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Abstract
It is commonly assumed that a specific testing occasion (task, design, procedure, etc.) provides insights that generalize
beyond that occasion. This assumption is infrequently carefully tested in data. We develop a statistically principled method
to directly estimate the correlation between latent components of cognitive processing across tasks, contexts, and time. This
method simultaneously estimates individual-participant parameters of a cognitive model at each testing occasion, group-level
parameters representing across-participant parameter averages and variances, and across-task correlations. The approach
provides a natural way to “borrow” strength across testing occasions, which can increase the precision of parameter estimates
across all testing occasions. Two example applications demonstrate that the method is practical in standard designs. The
examples, and a simulation study, also provide evidence about the reliability and validity of parameter estimates from the
linear ballistic accumulator model. We conclude by highlighting the potential of the parameter-correlation method to provide
an “assumption-light” tool for estimating the relatedness of cognitive processes across tasks, contexts, and time.
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Introduction

Evidence accumulation models of simple decisions, such as
the linear ballistic accumulator (LBA; Brown & Heathcote,
2008) and the diffusion model (Ratcliff & Rouder, 1998),
began as theoretical tools to understand the cognitive
processes of simple decision-making. However, they are
now increasingly used as psychometric tools in clinical and
applied research. For example, there is extensive research
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using the diffusion and LBA models showing that older
adults perform slower on simple cognitive tasks mostly
because of changes in the speed with which motor response
actions are executed, and not due to decreased processing
speed, as was traditionally theorized (Ratcliff et al. 2004,
2006, 2007; Forstmann et al. 2011). Other investigations
have addressed questions about clinical disorders, for
example finding differences in decision-making processes
for people with anxiety (White et al., 2010), depression (Ho
et al., 2014), schizophrenia (Heathcote et al., 2015; Matzke
et al., 2017), and ADHD (Weigard &Huang-Pollock, 2014).

In applied investigations using evidence accumulation
models, researchers typically do not emphasize choices
about the particular decision-making task that is used. The
task is usually chosen to be amenable to modeling, allowing
many decisions in a session, with clearly timed events
within each one, and to have some validity as a measure
of the cognitive process under investigation; e.g., a flanker
task to measure attention, or a stopping task to measure
inhibitory control. Despite the limitations of every decision
task, investigators presumably intend their inferences to
generalize beyond the chosen task. For example, Ho et al.
(2014) concluded that people with depression exhibit poorer
perceptual sensitivity compared with a control group.
This conclusion was based on the analysis of parameters
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estimated using data from a gender discrimination task. Ho
et al. (2014) assumed that parameters estimated from other
perceptual decision-making tasks would lead to similar
results, for the same sample of participants. The more
general assumption here is that there is some consistency in
the parameter estimates across tasks for individuals.

Given the extensive use of evidence accumulation models
as measurement tools (Ratcliff et al., 2016), there has been
some investigation of the psychometric properties of the
models, and particularly of the reliability and validity of the
estimated parameters. Voss et al. (2004) tested the criterion
validity of the diffusion model by manipulating aspects of
the task which could be expected to selectively influence
different model components: manipulating the difficulty
of the decision stimuli selectively influenced parameters
related to processing rate, manipulating the cautiousness
of the decision-makers selectively influenced parameters
which balanced urgency vs. caution, etc. Literally dozens of
experiments have confirmed that model parameters related
to processing speed are reliably affected by changes in the
difficulty of the decision itself—motion coherence, visual
contrast, etc. Other experiments have investigated changes
between people rather than between conditions. Ratcliff
et al. (2010) investigated the known-groups validity of the
diffusion model by showing that individuals with a higher
IQ also produce higher drift rate estimates. Similar studies
have shown expected differences in diffusion and LBA
parameters for people with depression (Ho et al., 2014),
anxiety (White et al., 2010), ADHD (Weigard & Huang-
Pollock, 2014), and schizophrenia (Heathcote et al., 2015;
Matzke et al., 2017).

The psychometric reliability of parameter estimates
has been less carefully investigated than validity. Using
the diffusion model, Lerche and Voss (2017) examined
correlations between parameters estimated from lexical
decisions and from recognition memory for pictures.
Subjects in that experiment participated in two different
sessions, and Lerche and Voss (2017) observed only weak
correlations in parameters across tasks for data from the first
session. Data from the second session, however, provided
stronger correlations. Ratcliff et al. (2010) used two similar
tasks (lexical decision, and recognition memory for words)
and observed reliable correlations in almost all parameters
of the diffusion model. Ratcliff et al. (2015) investigated
numeracy using four different decision-making tasks. In
that investigation, parameters of the diffusion model related
to processing speed correlated across tasks, but the other
model parameters did not. Mueller et al. (2019) also used
the diffusion model, and analyzed data from an experiment
in which one group of participants completed two tasks
related to emotion perception: one task used word-based
stimuli, the other used faces. Mueller et al. (2019) found that
parameters of the diffusion model related to response style

and non-decision time were more strongly correlated across
tasks than drift-related parameters, on average. Similarly,
Hedge et al. (2019) found moderate-to-good correlations
between response caution parameters of the diffusion model
across flanker, Stroop, and random dot motion tasks.

Clearly, the properties of the decision-making task
influence parameter estimates—this is sometimes expected
and desired, such as when stimulus properties related to
decision difficulty influence drift rate estimates. However,
it is important to establish that there is some reliable
correlation in parameter estimates across tasks, in order
to support the assumption that results observed using one
particular decision-making task can generalize to other,
related, decisions.

We investigate correlations in latent cognitive processes
across tasks, using the LBAmodel. An important theoretical
contribution of our work is that we directly estimate
between-task parameter correlations as part of the model.
Previous investigations have always estimated parameters
for different tasks independently, and then examined
correlations in those estimated parameters afterwards.
Instead, our approach involves estimating parameters for
multiple tasks simultaneously, while also estimating the
correlations between those parameters. This approach has
important statistical and methodological benefits, as well
as scientific advantages. Estimating parameters using data
from multiple tasks allows for “borrowing” of information
across the tasks, analogous to the borrowing that takes place
between participants in a repeated measures design. This
improves estimation precision, especially for tasks with few
data per person, and opens up exciting new possibilities.
For example, some data collection procedures have subjects
participate in several different decision-making tasks, such
as those in a psychological test battery. This approach
naturally restricts the amount of data collected for each
individual task, making cognitive modeling of those tasks
difficult or impossible. However, modeling the tasks jointly,
and estimating the correlation in parameters across tasks,
allows for information from one task to inform parameter
estimates for other tasks. As long as some consistency
in parameter estimates can be expected across tasks, this
approach can allow analysis of data not previously possible.

