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Abstract
In a standard eyewitness lineup scenario, a witness observes a culprit commit a crime and is later asked to identify the culprit from
a set of faces, the lineup. Signal detection theory (SDT), a powerful modeling framework for analyzing data, has recently become
a commonway to analyze lineup data. The goal of this paper is to introduce a newR package, sdtlu (Signal Detection Theory –
LineUp), that streamlines and automates the SDT analysis of lineup data. sdtlu provides functions to process lineup data,
determine the best-fitting SDT parameters, compute model-based performance measures such as area under the curve (AUC) and
diagnosticity, use bootstrapping to determine uncertainty intervals around these parameters and measures, and compare param-
eters across two different data sets. The package incorporates closed-form solutions for both simultaneous and sequential lineups
that allow for model-based analyses withoutMonte Carlo simulation. Show-ups are also supported. The package can estimate the
base-rate of lineups that include a guilty suspect when the guilt or innocence of each suspect in the data set is unknown, as in
“real-world” lineups. The package can also produce a full set of graphs, including data and model-based ROC curves and the
underlying SDT model.

Keywords Eyewitness lineups . Computational modeling . Signal detection . R package

In a typical eyewitness lineup scenario, a witness observes a
culprit commit a crime. After some delay, the witness is
asked to identify the culprit from a set of faces, the lineup.
One of the faces, the suspect, is the person the police believe
committed the crime. The other filler faces, of people known
to have not committed the crime, are typically selected to be
similar to either the suspect (Wogalter, Malpass, &
McQuiston, 2004) or a description of the culprit (Wells,
Rydell, & Seelau, 1993; Tunnicliff & Clark, 2000).
Lineups can vary in length. In the minimal lineup, a show-
up, the suspect is shown without any fillers (e.g., Gonzalez,
Ellsworth, & Pembroke, 1993). Lineups commonly contain
six to eight faces, including the suspect (Police Executive
Research Forum, 2013), although other lengths are possible
(e.g., Levi, 2012). For lineups with at least one filler, the
faces can be shown to the witness in different ways. The two
most commonly employed methods are simultaneous

presentations, in which the witness can view all of the faces
at the same time, and sequential presentations, in which the
witness views the faces one at a time (Police Executive
Research Forum, 2013). Although variations exist (e.g.,
Horry, Brewer, Weber, & Palmer, 2015; Wells, 2014), when
discussing sequential lineups, we assume here that the wit-
ness can only view each face once and the lineup ends after
an identification is made. Regardless of the lineup specifics,
the witness identification (ID) falls into one of three broad
categories: suspect, in which the witness selects the suspect,
filler, in which the witness selects one of the filler faces, if
available, and reject or no identification, in which the wit-
ness does not identify any lineup member as the culprit.

To emphasize the obvious, the suspect and the culprit are
not necessarily the same person (e.g., Wells & Olson, 2003).
That is, the suspect may not have committed the crime. Thus,
a suspect ID has the potential to endanger an innocent person,
especially given the weight juries tend to place on eyewitness
testimony (Brewer & Burke, 2002; Cutler, Penrod, & Dexter,
1990). It is therefore vital to make every effort to assess the
accuracy of a suspect ID. One path forward is to collect con-
fidence ratings. Although eyewitness confidence was initially
disregarded as uninformative (e.g., Bothwell, Deffenbacher,
& Brigham 1987; Deffenbacher, 1980), recent evidence

* Andrew L. Cohen
alc@umass.edu

1 Department of Psychological and Brain Sciences, University of
Massachusetts, 135 Hicks Way, Amherst, MA 01003-7710, USA

https://doi.org/10.3758/s13428-020-01402-7

Published online: 22 July 2020

Behavior Research Methods (2021) 53:278–300

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-020-01402-7&domain=pdf
mailto:alc@umass.edu


strongly suggests that there is a tight relationship between the
confidence with which a witness makes an identification and
the accuracy of that identification (e.g., Mickes, 2015;
Wixted, Mickes, Dunn, Clark, & Wells, 2016; Wells, Yang,
& Smalarz, 2015), in particular, a high confidence suspect ID
is a good indicator of guilt. Designated fillers are particularly
useful because, unlike suspects who can be guilty or innocent,
fillers are known to be innocent and so a filler identification is
known to be an incorrect response (Wells & Turtle, 1986).

It is also important to know the probability that a suspect is
actually guilty before the witness ID is determined, that is,
how often the culprit is put into the lineup (Wells et al.,
2015). For example, Wells et al. (2015) thoroughly explored
the impact of base rate and how it interacts with a number of
other variables commonly investigated by eyewitness memo-
ry researchers, and theymake a convincing argument that base
rate is an important factor to consider when interpreting lineup
identifications. At one extreme, in a police precinct in which
the suspect is almost never guilty, even a highly confident
suspect ID is not a strong indication of guilt. At the other
extreme, a suspect ID in a precinct that almost always finds
the culprit should be given considerable weight, regardless of
confidence. In experimental settings, this base rate, i.e., the
probability of a guilty suspect, is under experimenter control.
Outside of the lab, however, the base rate is unknown, and so
must be estimated (Cohen, Starns, Rotello, & Cataldo, 2020;
Wixted et al., 2016).

All of these experimental factors and statistical concerns
can be naturally addressed using signal detection theory
(SDT), which has become a common modeling framework
to analyze lineup data within the last decade (e.g., Mickes,
Flowe, & Wixted, 2012; Wixted & Mickes, 2012; Dobolyi
& Dodson, 2013; Carlson & Carlson, 2014; Wetmore,
Neuschatz, Gronlund, Wooten, Goodsell, & Carlson, 2015;
Wixted et al., 2016; Colloff, Wade, Wixted, & Maylor,
2017). Such analysis can be difficult, and often relies on nu-
merical simulations. The goal of this paper is to introduce a
new R package, sdtlu, that streamlines and automates the
SDT analysis of lineup data. Furthermore, the package imple-
ments closed-form solutions for both simultaneous and se-
quential lineups that allow for model-based analyses.

In what follows, we first briefly describe signal detection
theory and how it can be applied to lineup data. We then
introduce sdtlu and illustrate its capabilities through a series
of examples.

Signal detection theory for lineups

Within SDT, a lineup identification is conceived of as a mem-
ory task. The witness is asked to match a memory representa-
tion of a culprit to a currently viewed face in the lineup.
Consider Fig. 1. The x-axis represents the strength of match

between the culprit memory representation and an individual
face in the lineup. The higher the value, the better the match.
As represented by the two distributions, this match is gener-
ally higher for target faces, the culprit or guilty suspect, than to
lure faces, either a filler or innocent suspect. The lure and
target distributions are assumed to be normally distributed
with means μl and μt, respectively, and standard deviations
σl and σt, respectively. Differentiation between targets and
lures increases with the distance between μl and μt, as mea-
sured in σl and σt units. The application of SDT to both simul-
taneous and sequential lineups relies on this basic framework,
but differs in how a choice is determined.

