVA. For ANOVA,
`lw.f.star (data, formula, floor, ceiling)` takes in a data frame
of a column for the observed dependent variable scores and a
column for the levels of the grouping factor. Here, ‘formula’
represents the modeling relationship, e.g., scores ~ age. Again,
a user needs to specify the ceiling and floor thresholds. Here
we used `lw.f.star(dat, scores~age, 0, 12)`, where ‘dat’ is a
dataframe with one variable named ‘scores’ containing the
observed scores from all groups, and another variable named
‘age’ containing the categorized age information (i.e., 1, 2, 3,
representing younger-, middle-, and older-aged adult groups,
respectively) for the respective participant.

In the implementation of our proposed methods, both func-
tions output test statistics (t value and F* value, respectively),
p values, and effect size estimates (Cohen’s d and f2 estimates,
respectively). In addition, our t test function outputs 95% con-
fidence interval estimates for the group mean differences. To
help researchers more easily use the proposed approach, we

Table 6 Descriptive statistics and group mean and standard deviation estimates of the empirical example

Age Group n Ceiling proportion Mean Standard deviation

1 2 4 1 2 4

18–39 135 43.7% 10.89 10.03 11.43 1.36 1.26 2.00

40–69 236 31.4% 10.33 9.73 10.66 1.47 1.25 1.79

70–97 237 15.6% 9.46 8.99 9.62 1.96 1.77 2.23

Note 1: 1 =Method 1 (ceiling data treated as if they were true values); 2 =Method 2 (ceiling data were removed); 4 =Method 4 (our proposed estimation
method)
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developed an R Shiny application, which can be accessed at
https://qmliu.shinyapps.io/DACFE/.

Discussion

Ceiling/floor effects can have negative impact on t-test and
ANOVA when inappropriate statistical methods are used.
As demonstrated in our simulation studies, the test results
and effect size estimates of the t-test and ANOVA are often
misleading when ceiling/floor data are treated as if they were
true values or when they are removed from statistical analyses.
Thus, it is important for researchers to attend to ceiling/floor
effects in their statistical data analyses. The t-test and
ANOVA, the two most widely used statistical techniques,
are not among the exceptions.

To handle ceiling/floor effects in t-test and ANOVA, we
introduced more appropriate methods including censored re-
gression and the proposed method for normally distributed
continuous outcomes. Our simulation results showed that cen-
sored regression provided less misleading test results and
more accurate effect size estimates than the conventional
methods. However, under HOV violation, the performance
of censored regression for handling ceiling/floor effects was
less than satisfactory. With greater HOV violation, censored
regression yielded worse results. This is because standard cen-
sored regression was designed with the HOV assumption.
Having an unbalanced design can exacerbate the impact of
HOV violation. Overall, we found that Methods 1–3 (treated
as if they were true values; removed from data analyses; cen-
sored regression) yielded worse performance under unbal-
anced designs than balanced design, and/or under greater
HOV violation than less HOV violation. Future research can
investigate approaches for modifying the regular censored re-
gression model to relax the HOV assumption (e.g., allowing
heterogeneous residual variances across groups).

Our proposedmethod, in comparison, is robust to the HOV
violation regardless of design balance, owing to the use of the

unpooled sample variances. In addition, mean and variance
estimates form sufficient statistics to describe a normally dis-
tributed random variable. Under the normality assumption,
asymptotically, our method with the corrected mean and var-
iance estimates yields accurate estimates for the t statistic and
the F* statistic and effect size estimates (Cohen’s d and f2).
One potential concern with our method is that the corrected
test statistics comprise the corrected sample moments, but
there is uncertainty in the moment estimates. However, as
evidenced by the satisfactory coverage rates and the well-
controlled type I error rates, the standard error estimates from
the proposed statistics did not find this to be an issue. Thus,
uncertainty in the moment estimates was appropriately quan-
tified by our method. Based on the simulation results with
finite samples, our proposed method generally handled
ceiling/floor effects better than the conventional methods
(treating ceiling/floor data as if they were true values or re-
moving ceiling/floor data) for the balanced and unbalanced
designs. Furthermore, our proposed method performed better
than or as well as censored regression. In particular, overall,
our method (Method 4) had better-controlled type I error rates
than all the other studied methods across different conditions.
While our proposed methods demonstrated satisfactory type I
error rates and coverage rates across a wide range of simulated
conditions, future studies should develop further mathemati-
cal proofs regarding the null distributions and the test statistics
given our proposed corrections in the sample moments to
enhance the generalizability.

Both censored regression and our proposed method are not
without assumptions. A common major assumption is that
true scores are assumed to be normally distributed. The like-
lihood function of censored regression is based upon the nor-
mal distribution density function. In our proposed methods,
group means and variances are estimated using the properties
of truncated normal distributions. Thus, violation of normality
in true scores may lead to misleading results from censored
regression and from our proposed method. This assumption is
vital: in our simulation with lognormal data, both censored

Table 7 t-Test and ANOVA results of the empirical example

1 2 3 4

T-Test t −8.27 .48 −7.71 −6.49
CI (−1.77, −1.09) (−0.29, .48) (−2.48, −1.47) (−2.36, −1.25)
p .00 .63 .00 .00bd −.89 .05 −.83 −.83

ANOVA F* 41.94 28.34 70.33 38.86

p .00 .00 .00 .00bf 2 .14 .09 .14 .13

Note 1: 1 =Method 1 (treating ceiling data as if they were true values); 2 =Method 2 (removing ceiling data); 3 =Method 3 (censored regression); 4 =
Method 4 (our proposed method)

Note 2: The italicized statistic is the deviance computed from ‘censReg’ outputs
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regression and our proposed approach yielded suboptimal per-
formance. Future research can extend our proposed method to
handle ceiling and floor effects while relaxing the normality
assumption.

Ceiling/floor effects can be prevented or dealt with in
earlier stages of research prior to statistical data analyses.
In the experimental design phase, when a researcher se-
lects an ability/attitude instrument, the researcher should
consult existing literature to investigate whether ceiling/
floor effects could occur. It may be beneficial for the
researcher to avoid using or revising an instrument that
is likely to produce ceiling/floor effects. This is because
ceiling/floor effects by their nature lead to loss of infor-
mation in the observed data: true scores that are above the
maximum or minimum thresholds are observed at the
thresholds. Thus, when a researcher has to use an instru-
ment that is subject to ceiling/floor effects, the researcher
should plan for a larger sample size. It is worth noting
that in some cases, ceiling/floor observations may be in-
formative to the researcher. For example, when the re-
searcher wishes to evaluate a new invention for improving
math ability, the changes in the ceiling/floor proportions
before and after the invention may be informative in some
context. During the data analysis phase, we strongly rec-
ommend that researchers report the proportions of ceiling/
floor data whenever relevant. For t-tests and ANOVA, we
also recommend our proposed method (Method 4) for
analyzing data with ceiling/floor effects.

In summary, ceiling/floor effects can lead to biased results
in tests of mean differences when improper statistical
methods, such as treating ceiling/floor values as true values
or removing ceiling/floor values, are used. Thus, we intro-
duced and proposed more appropriate methods: censored re-
gression and our proposed method. Via simulation studies, we
found that our proposed method was robust against the HOV
violation and often yielded more accurate and valid t-test and
ANOVA results for data with ceiling/floor effects. We hope
that our R Shiny app will make it easy for researchers to apply
the proposed method for handling ceiling/floor effects in t--
tests and ANOVA.
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