Applications

We apply our methods to data from two decision-making
experiments: one first reported by Forstmann et al. (2008),
and a new experiment. Forstmann et al.’s experiment had
n = 19 participants repeatedly judge the direction of
motion of a cloud of moving dots. On some decisions,
participants were encouraged to be very urgent (“speed
emphasis”), on other decisions they were encouraged to
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be very careful (“accuracy emphasis”), and on still others
to balance speed and accuracy (“neutral emphasis”). Each
participant practiced the task for more than an hour, in a
regular lab environment, and then later also performed the
task while in a magnetic resonance imaging (MRI) scanner.
See p.17541 of the original article for full details of the
method.

Van Maanen et al. (2016) investigated differences in per-
formance between decisions made in and out of the scanner,
using the LBA model, and found differences in param-
eter estimates from the two sessions. Our interest here
is in the parameter correlations between sessions. Except
for the differences induced by the scanner environment,
Forstmann et al.’s (2008) experiment provides an oppor-
tunity to examine the reliability of the model parameters.
There are several possible reasons why parameters esti-
mated in and out of the scanner may differ: sampling error
from the finite number of trials per person; different effects
of the scanner environment on different people; and actual
changes in the latent cognitive processing of the participants
across time. Our investigation uncovers what commonality
remains in parameter estimates beyond these effects.

The experiment reported by Forstmann et al. (2008) used
an identical decision-making task in the two sessions. What
changes between sessions is the environmental context (the
MRI scanner vs. the lab) and also the amount of data.
The out-of-scanner session, which came first, involved
more than three times as much data per-person as the
in-scanner session. The second data set we analyze had
participants undertake three tasks. The three tasks were
chosen to share some common elements, including the
basic visual properties of the stimulus, but to differ in their
cognitive demands. One task used visual search—finding a
feature conjunction amongst distractors that shared the same
features in different combinations. The difficulty of the
visual search task was manipulated by changing the number
of distractor items. Every display always included a target
item, and the participant’s task was to subsequently report
the location of a search-irrelevant feature on that target.

Another task was identical to the visual search task,
but with an added component of response inhibition. In
the “stop” task, a random 25% of trials were interrupted
by a signal which instructed the participant to withhold
their response. The stop-signal task has become important
for understanding inhibitory control (Logan & Cowan,
1984), but it is also not well suited to cognitive modeling
(Matzke et al., 2017; Matzke et al., 2017). Following their
recommendations, we restricted our analyses to data from
trials which were not interrupted by a stop signal—we did
not model the stopping process. The third task used the same
visual stimuli, but tested participants’ short-term memory.
This “match” task required participants to decide whether
the stimulus array shown on one trial had the same set of

stimuli (perhaps in different locations) as the stimulus array
shown on the preceding trial. The match task is a variant of
the “n-back” task, which is a widely used and very difficult
memory test. We manipulated the difficulty of the match
task by changing the number of items in the stimulus array.
Appendix A gives full details of the experiment.

Modeling correlations in latent cognitive
processes across tasks

We develop an approach to modeling across-task correla-
tions in the latent processes by linking the parameters of
evidence accumulation models of decision-making across
those tasks. Evidence accumulation models are named by
their shared premise that when making a decision, evidence
is accumulated for each choice alternative until a threshold
amount is reached, which triggers a decision. For an LBA
model of a two-choice decision, there are two accumula-
tors, one corresponding to each response (see Fig. 1). The
speed of evidence accumulation is called the “drift rate”,
and this randomly varies from decision-to-decision, reflect-
ing changes in attention and internal states (Ratcliff, 1978).
In the LBA model, the distribution of drift rates is usually
assumed to follow a normal distribution truncated to pos-
itive values, although other distributions are also possible
(Terry et al., 2015). The mean of the drift rate distribution
(v) is usually larger in an accumulator for a response alter-
native which matches the stimulus (a correct response) than
one that does not, but on any particular trial, sample drift
rates will be different. We assume a variance of s2 = 1
for all drift rate distributions. The other source of random
variability in the LBA model concerns the amount of evi-
dence with which each accumulator begins. This “starting
point” is randomly sampled for each accumulator and each
decision, from a uniform distribution of width A. Evidence
accumulation continues until the first accumulator reaches a
threshold value b, which is larger than the maximum start-
ing point. Threshold crossing triggers a response, which is
delayed by some fixed constant τ , representing the time
taken for processes outside of decision-making, such as
stimulus encoding and the execution of the motor response.

Reflecting the reality of inter-twined cognitive systems,
and like all cognitive models, the parameters of the LBA
model are correlated. For example, increases in the decision
threshold lead to slower and more variable predicted
response times, and more errors. Similar (but not identical)
predictions can also arise from decreased mean drift rates.
Parameter correlations can cause estimation difficulty, for
example requiring more sophisticated sampling or search
algorithms (Turner et al., 2013). We build on a recent
advance in the literature, by Gunawan et al. (2020), which
directly estimates the correlations between parameters in the
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Fig. 1 The linear ballistic accumulator. On each trial, evidence for each response option begins randomly between 0 and A; the upper value of the
start point variability. The speed of the linear evidence accumulation is called the “drift rate”, which is sampled from a normal distribution with
mean v, unit standard deviation, truncated to positive values. Accumulation continues until a response threshold (b units above A) is reached. The
accumulator which reaches the threshold first (the left accumulator in this example) determines the response

prior, and improves statistical efficiency. Gunawan et al.’s
(2020) method first log-transforms the parameters (both
group, and individual-level) of the LBA model, so that
they have support on the entire real line. The method then
assumes that the distribution of log-transformed parameters
across participants is multivariate normal. The correlations
implied by that multivariate normal distribution describes
dependence between parameters.

Our article extends the method of Gunawan et al. (2020)
to model dependence between tasks. We extend the vector
of parameters for each person to include parameters for
two or more tasks, so that the correlation matrix has a
block-wise structure in which the diagonal blocks address
within-task parameter dependence and the off-diagonal
blocks address dependence in parameters between tasks.
These off-diagonal blocks answer the question posed above,
measuring the extent to which parameters from different
tasks align. The correlation matrix also allows for statistical
“borrowing” of strength between tasks, due to the inferred

relationships between the tasks. Data and code for both
applications reported below are available at osf.io/rf8nd.