First, consider a simultaneous lineup with six faces. (This
lineup size is not in any way critical to our conclusions, but is
useful for expository purposes.) The basic idea is that a match
strength is independently sampled for each of the six faces
from the appropriate distribution in Fig. 1 and the highest
sampled strength s* from face f* determines the witness’s
decision. In a target absent lineup, the suspect is not the cul-
prit and the match strengths for all six faces are sampled from
the lure distribution. In a target present lineup, the suspect is
the culprit, and the match strengths of the five filler faces are
sampled from the lure distribution and the match strength for
the suspect face is sampled from the target distribution. The ID
is determined by comparing s* to a set of response criteria.

Fig. 1 Signal detection model of lineup responses. The x-axis represents
the strength of association between the culprit and either a lure or target
item. Lure and target strengths are assumed to be normally distributed
with means μl and μt, respectively, and standard deviations σl and σt,
respectively. With three confidence levels, low, medium, and high,
there are three response criteria, c1, c2, and c3
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There is one response criterion for each confidence level.
Consider the common situation with three confidence levels:
Low, medium, and high. If s* is lower than the first criterion
or ID threshold, c1, the witness rejects the lineup, that is, none
of the faces was a strong enough match to the culprit to war-
rant an ID. Any s* above c1, however, results in an ID. If s*
falls between criteria c1 and c2, the witness identifies face f*
with low confidence. Likewise, an s* between criteria c2 and
c3 generates a medium confidence ID for f* and an s* above c3
produces a high confidence ID for f*. If f* is a suspect, the ID
is a suspect ID (regardless of guilt), and if it is a filler, the ID is
a filler ID. Because it is easier to make an ID with a lower
criterion, lower criteria are considered more liberal. Similarly,
because it is more difficult to make an ID with a higher crite-
rion, higher criteria are considered more conservative.

Next, consider a sequential lineup with six faces. Recall
that in a sequential lineup, the faces are seen exactly once,
one at a time, and that the witness must stop after making an
ID. Thus, the match strengths are likewise sampled one at a
time. If the face is from the culprit, the match strength is
sampled from the target distribution, otherwise, the match
strength is sampled from the lure distribution. If the current
match strength is less than c1, that face is rejected, the next
face is viewed, and the process continues. If the current match
strength exceeds c1, the current face is identified, confidence
is determined in the same way as for the simultaneous lineup,
i.e., by comparison to the response criteria, and the process
ends. If none of the match strengths exceed c1, the lineup is
rejected. Note that, unlike the model of the simultaneous line-
up, predictions from the sequential model depend on the order
in which faces are presented.1 For example, a suspect is more
likely to be identified if viewed earlier in the lineup because
there is less of a chance of a filler ID before the suspect is
viewed. This detail is important because suspects are often not
equally likely to appear in each position. For example, posi-
tion is randomly selected in only about 60% of police lineups,
and in many experimental designs and about 5% of surveyed
agencies, the suspect is never in the first or last position
(Police Executive Research Forum, 2013). Thus, to calculate
the probability of an ID, this procedure must be run for each
possible suspect position with the combined results weighted
by the probability of each suspect position.

Numerical simulations are typically used to generate model
predictions, i.e., the probability of a rejection or a suspect or
filler ID at different confidence levels. As discussed below,

however, performing analyses on these models can be com-
putationally demanding. It is therefore useful to be able to rely
on closed-form solutions. Such equations are provided in
Appendix A for a simultaneous lineup and in Appendix B
for a sequential lineup (also see Wixted, Vul, Mickes, &
Wilson, 2018). The equations work for lineups of an arbitrary
size and an arbitrary number of confidence levels.

As discussed previously, it is important to be able to esti-
mate the base rate p, i.e., the probability that a given lineup
includes a guilty suspect. The SDT modeling approach pro-
vides a method for estimating this value evenwhen the guilt or
innocence of each suspect is unknown (Cohen, Starns,
Rotello, & Cataldo, 2020; Wixted, Mickes, Dunn, Clark, &
Wells, 2015). In an eyewitness memory experiment, the ex-
perimenter knows whether each lineup was target present (i.e.,
included the guilty suspect) or target absent, what we will call
full data. In a real-world lineup, what we will call restricted
data, this classification is exactly the information of interest. In
the latter case, the available data are how often each ID was
made (suspect, filler, or reject) and the associated confidence
of the ID, and these values are collapsed across both target-
present and target-absent lineups. As shown in the appendices,
calculating the predictions of the SDT model requires speci-
fying the probability that a lineupwill include a guilty suspect.
For both simultaneous and sequential lineups, whether the
lineup is target present or target absent determines whether
the suspect match strength is drawn from the target or lure
distribution, respectively. The critical insight, therefore, is that
this base rate or target present probability becomes a parame-
ter of the model which, in turn, can be estimated from data.
Indeed, prior work has shown that such probabilities can be
reliably estimated and applied to field data (Wixted et al.,
2015). Cohen et al. (2020) extended these results and clarified
how the model is able to estimate base rate by evaluating the
relative probability and confidence distributions of suspect
and filler IDs. Essentially, the model can produce a higher
ratio of suspect to filler IDs by either assuming that a higher
proportion of lineups have guilty suspects or assuming that
witnesses have better memory (and thus are more likely to
identify guilty suspects when they are present). These scenar-
ios are distinguishable because higher memory increases con-
fidence levels for suspect IDs to a greater degree than higher
base rates.

In summary, to apply the SDT model, the following exper-
imental design parameters are needed: l, the lineup size and n,
the number of confidence levels. In addition, for sequential
lineups, the model needs to know the probability that the sus-
pect appears in each lineup position. In principle, the full SDT
model has the following parameters: μl and σl, the mean and
standard deviation of the lure distribution, respectively; μt and
σt, the mean and standard deviation of the target distribution,
respectively; c1-cn, the response criteria; and p, the probability
that the suspect is guilty. Without loss of generality, it is

1 We recognize that suspect position can influence identification in both si-
multaneous and sequential lineups (e.g., Palmer, Sauer, & Holt, 2017).
Whereas the sequential model naturally incorporates position effects, the base-
line simultaneousmodel does not, and doing so introduces a host of difficulties
because the witness can consider the faces in any order and can return to
previously considered faces. To avoid the additional model complexity in-
volved in incorporating position effects into the simultaneous model, we leave
that change for future work.
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typically assumed that μl = 0 and σl = 1. For full data, p can be
directly set to the observed proportion of a target-present
lineups in the data set. For restricted data, pmust be estimated.
Unfortunately, in this case, not all of the parameters are iden-
tifiable. In particular, it is not possible to estimate both p and
σt. In this situation, we adopt the solution of estimating p and
setting σt =σl = 1, i.e., assuming an equal-variance SDT mod-
el. In either the full or restricted case, the model has 2+n
parameters. For example, with three confidence levels, the
model has five parameters.