Results

Application 1: Correlations in latent processes
in and out of the scanner

To model the decisions in each session, we followed the
same LBA specification as used in the original article
(Forstmann et al., 2008) and confirmed subsequently by
Gunawan et al. (2020). We collapsed across left- and right-
moving stimuli, forcing the same mean drift rate for the
accumulator corresponding to a “right” response to a right-
moving stimulus as for the accumulator corresponding to
a “left” response to a left-moving stimulus; we denote
this mean drift rate by v(c). Similarly, drift rates for
the accumulators corresponding to the wrong direction of
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Table 1 Mean (and SD) of the estimated marginal posterior
distributions for the LBAmean parameters, using data from Forstmann
et al. (2008); see text for details

Out of Scanner In Scanner

b(a) 1.33 (.11) 1.63 (.13)

b(n) 1.39 (.11) 1.80 (.14)

b(s) 1.05 (.10) 1.25 (.11)

A 0.73 (.06) 0.92 (.10)

v(e) 1.50 (.27) 1.69 (.19)

v(c) 3.12 (.26) 3.24 (.12)

τ 0.19 (.02) 0.18 (.02)

For ease of interpretation, these parameters are transformed back to
the positive real line

motion are constrained to be equal and denoted by v(e).
Three different response thresholds were estimated, for the
speed, neutral and accuracy conditions: b(s), b(n) and b(a),
respectively. Two other parameters were also estimated:
the time taken by the non-decision process (τ ) and the
width of the uniform distribution for start points in evidence
accumulation (A).

These assumptions required estimating seven parame-
ters:

(
A, v(c), v(e), b(s), b(n), b(a), τ

)
. Different parameters

were estimated for the in-scanner and out-of-scanner ses-
sions. The full vector of 14 (log-transformed) parameters
was estimated as a random effect for each participant,
with a multivariate normal prior distribution assumed across
participants. The prior for the mean vector of the multi-
variate normal distribution is another multivariate normal

distribution with zero mean, whose covariance matrix is the
identity matrix. For the prior on the covariance matrix of
the group distribution, we followed the recommendations
of Huang and Wand (2013) and used a random mixture of
inverse Wishart distributions, with mixture weights accord-
ing to an inverse Gaussian distribution, which leads to
marginally non-informative (uniform) priors on all cor-
relation coefficients, and half-t distributed priors on the
standard deviations. These settings, and all other sampling
details, are identical to those reported by Gunawan et al.
(2020).

Since the data from this experiment were used to estimate
the LBA model previously, several times, our article does
not report the usual summaries of the model’s goodness-
of-fit; see Figs. 6 and 7 of Van Maanen et al. (2016) for
details. Our focus is on the estimated parameters. Table 1
shows the estimated parameters separately for the two
sessions. Compared with the out-of-scanner session, when
participants were tested in the MRI scanner, the group
average parameters changed in ways consistent with those
reported by Van Maanen et al. (2016). In the scanner, par-
ticipants made more cautious decisions (higher thresholds,
b, and larger start point variability, A), but there was little
difference in drift rate or non-decision time parameters.

Our main focus, however, is on the correlations between
the parameters estimated from data recorded outside vs.
inside the MRI scanner. The estimation method generates
samples from the posterior distribution over the full
covariance matrix. Appendix B shows the mean of these
samples after transforming from the covariance matrix
to the correlation matrix. Figure 2 summarizes just the
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Fig. 2 Posterior means for the correlation matrix between parameters estimated for the out-of-scanner and in-scanner sessions of Forstmann et al.’s
(2008) experiment. Correlations near zero are shown as white squares. Positive and negative correlations are shown by green and red shades,
respectively. Cells enclosed by black borders are strongly reliable correlations, as indicated by having a posterior mean ±3 or more standard
deviations away from zero
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most relevant section of the correlation matrix from
Appendix B; it shows only the sub-section of the
matrix with between-session correlations, the correlations
of parameters estimated from out-of-scanner data with
parameters estimated from in-scanner data. The figure
summarizes these correlations as a heatmap in which
positive and negative correlations are represented by green
and red colors, respectively. Darker shades indicate stronger
correlations, and cells enclosed by black borders have strong
statistical reliability.

The correlations between “like” parameters from differ-
ent sessions are mostly as hypothesized, and easy to inter-
pret. For example, all of the threshold-related parameters
(b(a), b(n), b(s), and A) are positively correlated with each
other between sessions, indicating that participants who
made cautious decisions out of the scanner (high thresholds)
also tended to make cautious decisions inside the scanner,
and vice versa. The average magnitude of the correlations
for threshold parameters (r = .33) is very similar to that
reported by Mueller et al. (2019) (r = .39).

The drift rate parameters (v(e) and v(c)) are quite
strongly correlated between sessions, with the exception
of the error drift rate in-scanner paired with correct drift
rate out of scanner. The average correlation between drift
rates between sessions (r = .42) was almost double that
reported by Mueller et al. (2019), which makes sense given
that Forstmann et al.’s experiment was identical between
sessions—only the context changed. Non-decision time (τ )
was uncorrelated between sessions.

The other correlations summarized in Fig. 2 are between
“unlike” parameters, such as drift rates estimated out of the
scanner correlated with thresholds measured in the scanner.
These correlations are sometimes difficult to interpret. For
example, the non-decision time (τ ) and correct accumulator
drift rate (v(c)) parameters estimated outside of the scanner
correlate negatively with almost all the other parameters
estimated inside the scanner. This implies that people who
were fast at the non-decision components of responding
out of the scanner also tended to have high caution and
large drift rates, when in the scanner. Others of the “unlike”
correlations are easier to interpret. For example, participants
who made cautious decisions outside the scanner (high b(a),
b(n), b(s), and A) tended to perform the task well when
inside the scanner (high v(e) and v(c)).

Only n = 19 people participated in the experiment
reported by Forstmann et al. (2008), and it can be difficult to
estimate correlation parameters with relatively small sample
sizes—despite the quite large number of data collected
per person. The implication is clearly visible in Fig. 2,
where there are several cells with strong mean correlation
(dark colors) that are still not strongly statistically reliable
(no bounding boxes, indicating that the mean posterior
correlation was less than 3 standard deviations from

zero). Figure 3 shows scatter plots corresponding to the
correlations from Fig. 2. Each panel in Fig. 3 has a symbol
for each person in the experiment. Each symbol plots a point
estimate for an in-scanner parameter vs. a point estimate
for an out-of-scanner parameter. The point estimates are the
means of the posterior distributions. Figure 3 reveals that
the relatively small number of participants contributed to the
unstable correlations. For example, the negative correlations
previously discussed, for out-of-scanner τ and v(c) with
almost all in-scanner parameters, appear to be caused by an
outlier (lowest value in each panel of the bottom two rows
of Fig. 3). The next experiment alleviates this difficulty by
analyzing a much larger sample of participants.

Implications for model-based cognitive neuroscience

Beyond this application, our method has the potential to
enhance the reliability of model-based cognitive neuro-
science research. A shortcoming of the field is that relatively
few data can be collected while participants are inside a
scanner, or while other neurophysiological recordings are
taken. Given two testing sessions, one inside the scanner and
another outside of the scanner, our method can improve the
precision of the parameter estimates in both sessions, due to
the borrowing of strength between and within tasks.

We consider this a generalization of the so-called joint-
modeling framework that simultaneously estimates the
parameters of a cognitive model (such as the LBA) and a
neural model (typically a GLM; Turner et al., 2013). Joint
modeling allows parameters estimated from one source
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Fig. 3 Scatter plots of posterior mean estimates for the random effects
parameters inside vs. outside of scanner
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(say, behavioural data) to influence parameters estimated
from the other source (the neural data). Our approach tack-
les a trickier statistical problem, estimating the correlation
between vectors of latent variables (parameters of cog-
nitive models in different tasks, sessions, etc.) whereas
to date joint modeling has been used to estimate the
covariation between a set of latent variables (cognitive
model parameters in one task) with a vector of data-
transformed variables (beta-values in a GLM of the neural
data). In this sense, our method is a generalization of the
joint modeling framework. It provides an avenue to esti-
mate parameters of cognitive models from two behavioural
sessions. This reduces uncertainty in the parameter esti-
mates from the in-scanner session, in which there were
fewer data, and also jointly models the in-scanner session
and neural recordings, which can improve the estimation
precision for the across-task covariance parameters.

Figure 4 illustrates the improved estimation precision
that can be gained by jointly modeling data from in- and out-
of-scanner sessions. For each participant, we calculated the
standard deviation of the samples drawn from the posterior
distributions over their random effects—both in and out
of the scanner. Larger standard deviations correspond
to poorer estimation precision. We then ran two new model
analyses for comparison. These new analyses estimated
the LBA model in the standard way: independently from

the in-scanner and out-of-scanner data, maintaining the
assumption of within-task correlations between parameters.
We calculated the same standard deviation measures
for the precision of the random effects estimated in
these independent analyses. Each panel in Fig. 4 shows
the relationship between the precision of the jointly
estimated random effects (y-axes) and the precision of the
random effects estimated in independent fits (x-axes). The
comparison reveals three important outcomes. Firstly, the
estimates were more precise—with lower posterior standard
deviations—for the out-of-scanner data (black triangles)
than the in-scanner data (red circles). This is expected
given that participants contributed more than three times as
much data out of the scanner than in the scanner. Secondly,
estimation precision was better in the joint model than
in the independent models (nearly 90% of the symbols
fall below the diagonal lines). Thirdly, the improvement in
estimation precision was much more pronounced for the
smaller data set (in-scanner) than the larger data set (out-of-
scanner). For the in-scanner data, in red, the median change
to the posterior standard deviation was 17%. For the out-
of-scanner data, the median improvement was just 1.2%.
This illustrates the point made above, that the benefits of
modeling the covariance structure between tasks are most
pronounced when there are relatively few data in some
tasks.

Fig. 4 Random effects are more precisely estimated in the joint model.
Each panel represents one model parameter, and illustrates the preci-
sion with which the individual-subject random effects are estimated.
Points show the posterior standard deviation for the jointly estimated
model (y-axes) vs. the independently estimated models (x-axes). For

data collected in the scanner (red circles), the posterior standard devia-
tion is substantially smaller in the joint fit than in the independent fits.
This improvement in precision is less apparent for the data collected
out of the scanner (black triangles)
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Application 2: Correlations in latent processes
across different cognitive tasks

In the second experiment, participants completed three
decision-making tasks in a single session. Compared with
the experiment by Forstmann et al. (2008), this experiment
kept a constant context and environment for the participants,
while the nature of the task varied. We also gathered data
from many more participants (n = 110). The differences
between the three tasks means that lower correlations might
be expected for parameters that are strongly dependent on
the task; particularly drift rates.

The tasks were a visual search task, a stop-signal task,
and a match-to-memory task, which we abbreviate as
“search”, “stop”, and “match”. For the match task, we
manipulated difficulty by changing the number of stimuli
per trial (set sizes of one, two, or three objects). This manip-
ulation was intended to change the speed and accuracy of
decision-making, and to alter drift rates in the LBA model.
The search and stop tasks had participants find a target stim-
ulus, defined by a conjunction of color and shape features,
and then report the location of a small visual feature from
the target. We manipulated the difficulty in the search and

stop tasks by changing the properties of the distractor items.
On some trials the target stimulus included a feature which
was not present in any distractor stimulus; e.g., the target
may have been red, while all distractors were green. These
“feature” trials were the easiest for participants, and, by def-
inition, all trials with just one distractor item were of this
sort. For the trials with three or seven distractor items, some
were “feature” trials, but others were more difficult. The dif-
ficult trials are the ones in which both the features of the
target were present in the distractors; e.g., searching for a
red square amongst distractors that include a red circle and
a green square.

Figure 5 demonstrates that there was some association
in the observed performance across tasks. In the figure,
each dot represents one participant’s mean response time
(RT; lower triangle panels) or mean accuracy (upper triangle
panels). These means are plotted for one task (search, stop,
or match) vs. another. For example, the lower-left panel
plots mean RT in the match task on the x-axis against
mean RT in the stop task on the y-axis. The correlations
between tasks in mean RT were between r = .40 and
r = .51, and for accuracy between r = .21 and
r = .40. These correlations provide evidence that there is
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Fig. 5 Scatter plots of mean response time (RT; lower triangle) and accuracy (upper triangle) showing associations between performance in
the three different tasks of the experiment. Accuracy is probit transformed. Red lines are regressions corresponding to the Pearson correlation
coefficients shown in each panel
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some commonality in performance between tasks which the
cognitive modeling can strive to uncover and explain.