Receiver operating characteristic curves

Receiver operating characteristic (ROC) curves are a very
convenient and common way to represent SDT data. For

lineup data, an ROC curve plots the probability of a sus-
pect ID when the target is present against the probability of
a suspect ID when the target is absent at every possible
confidence level. Example ROC curves are provided in
Fig. 2. The left and right panels display ROC curves for a
simultaneous and sequential lineup of size 6 using the SDT
parameters from Fig. 1. For the sequential lineup, all sus-
pect positions were assumed equally likely. The x- and y-
axes represent the probability of a suspect ID in a target
absent and target present lineup, respectively. The curves
were determined from the SDT models described previous-
ly by sweeping the ID criteria across a wide range. Being
able to easily produce such curves is one advantage of the
closed-form solution of the SDT model. The dots represent
the probabilities at the three response criteria from Fig. 1.
ROC curves that lie on the diagonal represent chance

Fig. 2 Example receiver operating characteristic (ROC) curves for a simultaneous (left) and sequential (right) signal detection model

Fig. 3 Ten randomly selected rows of the Palmer et al. (2013) data set formatted for sdtlu. The whitespace is arbitrary
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performance at selecting the culprit. Performance improves
as the ROC curve moves into the upper left corner, where
correct IDs are more likely than errors. As the response
criteria become more liberal or conservative, the dots will
move up or down the curve, respectively.

Standard ROC curves typically end at the point (1, 1).
Because suspect selection when the target is absent is assumed
to be at chance, i.e., selected from the lure distribution, ROC
curves for lineup data usually do not reach (1, 1), and so are
partial ROCs. The simultaneous ROC ends at the inverse of
the lineup size, in this case 1/6, which is the probability of
selecting the suspect by chance. The ROC for the sequential
lineup is somewhat more complex. If the response criterion is
extremely liberal, i.e., any face is highly likely to be selected,
only a suspect in the first position will realistically be selected.
Thus, the sequential ROC curve will end with both the hit and
false alarm rates equal to the probability that the suspect

appears in the first position (Rotello & Chen, 2016). In this
example, that is 1/6. However, if the suspect appears in the
first position with probability less than 1/6, which can easily
be the case in sequential lineups, the ROC can reverse and can
even end at the origin (see Fig. 12).

The ROC curves in Fig. 2 are model-based. Similar, data-
based ROC curves are also common. In such plots, the points
represent the probabilities of a suspect ID present in the data
and are usually simply connected by a straight line. An exam-
ple is shown in Fig. 7.

Measuring performance

Within the SDT framework, there are a number of ways to
measure subject performance. Perhaps the most common
performance measure within the SDT framework is d′,

Fig. 4 Output of sdtlu_process_data when applied to the Palmer et al. (2013) simultaneous lineup data set. Values were rounded to 3 decimals
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which is the distance between the distribution means in
standard deviation units (Macmillan & Creelman, 2005).
However, d′ is only defined for the equal-variance model,
i.e., when the standard deviations of the two distributions
are identical. As discussed previously, the equal-variance
model in the sdtlu package assumes that μl = 0 and σl =
σt = 1. Thus, under the equal-variance assumption, d′ is
identical to the sdtlu estimate of μt, the mean of the
target distribution.

Area under the curve (AUC) is commonly used in the
lineup context (Mickes et al., 2012; Rotello & Chen,
2016). The AUC measure is derived from the ROC curve.
Recall that the ROC curve lies on the diagonal when
performance is at chance and moves into the upper-left
corner when performance is good. Thus, a natural way
to measure performance is to determine the area under
the ROC curve. Higher values mean the curve is farther
into the upper-left corner and therefore indicate better
performance. Because lineup ROC curves do not reach
(1, 1), the AUC measure is technically a partial AUC
(McClish, 1989). For simplicity, however, we refer to it
as AUC throughout. It is important to note, however, that
the AUC is affected by lineup length for a simultaneous
lineup (Rotello & Chen, 2016) and the probability of a

first-position suspect in a sequential lineup. Thus, AUC is
a relative, not absolute, measure and care is required when
comparing AUC across experiments with different de-
signs. Analytic solutions do not exist, so AUC is calcu-
lated by numerical approximation. In the current work,
iterative quadrature is used to compute AUC from
model-defined ROC functions. Because the numerical ap-
proximation becomes unstable when part of the ROC
curve is vertical, AUC should be treated with caution in
situations like the right panel of Fig. 2. AUC is not de-
fined when the ROC curve is not monotonic on p(suspect
| target absent), as is the case for some sequential lineups.

Diagnosticity is another common measure of lineup
performance (Wells & Lindsay, 1980), although it has
been shown to be confounded with response bias, leading
some to conclude that AUC is a better measure of ID
accuracy (Mickes et al., 2012; Rotello & Chen, 2016).
Nevertheless, diagnosticity is a critical consideration in
evaluating how lineup identifications provide evidence
about the guilt or innocence of the suspect (e.g., Wells
et al., 2015). Diagnosticity is the ratio of the probability
of a suspect ID given target present and target absent
lineups. A value of 1 means that guilty and innocent sus-
pects are equally likely to be selected, i.e., chance

Fig. 5 Output of sdtlu_process_data when applied to the Gronlund et al. (2009) sequential lineup data set. Values were rounded to 3 decimals.
Confidence levels 5-7 were combined
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performance. The higher the value, the more likely a se-
lected suspect is guilty. Diagnosticity can be computed
directly from data. Here we take a different approach
and use the SDT model to estimate diagnosticity.
Diagnosticity can be calculated from the SDT model in
two different ways. The first method collapses over all
confidence levels. That is, the relevant probabilities are
calculated without regard to confidence. The second
method restricts calculation within a confidence region.
That is, the relevant probabilities are calculated based on
confidence levels between two response criteria. All other
things being equal, diagnosticity increases with confi-
dence level. Two other, related measures of performance
are discussed below in relation to the sdtlu package
figures.

Equations for AUC and diagnosticity are provided in
Appendix C.