Since the three tasks are different, the specification of the
LBA model is not identical across them. This is different
from the first application, to data from Forstmann et al.
(2008), in which the model was identical for the in-scanner
and out-of-scanner sessions. For each of the three tasks, we
constrained the model to use a single value for non-decision
time (τ ) across conditions, and likewise a single value for
the start-point variability (A) across conditions. The effect
of display size was different in the three tasks. For the match
task, blocks with larger display sizes were more difficult
for participants than blocks with smaller display sizes.
Reflecting this, we allowed different drift rates and different
thresholds for the three different display sizes in the match
task:

{
b(1), b(2), b(3)

}
for thresholds and

{
v(1), v(2), v(3)

}

for drift rates. In the search and stop tasks, the effect of
display size was modulated by the “popout” effect of feature
(vs. conjunction) trials. We treated the feature trials as
identical in the model, no matter which display size they
used. Since all of the trials in display size 2 were feature
trials, this implied thresholds of

{
b(f ), b(4), b(8)

}
, and drift

rates
{
v(f ), v(4), v(8)

}
. In most applications of evidence

accumulation models, response thresholds are typically
not allowed to vary with stimulus manipulations, such as
display size. This is because it is implausible to imagine that
decision-makers can adjust a response threshold contingent
on some stimulus property, prior to making their decision
about that stimulus. However, our experimental procedure
provided participants with sufficient advance notice of the
display size that thresholds could be plausibly adjusted.
Finally, for the drift rates, we constrained the model to have
just one parameter across all conditions to set the mean
drift rate of the accumulator corresponding to the incorrect
response, v(e). These model assumptions were the product
of testing several other models, which were either simpler or
more complex, and which either failed to capture important
effects in the data or did not fit sufficiently better to justify
the extra complexity.

The model assumptions result in nine unknown parame-
ters for each participant, for each of the three different tasks.
These parameters were estimated simultaneously across all
three tasks. The vector of 27 log-transformed random effects
was constrained to follow a multivariate normal distribu-
tion at the group level. Uninformed priors were assumed for
the mean and covariance matrix of the multivariate normal,
using the same settings as in the application to Forstmann
et al.’s (2008) data.

Table 2 shows the estimated group-level parameters.
Each entry gives the mean (with standard deviation in
parentheses) for the posterior distribution over a group-
level parameter, for one of the three tasks. For all three
tasks, participants made more cautious decisions as display

Table 2 Mean (and SD) of the estimated marginal posterior
distributions for the LBA mean parameters from the three tasks in the
experiment; see text for details

Match Search Stop

b(1) 2.15 (.069) b(f ) 1.71 (.049) 2.74 (.171)

b(2) 2.34 (.073) b(4) 1.79 (.050) 2.87 (.177)

b(3) 2.42 (.075) b(8) 1.95 (.055) 3.04 (.180)

A 1.34 (.057) A 0.89 (.021) 1.78 (.150)

v(e) 0.86 (.043) v(e) 1.19 (.056) 0.77 (.084)

v(1) 2.94 (.049) v(f ) 3.82 (.048) 4.04 (.086)

v(2) 3.19 (.050) v(4) 3.62 (.046) 3.96 (.094)

v(3) 2.79 (.044) v(8) 3.42 (.053) 3.80 (.094)

τ 0.17 (.008) τ 0.22 (.008) 0.23 (.008)

For ease of interpretation, these parameters are transformed back to
the positive real line

size increased; i.e., the estimated thresholds increased with
display size, b(1) < b(2) < b(3) in the match task, and
b(f ) < b(4) < b(8) in the search and stop tasks. Decisions
also became more difficult for the participants as display
size increased in the search and stop tasks (v(f ) > v(4) >

v(8)), although the corresponding effect was less clear in the
match task.

Figure 6 uses the same plotting format as used in Fig. 2,
so that red and green shades indicate negative and positive
parameter correlations, respectively, with darker shades
corresponding to stronger correlations. The positioning
of the panels is the same in Fig. 6 as for the lower
triangle of Fig. 5. Appendix B gives the correlation values
corresponding to Fig. 6.

The dark green patches on the left-hand sides of the two
left panels indicate that the threshold estimates for the match
task correlate positively with threshold estimates from the
other two tasks, and also with correct-accumulator drift rates
for the stop task. The light-shaded horizontal and vertical
sections for parameter v(e) suggest that the drift rates for
the incorrect accumulator have low or no correlations with
any other estimates. This result is consistent with the idea
that error drift rates are noisy to estimate, especially when
accuracy is high. The non-decision time parameter (τ ) from
the search task does not correlate strongly with any other
parameters except for the non-decision time parameter for
the stop task. The two non-decision time parameters for
those two tasks correlated strongly (bottom right element
in the lower right panel), which makes sense given that the
stop task and search task used identical response rules—
participants responded to the side of the target stimulus
which showed a small gap. The non-decision time parameter
for the match task does not correlate with those from the
other tasks, which also makes sense because the match
task required a different response rule; match to memory,
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Fig. 6 Posterior mean estimates for the correlation matrix between
parameters estimated for the three tasks (Match, Search, and Stop) in
the experiment. Correlations near zero are shown as white squares.
Positive and negative correlations are shown by green and red shades,

respectively. Cells enclosed by black borders are strongly reliable cor-
relations, as indicated by having a posterior mean ±3 or more standard
deviations away from zero

which presumably requires different encoding than the gap
identification, and also a different mapping to the response
key.

Implications for test batteries

The second application demonstrates that our approach can
identify relationships between the latent cognitive processes
involved in different tasks. In this application, the tasks
involved finding a target among distractors, decisions in
the context of response inhibition, and matching stimuli
to previously remembered referents. Given we had a
considerable number of decisions per task, it may have been
possible—and simpler—instead to independently estimate
the parameters of the cognitive model for each task, and
then conduct pairwise correlations between the parameter
estimates. Even in this many-trials context, we believe our

method has important uses. For example, it provides a
new method for assessing test-retest reliability of model
parameters across testing occasions.