The sdtlu package

Overview

The SDT model discussed in the previous section is im-
plemented in the sdtlu (Signal Detection Theory -
LineUp) R package, which is publicly available at
https://osf.io/mfk4e. The package instantiates functions
for the preparation and processing of lineup data, fitting
SDT models to data, comparing models across two data
sets, generating accuracy measures, graphing data and
model results, and simulating experiments. In this
section, we introduce how to use sdtlu for each of
these tasks. To illustrate the functionality and use of
this package, we walk through a simultaneous lineup
example and then a sequential lineup example. All
references to the sdtlu package, functions, variables,
and output files are provided in Courier font. For
clarity, the package functions are also shown in bold.

To preview, the main functions are sdtlu_process_data,
which processes lineup data, sdtlu_fit, which fits the SDTmodel
to lineup data, and sdtlu_compare_2, which uses bootstrapping
to compare parameters from the SDTmodel across two data sets.
The functions sdtlu_sim_sim and sdtlu_seq_sim can be used to
simulate simultaneous and sequential SDT lineup data,
respectively.

Data

As an example of a simultaneous lineup study, we will
use Palmer, Brewer, Weber, and Nagesh (2013), which
was also the data set used by Wixted et al. (2016). This
is a field study in which 908 participants were asked to
identify a culprit from a simultaneous, eight-person

lineup in public. Approximately 50% of the lineups were
target present and 50% were target absent. Participants
provided a confidence rating on an 11-point scale, which
the authors collapsed onto a five-point scale by combin-
ing some ratings categories. For simplicity, we ignore the
other manipulated factors including exposure time and
delay, although we revisit delay below. For the target
absent trials, we randomly selected one of the eight faces
to act as the innocent suspect.

For a sequential data set, we use Gronlund, Carlson,
Dailey, and Goodsell (2009). This was a joint lab and online
study in which subjects watched a video of a crime and then
were asked to ID the culprit from a 6-person lineup and rate
their confidence on a 1–7 scale. Because suspect IDs were
rarely, if ever, made at the lowest confidence levels, some
measures were undefined and the model fits were unstable.
To demonstrate the full functionality of the package, we col-
lapsed confidence levels 5, 6, and 7. Thus, there are five con-
fidence levels in the analyzed data. The authors designated
innocent suspects. Suspects (both guilty and innocent) were
only tested in positions 2 and 5 of the lineups. We ignore all
other factors including view quality, lineup bias, and suspect
similarity to culprit. This data set includes 1250 trials.

Data format

For use in sdtlu, the data must be a comma-separated (csv)
file with the following columns: id_type is the participant’s
ID (suspect/filler/reject); conf_level the par-
ticipant’s confidence level (e.g., 1,2,3,4,5), where 1 is the
highest confidence level; culprit_present is whether the
lineup was target present or absent (present/absent); and
lineup_size is how many individuals were in the lineup.
Ten randomly selected rows of the Palmer et al. (2013) data set
are shown in Fig. 3. Sequential data would have an additional
column, suspect_position, which provides the position
of the suspect (an integer from 1 to lineup_size).

Processing data

Raw lineup data, like that shown in Fig. 3, can be processed
using the function sdtlu_process_data. You can pass the data
either as a file name, with the file formatted as described previ-
ously, as is done in this example, or as a data frame with the
same variables present in a data file. A sample call and output
are shown in Fig. 4. We describe this output next.

resp_data_restr provides the response counts when
collapsed across target present and target absent conditions.
This output is useful for real-world studies when it is unknown
whether the suspect was guilty, and so it is unknown whether a
datum is from a target present or target absent condition. The
output is in the following order: suspect ID highest confidence,
…, suspect ID lowest confidence, filler ID highest confidence,
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…, filler ID lowest confidence, reject. In all inputs and outputs,
confidence responses range from the highest confidence level
to the lowest confidence level, left to right. Because this data set
has five confidence levels, there are 11 counts (five suspect, five
filler, and one reject2). For example, 100 participants identified
the suspect with the highest confidence level, regardless of
whether the suspect was the culprit or not.

resp_data_full provides the response counts cat-
egorized by target absent and target present condition if
those data are available, as they are in this data set and
most experimental work. The counts are in the same
order as for resp_data_restr, but are shown twice,
first for target present trials and then for target absent
trials. For example, 98 participants identified the suspect
at the highest confidence level, when the suspect was
the culprit, and two participants identified the suspect at
the highest confidence level, when the suspect was not
the culprit.

2 Confidence ratings for rejections are not used because it is unclear how one
should make these confidence ratings and because confidence is often fairly
unsystematic for rejections in data sets.

Fig. 6 Partial output from sdtlu_fit with the Palmer et al. (2013) simultaneous lineup data

285Behav Res  (2021) 53:278–300



Although we do not show an example here, lineups of
different lengths can be processed together. This functionality
is useful for meta-analyses in which data from multiple exper-
iments are combined. When multiple lineup sizes are present,
resp_data_restr and resp_data_full provide one
row of counts per lineup size.

The next three outputs provide the proportion of response
categories, rather than counts. If multiple lineup sizes exist, they
collapse across the lineup sizes, i.e., lineup size is ignored. If
there is only a single lineup size, the proportions are for that
lineup size. overall_resp_data_restr_prop shows
resp_data_restr, but as a proportion. For example, 11%
of participants, i.e., 100/908, provided a high confidence suspect
ID. overall_resp_data_full_prop_joint and
overall_resp_data_full_prop_cond provide the
count data from resp_data_full as proportions. The former shows
them as joint probabilities, e.g., P(resp = sus ∩ conf = i ∩ tar =
pres), and the latter as conditional probabilities, e.g.,P(resp = sus
∩ c on f = i | t a r = p r e s ) . F o r e x amp l e , f r om
overall_resp_data_full_prop_joint we learn that
11% of trials were high confidence, target present, suspect IDs
and from overall_resp_data_full_prop_cond we
learn that 22% of target present trials were high confidence sus-
pect IDs.

lu_sizes is a vector of the lineup sizes in the data set. In the
Palmer et al. (2013) example data, lineups were only of size 8.

pos_prop provides the proportion of times the suspect
was present in each lineup position. The distributions of sus-
pects over positions was assumed to be the same for both

guilty and innocent suspects. This output is only relevant to
sequential lineups and will be discussed below.

ptp is the base rate, i.e., the probability of a target present
lineup, if known. In this case, 50.2% of lineups were target
present.

ntrials is the number of data points, trials, or partici-
pants. This data set had 908 participants.

acc_data provides a measure of accuracy, i.e., the pro-
portion of correct IDs for suspect picks and rejects (e.g.,
Wixted et al., 2016). This measure is similar to diagnosticity.
There is one proportion for each confidence level (five in this
example, starting with the highest confidence level) and one for
rejections. For suspect IDs, this measure is P(tar = pres|resp =
sus ∩ conf = i). For rejects, this measure is P(tar = abs|resp =
rej). For example, out of all high confidence suspect IDs, 98%
were actually the culprit, and out of all rejections, the culprit
was not present 72% of the time. This measure is only available
for full data sets.

sus_g_id_data provides the probability of a suspect
ID at a given confidence level, excluding rejections (e.g.,
Wixted et al., 2016). Each value is taken at a single confidence
level (starting with the highest). For example, out of all high
confidence IDs, 77% were suspect IDs.

n_resp_cats shows the number of possible response
categories. With five confidence levels, this data set had 11
response categories (five suspect + five filler + one reject).

The output for the sequential Gronlund et al. (2009)
study is shown in Fig. 5. The output format is identical
to Fig. 4. Because suspect position was specified, we

Fig. 7 Figure generated from sdtlu_fitwith the Palmer et al. (2013) simultaneous lineup data. The figure layout has been modified to remove whitespace
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learn that approximately 50% of the suspects were
shown in positions 2 and 50% in postion 5.

Fitting SDT data

Perhaps the most fundamental aspect of sdtlu is its abil-
ity to fit the SDT model to experimental data. Fitting is
done using the sdtlu_fit function. This function takes as
arguments experimental data and a set of options.

The data can be in one of three forms. First, the data
can be the output from sdtlu_process_data. This meth-
od is used in the following example. Second, you can
provide a file name and sdtlu_fit will then internally

analyze the data using sdtlu_process_data. Third, the
data can be a matrix of count data of each response at
each conf idence l eve l , o f the same fo rm as
resp_data_full or resp_data_restr. When
count data are provided, the function requires the lineup
size, i.e., the number of people in the lineup. An exam-
ple of this third method is also provided below.

There are numerous options available, which are
grouped in a list. model_type specifices a simulta-
neous (‘sim’, default) or sequential (‘seq’) SDT
model. fit_fcn allow you to select a method for cal-
culating the fit of the model to the data. The default is
to use G2 (‘G2’), but χ2 (‘chi-square’) is also

Fig. 8 Partial output from sdtlu_fit with the Palmer et al. (2013) restricted simultaneous lineup data
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available3. If use_restr_data is TRUE, the data are
assumed to be collapsed over target present and absent,
as in resp_data_restr. If FALSE (the default), tar-
ge t p r e s en t and absen t a r e s epa r a t ed , a s i n
resp_data_full. n_fits tells the function how
many times to restart the parameter search with a dif-
ferent starting parameter set, which can be useful for
a v o i d i n g l o c a l m i n ima . save_file_name
(sdtlu_save.RData, default) and fig_file_name
(sdtlu_figs.png, default) allow you to specify
where the numeric and graphic outputs are stored.

The arguments fix_p and fix_sigma_t control the
behavior of the parameters for the proportion of target
present trials p and the standard deviation σt of the target
distribution. If set to ‘free’, the associated parameters
are free to vary. These arguments can also be set to a
value, which fixes the associated parameter to that value.
If fix_p is ‘data’, and the base rates are known, p
(also referred to as ptp, probability of target present trials,
depending on context) is set to the proportion of target
present trials in the data (for restricted data, p is allowed
to vary). If fix_sigma_t is set to ‘sigma_f’4, then
σt = σ1 = 1. Recall that, for restricted data, it is not pos-
sible to simultaneously estimate the proportion of target
present trials p and the standard deviation σt of the target
distribution. Thus, when restricted data are used, fix_p
and fix_sigma_t should not both be set to ‘free’.
For restricted data, the defaults are fix_p = ‘free’
and fix_sigma_t=‘sigma_f’. For full data, the
d e f a u l t s a r e f i x _ p = ‘ d a t a ’ a n d
fix_sigma_t=‘free’.

To provide bounds on the fit, parameter, and accura-
cy values, sdtlu_fit can also bootstrap the data. That is,
the data are resampled with replacement (within target
present/absent conditions, if available), the fit is repeat-
ed on this new sample , and al l measures are
recalculated. Bounds are then determined from quantiles
o n t h e s e s amp l e s . T h e bo o t s t r a p i s r u n i f
run_bootstrap is TRUE (the default). If you only
w a n t p o i n t e s t i m a t e s , i t i s f a s t e r t o s e t
run_bootstrap to FALSE. The number of bootstrap
samples is determined by n_bootstrap_samps.
Bootstrapping can be slow, so we suggest trying it with

a small n_bootstrap_samps first before running a
longer version. The default is 1000 samples. The func-
tion returns the .01, .025, .05, .025, .5, .75, .95, .975,
and .99 quantiles from the bootstrapped samples. If all
samples are required, not just the quantiles, set
output_bootstrap_samps to TRUE (default is
FALSE). Only one fit is run per bootstrap, with starting
parameters determined by the best-fitting parameters to
the non-bootstrapped data. If the bootstrap creates an
error in the fit function, e.g., the sample is impossible
under the model, a warning is provided, and a new
sample is drawn.

A sample run for the Palmer et al. (2013) simulta-
neous data is provided in Fig. 6 along with partial out-
put. First, the data are processed, as in Fig. 4. The
options are then set. For this example, we set many of
the options to their default value, but for convenience,
we only use 50 bootstrap samples. In general, we sug-
gest at least 1000 bootstrap samples.

The output provides means and bootstrapped quantiles
for the fit measure, all model parameters, AUC, and
diagnosticity. The output also provides the data (in the
same order as resp_data_full) and the best-fitting
model prediction. Left out of the figure are the fit-by-fit
fit measures, the full set of bootstrapped results pro-
duced, and the function options. These results are stored,
by default, in sdtlu_save.RData in the current
directory.

The function also produces a set of figures as shown in
Fig. 7, also saved in the current directory. The upper-left
panel shows the SDT model as in Fig. 1 with the best
fitting model parameters. The color/brightness of the dis-
tribution lines represent the probability of a target present
or absent sample. Because the base rate is near .5, the two
colors are indistinguishable for this example. The upper-
center panel shows the model-based ROC as in Fig. 2.
The thinner lines are generated from the parameter sets
that produced AUC values at the .05 and .95 quantiles
of the distribution across bootstrap samples, and thus pro-
vide a form of equal-tailed interval on the ROC curve.
The upper-right panel shows the data ROC. The bottom-
left panel shows how well the model fits the data and
provides both the data and model predicted proportions
for each response category for each condition. The
bottom-center panel provides the data and predicted model
accuracy, i.e., the probability of a correct response given
either a suspect ID at the different confidence levels or a
rejection. The bottom-right panel shows the data and mod-
el predicted probability of a suspect ID at different confi-
dence levels. To be consistent with previous work, in the
latter three graphs, confidence increases from left to right.
The model does an overall good job of accounting for the
experimental data, both qualitatively and quantitatively.