Nevertheless, in many contexts it is impossible to
independently estimate cognitive models for each task. For
example, in clinical samples it is common for participants to
complete many different tasks—up to ten in a session—with
very few trials per task. Performance in such “test batteries”
including the BACS (Kaneda et al., 2007), CANTAB
(Robbins et al., 1996) and MiniMental (Folstein et al.,
1975) are used to inform important clinical decisions about
cognitive functioning in patients, and are often used in
research to assess whether an intervention is effective at
improving cognition (John et al., 2017; Demant et al., 2015).
It is therefore of practical and theoretical importance that
the inferences drawn from test batteries are based on precise
measurement. However, these inferences are typically based
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on composite scores derived from summary statistics such
as the mean RT or number of lapses, calculated from small
data samples. There are likely to be substantial within-
subject correlations across the multiple tasks, though current
treatments ignore those, and treat the tests independently.
Our method allows us to explicitly model the dependence
across tasks, which provides more precise parameter
estimates, and the benefits of more psychologically sensible
assumptions about shrinkage (see Rouder & Haaf, 2019).
Explicitly modeling the correlations between tasks also
opens up theoretically interesting possibilities, such as
testing cognitive models of performance as elements of
larger test batteries. This has been inaccessible to cognitive
modeling, at least in applied domains, owing to the issue of
few data per task. There are likely to be important issues
that need to be resolved in future, in order to make that
work. Rouder et al. (2019) discuss how methodological
differences between cognitive tasks and psychometric tests
emphasize different psychometric properties which can
make it difficult to draw consistent inferences between them
(but see also Kvam et al., 2020).

Simulation study

The two applications identified statistically reliable covari-
ances between the individual-subject parameters, i.e., ran-
dom effects, across different tasks or different sessions.
These relationships are important for methodological rea-
sons, but also scientifically, in that they reveal stable
trait-level properties of people. We conducted a simulation
study to increase confidence in such scientific conclusions.
The goals of the simulation study were to establish that,
given good input data, the covariance-modeling method we
have developed: (a) accurately recovers a known covariance
structure in simulated data; (b) does not support mislead-
ing inference about reliably non-zero covariance in data
simulated with zero covariance; and (c) reliably supports
inference of non-zero covariance in data simulated with
non-zero covariance.

We ran three versions of the simulation study. The
studies simulated data from an experiment based on that
of Forstmann et al. (2008), but with S = 100 participants
each contributing n = 1000 trials in each of the in-
scanner and out-of-scanner sessions. The three versions
of the simulation study varied only in the covariance
parameters used to generate the data. For all three versions,
the population mean parameters and the associated variance
parameters used to generate data were matched to the mean
values estimated from the fits to Forstmann et al.’s data; see
Table 1. For the first and second versions, the covariance
parameters for within-session random effects were also
matched to the mean values estimated from data; see Table 4
in Appendix B. For example, the data-generating parameter

for the covariance between b(a) from the in-scanner session
and τ from the in-scanner session was set to the mean of
the posterior samples for that parameter, from Application

Fig. 7 Covariance recovery simulation. For the first version of the
simulation study (top panel), the covariance values used to generate
the data (x-axis) were set to the mean estimates from the data in
Application 1. The 95% posterior credible intervals estimated from
the simulated data (y-axis) include the data-generating value in almost
every case. In two follow-up versions of the simulation study (lower
panel), the data-generating process assumed independent random
effects for the in- and out-of-scanner data (blue - zero covariance)
or uniformly non-zero dependence (red). The estimated posterior
distributions include zero for almost every element of the covariance
matrix when the processes are independent (blue), and exclude zero
for every case where the processes are dependent (red)
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1. The two versions differed in how they set the data-
generating parameters for the covariance between in- and
out-of-scanner parameters; there are 49 such parameters in
each version. In the first version, these were also matched
to the mean values estimated from real data. In the second
version, all between-session covariance parameters were
set to zero; i.e., random effects for in-scanner and out-of-
scanner sessions were independent. For the third version, we
set all within and between-session covariance parameters
to non-zero values; specifically, covariance values which
implied correlations of r = .8 between pairs of random
effects, in the data-generating process.

The top panel of Fig. 7 illustrates the results from the first
version of the simulation study. This panel shows the data-
generating covariance parameters (x-axis) and the values
recovered for these parameters (y-axis, with means and
95% credible intervals). Matching the values estimated from
real data, the covariance parameters used to generate the
simulated data include some that are close to zero, and
some that are quite large (corresponding to the correlations
reported in Fig. 2). The recovered posterior distributions
include the data-generating values inside their credible
interval in almost every case. This confirms the first aim of
the simulation study.

The lower panel of Fig. 7 illustrates results from the
second and third versions of the simulation study. The
blue symbols and lines show posterior means and 95%
credible intervals for the covariance parameters estimated
from the second version, in which the corresponding data-
generating covariance parameters were all zero. In almost
every case, the recovered posterior distributions include
zero (the vertical gray line). This confirms the second
aim of the simulation study, showing that the model
reliably infers independent random effects when that is
appropriate. The red symbols and lines show the posteriors
estimated when the data-generating covariance parameters
were all non-zero. In this case, all of the estimated credible
intervals are above zero. This confirms the third aim of the
simulation study, showing that the approach reliably detects
correlated random effects between sessions, when that is
appropriate.

Conclusions

Our article develops a statistically principled approach
to estimate the degree of association between the latent
cognitive processes that drive performance across tasks,
contexts, and time. Most previous research assessing
parameter correlations across testing occasions has been
restricted to estimating the parameters of cognitive models

independently for each test session, and then correlating the
pointwise estimates of those parameters in a second-step
analysis. Such an approach has conceptual and statistical
shortcomings.

Conceptually, existing approaches start with the assump-
tion that cognitive processes are independent over tasks,
contexts, and time. This is surely not true, and is inconsistent
with an assumption underlying all psychological research
that there is some non-zero degree of stability in psycho-
logical processing across contexts and over time. It is this
consistency we aim to uncover and use as a basis for gen-
eralization. Our method allows us to identify the similarity
in cognitive processing between different testing occasions,
without making the (implicit) assumption that the latent
drivers of observed performance are independent across
testing occasions.

Statistically, existing approaches are over-confident: they
use point estimates of the parameters from independent
model fits to each task. This assumes the parameters of
participants are known with certainty within a task, which
is never true when analyzing data; providing the machin-
ery to deal with this uncertainty is one of the primary
advantages of Bayesian methods. Furthermore, with exist-
ing approaches there are just two ways to assess relat-
edness in parameters across testing occasions: assuming
independence or equivalence; i.e., tying parameters across
conditions or tasks. Where it is a priori unclear which
parameters can be assumed to be constant across condi-
tions or tasks, we can get stuck with independent fits, or
even without being able to progress. Estimating a depen-
dent pair of parameter vectors allows for a “soft” version
of tying parameters across conditions. Parameters which are
related will then show up as correlated, and statistical bor-
rowing of strength will take place via the covariance matrix.
New work reported by Kvam et al. (2020) takes a related
approach to ours, aiming to borrow information across
different testing tasks in a clinical sample, they demon-
strate improved estimation precision in their joint modeling
approach.

The analyses of data from Forstmann et al. (2008)
showed that estimating parameters jointly across correlated
tasks (or sessions) can improve the precision of subject-level
estimates. This can be important when there are limitations
on the number of data which are available in some tasks,
for example, due to limitations in the number of stimuli
available or in the persistence of the participants. When
the sample size is very different between the sub-tasks,
the improvement in estimation precision gained by jointly
modeling the tasks and their covariance will be greatest for
the tasks with fewest data. Future work may explore ways
of exploiting this for maximum benefit. For example, when
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one particular sub-task is of high value, but has strict limits
on its sample size, estimation precision in that sub-task
may be improved by collecting more data on other, related,
tasks.

Open practices statement

The two applications cover a previously published data set
(Forstmann et al., 2008) and a new experiment that was
not preregistered. Data and code for both applications are
available at osf.io/rf8nd.

Appendix A: The new experiment

A.1 Method

A.1.1 Design

The experiment used a 3 (task)× 3 (set size) within-subjects
design: all three tasks had a three-level manipulation of
the number of items in the stimulus array (set size). In the
search task, participants were required to look for a target
(always present) amongst one, three or seven distractors
(implying search set sizes of 2, 4, and 8). The stop-
signal task was identical to the search task except that on
25% of trials a stop-signal was presented after the onset
of the search array. The time between the onset of the
search array and the stop-signal (called the stop-signal
delay) was dynamically adjusted for each participant and
each set size, using a staircase algorithm. In the match
task participants were required to identify if the currently
presented stimulus set was a match (the same shapes and
colors) or not a match (at least one difference) to the
stimulus set presented on the previous trial. The number of
stimuli present on screen in each trial was either one, two,
or three, and this was manipulated between blocks of trials.
Response time and the response itself were recorded for all
trials.

A.1.2 Participants

Participants were students from first- and second-year
psychology courses at the University of Newcastle who
received course credit for their participation. Informed
consent was obtained for all participants. Participants had
the opportunity to complete the task online (N = 106) or in
a lab (N = 81).

Although 187 students participated in the study, only
148 participants are included in the combined analysis.
Participants were excluded if they had greater than 0.05%
of non-responses due to “too fast” or “too slow” feedback
cut offs, as defined in the procedure (n = 8 match, n = 10
search, n = 13 stop) or had accuracy lower than 75%,
85% or 90% for the match, search and stop-signal tasks
respectively (n = 17 match, n = 8 search, n = 27 stop).
The exclusion criteria were set by investigating the data and
removing outliers indicating the participant was performing
considerably worse at the task than the bulk of the other
participants. This resulted in n = 145 complete data sets for
the match task, n = 157 for the search and n = 133 for the
stop-signal. There were n = 110 participants who had valid
data for all three tasks. These were the participants used in
all analyses.

A.1.3 Materials and stimuli

All three tasks were written in JavaScript and HTML5.
Although it was impossible to keep screen size and resolution
identical across subjects who completed the task online,
the relative size and positioning of stimuli was constant.
Instructions at the beginning of the experiment required
participants to alter the zoom settings to ensure maximum
consistency in the displays across participants. On a 1920 x
1080 resolution and 13.3-inch screen, with the participants
60cm away from the screen, each shape subtended
approximately 1◦ of visual angle, and was approximately
5◦ of visual angle away from the center of the screen.
The fixation point was a small cross subtending much less
than 1◦ of visual angle. Stimuli only ever appeared in
eight different locations, representing equally spaced points
around a circle 5◦ in radius. For stimulus displays with
fewer than eight stimuli, locations were sampled randomly
without replacement from the eight possible positions.

The search arrays for all three tasks used just four stimuli:
a red circle, green circle, red square, and green square; see
Fig. 8. A small gap in the shape, on either the left or right
side, was used as the decision stimulus in the search and
stop-signal tasks. There was no gap in any stimulus during
the match task. The three colors used (red and green for the
stimuli, and blue for the stop-signal) were presented at the
maximum intensity of their respective hue in the computer’s
RGB color model.

A.1.4 Procedure

Participants completed all three tasks in one sitting with
opportunities for self-timed breaks within and between
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Fig. 8 Screenshots from: (left) the search task, set size eight, with the green circle as the target; (middle) the stop-signal task, set size eight, target
red square, with the stop-signal present; and (right) the match task, set size two

tasks. Participants were randomly allocated to one of the
six possible task orders. Each task contained on-screen
instructions with examples, followed by a series of practice
trials and then three experimental blocks with a fixed
number of trials each.

For the search task, participants were first presented
with instructions that identified which of the four stimuli
would constitute their target stimulus; e.g., “search for a red
square”. The target was randomly allocated to participants
at the start of the task and remained consistent for the
duration of that task. This process also occurred in the
stop-signal task and thus the target could change across
tasks but not within a task. Participants were informed that
all shapes have a gap in the left or the right side and that once
participants had located the target they should indicate via
the “z” and “/” keys if the gap was on the left or right side
of the target respectively. Participants were told to respond
as quickly as possible.

There were three blocks of 200 trials each, with ten
practice trials at the start. At the beginning of each trial
a fixation cross was presented for 700 ms. This was then
replaced by the search array. The location of the target and
the target gap side were randomly chosen at the beginning
of each trial. The number of distractors, their shape, color,
location, and gap side were also randomly chosen at the
start of each trial. A trial concluded after a response. If a
response was faster than 250 ms or slower than 2000 ms,
then feedback of “TOO FAST” or “TOO SLOW” was
provided, displayed for 1500 ms or 5000 ms, respectively.
Participants also received accuracy feedback for the first
ten experimental trials. This feedback was presented for
1000 ms and 2500 ms for correct and error responses,
respectively.