3 TheG2method providesmaximum likelihood estimates of parameter values,
asG2 is determined by the likelihood of the data under a given parameter set in
the model of interest (the "research" model) and the likelihood of the data in a
"full" model in which the probability of each response category matches its
proportion in the data. The latter value does not change for different parameter
sets, so G2 differences across parameter sets are determined only by the like-
lihood of the "research" model.
4 Although this should technically be sigma_l, we use sigma_f to avoid
confusion with sigma_1.
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We can use the same data to simulate restricted data,
i.e., real-world data in which the proportion of target pres-
ent trials is not known. To do this, we simply collapse the
counts at a confidence level across target present and ab-
sent conditions. In the sdtlu_fit function, you can do
that by setting the use_restr_data option argument
to TRUE. Now p is free to vary, and we set σt = σl = 1.
Example output is provided in Fig. 8, and the associated
figures are provided in Fig. 9. Note that the estimated
value of p, .509, is very close to the actual value from
Fig. 4 of .502. Because it is impossible to separate the

data into target present and absent categories for restricted
data, a data ROC curve cannot be drawn.

As mentioned previously, sdtlu_fit can also be ap-
plied directly to counts. This application of the function is
useful when fitting to previously analyzed data, data from
tables, or simulated data. We provide a sample call to the
Palmer et al. (2013) restricted in Fig. 10. Because these are
restricted data, the counts are in the same order as
resp_data_restr, full data would be in the same order
as resp_data_full. Because these are count data, the
lineup size now needs to be specified as an argument. The
output is identical to Figs. 8 and 9.

Fig. 9 Figure generated from sdtlu_fitwith the Palmer et al. (2013) restricted simultaneous lineup data. The figure layout has been modified to remove
whitespace

Fig. 10 Call to sdtlu_fit for counts from Palmer et al. (2013) restricted simultaneous lineup data
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We can also apply sdtlu_fit to sequential data.
This function was applied to the Gronlund et al. (2009)
data. The call and output are shown in Fig. 11 and the
associated figures are in Fig. 12. The suspect position
proportions, which are needed for a sequential model,
are included in the processed data, as was shown in Fig.
55. In our experience, the parameter search for the sequen-
tial model is more difficult. To avoid local minima, we
increased the number of model fits to 10. Because of the
unusual shape of the sequential ROC curve, it is also
more difficult to compute a stable AUC. AUC is comput-
ed by default, but should be checked carefully for numer-
ical stability and non-monotonicity. For similar reasons, it
may be necessary to lower the maximum number of re-
cursion steps (max_steps) in the computation of AUC
in the sdtlu_auc function. Although the data do show
increasing performance with increasing confidence, the
model does not fit these data nearly as well as the simul-
taneous Palmer et al. (2013) data. Indeed, the model fits
very poorly. Note the oddly shaped, non-monotonic ROC
curve, which is a clear indication that AUC should not be
used here. We should note that the sequential model can
accurately recover parameters generated from the SDT
sequential model, thus, these results strongly suggest that
these data were not generated from the sequential SDT
model we have implemented. Different assumptions about
sequential lineups might result in a better fit.

It is likely that this poor fit is due, in large part, to the
Gronlund et al. (2009) experimental paradigm in which the
memory strength of the innocent and guilty suspects was
manipulated (see Cohen, et al. 2020, for an in-depth discus-
sion). Specifically, manipulating innocent suspect strength
likely violated the signal detection model’s assumption that
innocent suspects and fillers come from the same memory
distribution6. These data, however, serve as an illustration
that the model is not overly flexible and cannot fit any data
set, which is a desirable quality because it means that find-
ing a good fit is a better indication that the processes gen-
erating the data conform to the model’s assumptions. When
fit to a different sequential data set from Horry, Palmer, &
Brewer (2012), the fit was greatly improved with a G2 of
approximately 21 (see OSF for results). This is perhaps not
surprising, given that these researchers did not have the goal
of manipulating how much the innocent suspect matched the
culprit, and thus took careful measures to ensure lineup

fairness as assumed by the model, i.e., innocent suspects
are no more likely to strongly match the culprit than fillers.

As mentioned previously, sdtlu_fit can be used on
data with multiple lineup sizes. When there are multiple
lineup sizes, a single set of parameters are estimated
across lineup size, however, by necessity, the accuracy
measures and predictions are provided separately for each
lineup size. In the figures, there will also be one model
ROC curve per lineup size. When fitting the model, the
model predictions are computed for each lineup size and
combined across lineup sizes weighted by the number of
trials at that lineup size. These combined predictions are
used to compute the fit measure.

Comparing data

The sdtlu package a l so con ta ins a func t ion ,
sdtlu_compare_2, to compare parameter values from an
SDT model across two different data sets. This function is
useful, for example, to researchers who want to know how
an experimental manipulation affects the SDT parameters.
This function takes many of the same fitting and model pa-
rameters as sdtlu_fit. The major difference is that there
are now two sets of data (data_1 and data_2) and lineup
sizes (lineup_sizes_1 and lineup_sizes_2). You
can also name each of the data sets (data_name_1 and
data_name_2), which changes labels in the figure. The
options are also similar to sdtlu_fit, however, you can
also change the output and figure files names including the
n a m e s o f t h e t w o i n d i v i d u a l d a t a s e t s
(save_file_name_1, save_file_name_2 and
fig_file_name_1, fig_file_name_2) and the com-
p a r i s o n (save_file_name_compare a n d
fig_file_name_compare).

Recall that Palmer et al. (2013) varied delay, i.e., the
time between viewing the culprit and participating in the
lineup. There were two levels of delay, immediate testing
and a week’s delay, what we will refer to as short and
long delays, respectively. We compare the recovered SDT
model parameter values for the Palmer et al. (2013) short
and long delay data. Because the results relied on very
small differences, we increased the number of bootstrap
samples to 500.

The example calls and output are provided in Fig. 13
and a subset of the figure is provided in Fig. 14. This
example sends in the data as counts and lineup sizes. The
sdtlu_compare_2 function starts by calling sdtlu_fit
on both data sets and provides all of the associated output
and figures, as described previously. To avoid repetition,
this output is not provided here. The new output is shown
in Figs. 13 and 14. To provide a measure of statistical
differences, the 2.5, 50, and 97.5% quantiles for the differ-
ences in bootstrapped fit measures, parameters, and

5 Trial-by-trial data are not used. The data and predictions are collapsed over
suspect positions.
6 Note that Gronlund et al. (2009) did not rely on SDT modeling to interpret
their data, so noting that their paradigm violated the model’s assumptions is
not a criticism of these authors and does not undermine the original purpose of
their study.
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performance measures are provided along with the propor-
tion of differences that are less than and greater than 0. The
differences are for the long condition (data set 1) minus the
short condition (data set 2). We consider there to be a
significant difference if zero is not included in the 2.5 to
97.5% interval. The range of this interval is determined by
the alpha parameter (the default alpha is .05).

For parameters, only c4 definitively differs across data
sets, although there is a strong trend for overall more

conservative responding in the short delay data condition.
There are also marginal differences in and μt and σt, with
μt tending to be larger and σt tending to be smaller in the
short delay condition. These results go along with overall
better performance with a short delay. Histograms of the
differences for μt and σt are shown in Fig. 14 (the full
figure is shown in Fig. 16 in Appendix D). For perfor-
mance measures, AUC is larger in the short delay condi-
tion, a sensible outcome. Diagnosticity is also larger in the

Fig. 11 Partial output from sdtlu_fit with the Gronlund et al. (2009) sequential lineup data
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short delay condition, but only definitively at confidence
levels 2–4 and marginally at confidence level 5.

Simulating SDT models

The sdtlu package provides the ability to simulate the SDT
models described previously and provided in the Appendix A
and Appendix B. The sdtlu_sim_sim and sdtlu_seq_sim
functions simulate data from the simultaneous and sequential
SDT models, respectively.

Both functions were run using the parameters from Fig. 1.
Recall that the full set of parameters are the proportion of
target present trials p, the mean μt and standard deviation σt
of the target distribution, and the response criteria c1-cn. These
f u n c t i o n s a l s o n e ed t o know t h e l i n e up s i z e
(lineup_sizes) and how many trials are being simulated
(n_trials). Ifuse_restr_data isTRUE, restricted data
is simulated. In addition, the sequential model is provided
with a distribution of suspect positions (pos_prop). The
function calls and output are provided in Fig. 15. In this case
we simulate two experiments (specified by n_sims).

Help and other functions

There are other useful sdtlu functions. To get additional
help, after installing the package, typing ??sdtlu will list
all of the available functions and a “how to” file that includes
another set of examples. Each function also has its own help
file that includes examples.

Discussion

Signal detection theory is a powerful framework for ana-
lyzing data. This power has been implemented in several
existing R packages that are available for the analysis of
ROC data. The sdtlu package leverages the power of
the signal detection framework specifically for the analy-
sis of lineup data, or other similarly structured data such
as the identification of the location of a tumor within a
radiological image (Starr, Metz, Lusted, & Goodenough,
1975; Swets & Pickett, 1982). sdtlu provides functions
to process lineup data, determine the best-fitting SDT pa-
rameters, compute model-based performance measures such as
AUC and diagnosticity, use bootstrapping to determine inter-
vals around these parameters and measures, and compare pa-
rameters across two different data sets. Both simultaneous and
sequential lineups are supported, as well as show-ups. Closed-
form solutions are used. The package can also produce a full set
of graphs, including data and model-based ROC curves and the
underlying SDT model.

To our knowledge, the sdtlu package represents the
first R package implementation of equations that can be
solved as integrals to define the predictions of the lineup
SDT model. This form offers a computationally more effi-
cient way to determine precise model predictions than the
simulation methods often used in past studies (although see
Wixted et al., 2018). That said, this package can also sim-
ulate data by randomly sampling observations from the
model, a function that makes it easy to perform parameter
recovery simulations, and it provides an easy way to

Fig. 12 Figure generated from sdtlu_fit with the Gronlund et al. (2009) sequential lineup data. The figure layout has been modified to remove
whitespace
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Fig. 13 Partial output from an example use of the sdtlu_compare_2 function. Comparing parameter values across the short and long delay conditions of
Palmer et al. (2013)

Fig. 14 Figure generated from1 sdtlu_compare_2with the Palmer et al. (2013) short and long delay simultaneous lineup data. Only the results of μt and
σt are shown. The full figure is shown in Fig. 16 in Appendix D
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explore position effects in sequential lineups. sdtlu
returns a variety of performance measures used by lineup
researchers, and it is, to our knowledge, the first package to
calculate theoretical AUC measures from the lineup SDT
model.

Thus, the sdtlu package offers eyewitness researchers
a number of specialized functions that are not available in
packages designed for more general applications of ROC
analysis. The most downloaded packages are ROCR (Sing,
Sander, Beerenwinkel, & Lengauer, 2005, downloaded
~63 k times in the month prior to 8/10/19) and pROC
(Robin et al., 2011, downloaded ~46 k times), with the
more functionally limited sROC in third place (Wang,
2012, downloaded ~5 k times). ROCR and pROC both
offer AUC estimation, including for partial AUCs, as well
as statistical comparison of two ROC curves, smoothing of
data, and a range of plotting options. They also both pro-
vide tools for analysis of ROC data based on continuously
valued measures; in psychological research, the reaction-
time based ROC is one example (Thomas & Myers, 1972).
pROC easily implements bootstrapping of samples and
plotting of confidence intervals; ROCR has the advantage
of generating predictions for how a new sample will be
classified (i.e., as target or lure). One key difference be-
tween these packages and sdtlu is that the latter does not

just estimate AUC using the empirical ROC points, but
defines the theoretical ROC function based on an SDT
model designed for lineup tasks and uses iterative quadra-
ture to find the area under this continuous function. Thus,
sdtlu provides an option for eyewitness memory re-
searchers who wish to use more theoretically motivated
performance measures. Another important consideration
is that, among these packages, only sdtlu can estimate
the base-rate of lineups that include a guilty suspect.
sdtlu also includes functions for generating simulated
data sets from an SDT model with either a simultaneous
and sequential lineup design, which makes it easy for re-
searchers to conduct parameter recovery simulations or ex-
plore model predictions when planning a new study.

In conclusion, the sdtlu package offers a number of
unique tools for lineup researchers, and we hope that it will
contribute to the growing sophistication in the analysis and
interpretation of both empirical and real-world eyewitness
identification data.
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Fig. 15 Examples of the use of sdtlu_sim_sim and sdtlu_seq_sim to simulated experimental data
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Appendix A Equations for simultaneous
lineups

Let ϕ(s, μ, σ) be the density of a normal distribution with

mean μ and standard deviation σ and let Φ s;μ;σð Þ ¼ ∫
s

−∞
ϕ

x;μ;σð Þdx be the cumulative normal.
Let resp=response, with values sus=suspect, fil=filler, and

rej=reject. Let conf=the response confidence level, with
values 1…max confidence level. Note that, for notational con-
venience, 1 is the lowest confidence level here. Let tar=target,
with values pres=present and abs=absent.