Stop-signal tasks typically have a very simple, almost
automatic task for most trials in which participants rapidly
press a key to respond on each trial, these are called the
“go” trials. A stop-signal appears during the other trials (the
“stop” trials), after some delay from the onset of the trial,

and participants must withhold their response. In our stop-
signal task, the go trials were identical to the search task.
All details of the search task were identical except that in
the instructions participants were shown a large blue square
(see Fig. 8) and told “when you see this symbol DO NOT
RESPOND”. They were reminded to respond as quickly as
possible when the symbol is not presented to ensure the
easy, automatic response style.

Each trial had an independent and identical 25%
probability of being a stop-signal trial. At the beginning
of the experiment the stop-signal delay (SSD; the time
between the presentation of the stimuli and the presentation
of the stop-signal) was set to zero across all set sizes,
and then adjusted by a staircase procedure independently
for each set size. After each correct inhibition, SSD was
increased by 50 ms (thus making it harder to inhibit) and
after each failed inhibition, SSD was decreased by 50 ms,
with a minimum of zero. These staircases converge to the
SSDs corresponding to 50% successful inhibition in each
set size. Figure 8 shows the stop-signal task, consisting of
a blue square in the center of the screen, inside the eight
pointed star of shapes (subtending approximately 5◦ x 5◦ of
visual angle), and a larger outline of a square outside the
eight pointed star (approximately 15◦ x 15◦ visual angle in
size, width of outline approximately 1.75◦ visual angle. To
reduce so-called “trigger failure” (see Matzke et al., 2017),
the stop-signal was maintained on screen until the end of
the trial. To also prevent participants ignoring the stop-
signal they were provided with feedback after every stop
trial. Successful inhibitions produced “Good stopping!”
while failed inhibitions resulted in “You should have
stopped”.

The match task commenced with on-screen instructions
that informed the participant green and red circles and
squares would be shown on a trial and they needed to
remember what they saw for the next trial. At first, they
would only be shown one shape to remember, then two and
then three shapes. If the stimulus array on any trial consisted
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Fig. 9 Example trial sequence from set size two in the match task. The correct response for the second screen would be “non-match”, and the
correct response for the third screen would be “match”. Both colors and shapes must be the same, but location does not matter

of the same stimuli as the previous trial (i.e., with the same
shapes and colors), then participants were to press a key
indicating match (“/” key). If any shape or color differed,
participants were to indicate a non-match (“z” key, as seen
in Fig. 9). Participants were explicitly instructed that the
position of the stimuli on screen was irrelevant.

Unlike the other two tasks, set size was not randomized
from trial-to-trial for the match task, because match vs.
non-match is not well defined for arrays of unequal size.
Instead, set sizes occurred in blocks in a fixed order from
one to three, with 100 trials per block. Half of the trials
were randomly selected to be matching trials, and the other

half were non-matching trials. During the experiment, if
the upcoming trial was a match trial, the stimuli were kept
fixed from the previous trial, however their locations were
randomly resampled. If the upcoming trial was not a match
then both the stimuli and location were randomly sampled,
subject to the constraint that a match did not occur by
chance. The feedback was the same as for the search task;
however, the timeout for “too long” responses was 3000 ms
and the accuracy feedback continued for the duration of the
experiment in the match task. These changes in feedback
were implemented after pilot testing, to allow for the greater
difficulty of the match task.

Fig. 10 Accuracy (top row) and response time (RT; bottom row) for the
three tasks (columns) in the experiment. Accuracy and median RTwere
calculated for each participant and each condition. Lines show the aver-
ages of these across conditions for data, and symbols show the same but
for posterior predictive data generated by the LBA model described in

the main text. Red and green colors indicate trials in which the features
of the target stimulus appeared in the distractor items (“conjunction”)
and when they did not (“feature”), respectively. Error bars show ±1
standard error of the mean for differences between participants in the
model fits
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Table 3 Bayes factors in favor of a model including an effect of set
size vs. a null model, for the three tasks, for mean RT and accuracy

Task Variable Set size BF10

Search RT > 106

Accuracy 5.8

Stop RT > 106

SSRT > 106

Accuracy 0.060 ∗
Match RT > 106

Accuracy > 105

A.1.5 Results

Figure 10 shows the mean response time (RT) and
accuracy for different conditions, and for each of the three
tasks.

Bayesian repeated measures ANOVAs (Morey &
Rouder, 2013) were conducted on the mean RT and accu-
racy data for each set size, separately for the three tasks.
Figure 10 shows that there is a strong effect of set size
on RT for all three tasks, reflected in the RT Bayes fac-
tors in Table 3. This is not true of accuracy. Although the

Table 4 The lower triangle of the estimated posterior mean of the correlation matrix for Forstmann et al.’s (2008) experiment; the main text gives
further details

The lower-left square shows between-session correlations; these are also shown in the main text as a heat map. The triangles on the diagonal
blocks show within-session correlations

match task shows an effect of set size on accuracy, for both
the search task and the stop task accuracy did not change
reliably across set size; see Table 3. This may be due to ceil-
ing effects, as in both those tasks average accuracy is around
95% or above for all conditions. Even in the match task,
accuracy does not decrease monotonically over set size as
expected. Instead, there is a small increase from the small-
est set size (one) to the medium set size (two) and then
decreases to the largest set size (three). This is most likely
due to practice effects, as the conditions were administered
in blocks with increasing set size.

The RT data are simpler to interpret. The only noteworthy
point is that RT is substantially faster for the search task
than both the stop and match tasks. As the RTs presented in
the table and figure for the stop task are the RTs from the go
trials (which are identical to trials in the search task), this
increase in RT from the search to the stop task suggests that
participants slow their responses when a stop is introduced
to the task.

Appendix B: Estimated correlationmatrices

Tables 4 and 5 show the full correlation matrices for the two
applications of the new method reported in the main text.
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Table 5 The lower triangle of the estimated posterior mean of the correlation matrix for our experiment; the main text gives further details

The three lower-left squares show between-task correlations; these are also shown in the main text as heat maps. The three triangles on the diagonal
blocks show within-task correlations
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