The following model parameters are used: p=P(target pres-
ent), μt=target distribution mean, σt=target distribution stan-
dard deviation, μl =lure distribution mean, σl =lure distribu-
tion standard deviation, ci=the values of the i

th response crite-
rion, where c1 is the lowest response criterion.

The lineup size is given by l.
Also see Fig. 1.

Suspect response

The probability of a suspect response at confidence level i is
given by7

P resp ¼ sus∩conf ¼ ið Þ
¼ pP resp ¼ sus∩conf ¼ ijtar ¼ presð Þ

þ 1−pð ÞP resp ¼ sus∩conf ¼ ijtar ¼ absð Þ; ðA1aÞ

where

P resp ¼ sus∩conf ¼ ijtar ¼ presð Þ

¼ ∫
ci

ciþ1

ϕ s;μt;σtð ÞΦ s;μl;σlð Þl−1ds ðA1bÞ

and

P resp ¼ sus∩conf ¼ ijtar ¼ absð Þ

¼ ∫
ci

ciþ1

ϕ s;μl;σlð ÞΦ s;μl;σlð Þl−1ds: ðA1cÞ

In Equation A1a finds the overall probability of observing
a suspect ID at a given confidence level by taking the weight-
ed average of the corresponding probability for target present
and target absent lineups, where the weight is the proportion

of target-present lineups (p). This equation is needed to get
predictions for restricted data, such as data from real lineups,
where the guilt status of each suspect is unknown.

Equations A1b and A1c provide the probabilities of choos-
ing the suspect at a given confidence level for target-present
and target-absent lineups individually. These equations are
used for full data in which each suspect can be classified as
guilty or innocent.

In Equation A1b, the first term in the integral is the probability
density at a value of s for a guilty suspect (i.e., a draw from the
target distribution). The second term in the integral is the proba-
bility that a given filler (i.e., a draw from the lure distribution) has a
strength value below s, raised to the power of the number of fillers
(l – 1) to give the joint probability that all of the fillers have a
strength value below s (the model assumes that filler strengths are
independent of one another and independent of the suspect
strength). Multiplying the two terms gives the joint probability
density that the suspect has a strength value of s and has a higher
strength than all of the fillers, i.e., the suspect is selected as the
lineup member whose strength value is used to make the identifi-
cation decision. Integrating this equation between ci and ci+1 gives
the joint probability that the suspect both has a strength value in
this range and has the highest strength value in the lineup, i.e., the
probability of selecting the suspect with confidence level i.

In Equation A1c has the same structure as Equation A1b,
but the probability density for the suspect is based on the lure
distribution to represent a target absent lineup.

Filler response

The probability of a filler response at confidence level i is
given by

P resp ¼ fil∩conf ¼ ið Þ
¼ pP resp ¼ fil∩conf ¼ ijtar ¼ presð Þ

þ 1−pð ÞP resp ¼ fil∩conf ¼ ijtar ¼ absð Þ; ðA2aÞ

where

P resp ¼ fil∩conf ¼ ijtar ¼ presð Þ

¼ l−1ð Þ ∫
ci

ciþ1

ϕ s;μl;σlð ÞΦ s;μl;σlð Þl−2Φ s;μt;σtð Þds ðA2bÞ

and

P resp ¼ fil∩conf ¼ ijtar ¼ absð Þ

¼ l−1ð Þ ∫
ci

ciþ1

ϕ s;μl;σlð ÞΦ s;μl;σlð Þl−2Φ s;μl;σlð Þds: ðA2cÞ

Equation A2a finds that the overall probability of selecting a
filler at confidence level i by taking the weighted average of the

7 Note that the package code implements the joint, rather than conditional
probabilities, for example, P(resp = sus ∩ conf = i) = P(resp = sus ∩ conf =
i∩ tar = pres) + P(resp = sus∩ conf = i∩ tar = abs),P(resp = sus∩ conf = i∩
tar = pres) = pP(resp = sus ∩ conf = i| tar = pres), and P(resp = sus∩ conf = i
∩ tar = abs) = (1 − p)P(resp = sus∩ conf = i| tar = abs). For ease of exposition,
the conditionals are presented here, but the results are equivalent. The same
transformation holds for all equations below.
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corresponding probability for target-present and target-absent
lineups, which would be needed for restricted data.

EquationsA2b andA2c give the probability of selecting a filler
at confidence level i for target-present and target-absent lineups
individually, so these equations would be used for full data.

For EquationA2b, the first term in the integral is the probability
density at strength value s for a filler F1 (i.e., a draw from the lure
distribution). The second term in the integral is the probability that
one of the other l – 2 fillers has a strength value below s.
Exponentiating provides the joint probability that all of these other
fillers all have a strength value below s. The third term in the
integral is the probability that the suspect (i.e., a random draw
from the target distribution) has a strength value below s.
Multiplying these three terms gives the probability density that
F1 has a strength value of s and this strength value is higher than
the strength values for all the other fillers and the suspect. That is,
F1 is selected as the lineup member whose strength value will
inform the identification decision and has a strength value of s.
Integrating this equation between ci and ci+1 gives the joint prob-
ability that filler F1 both has a strength value in this range and has
the highest strength value in the lineup, that is, the probability of
selecting fillerF1with confidence i. Finally, multiplying this value
by the number of fillers (l – 1) gives the probability of selecting
any of the fillers at confidence level i.

Equation A2c has the same structure as Equation A2b,
except that the suspect becomes a draw from the lure distribu-
tion to represent a target-absent lineup.

No identification

The probability of rejecting the lineup, that is, not identifying
any lineup member as the culprit, is given by

P resp ¼ rejð Þ ¼ pP resp ¼ rejjtar ¼ presð Þ
þ 1−pð ÞP resp ¼ rejjtar ¼ absð Þ; ðA3aÞ

where

P resp ¼ rejjtar ¼ presð Þ

¼ ∫
−∞

c1

ϕ s;μt;σtð ÞΦ s;μl;σlð Þl−1ds

þ l−1ð Þ ∫
−∞

c1

ϕ s;μl;σlð ÞΦ s;μl;σlð Þl−2Φ s;μt;σtð Þds ðA3bÞ

and

P resp ¼ rejjtar ¼ absð Þ

¼ ∫
−∞

c1

ϕ s;μl;σlð ÞΦ s;μl;σlð Þl−1ds

þ l−1ð Þ ∫
−∞

c1

ϕ s;μl;σlð ÞΦ s;μl;σlð Þl−2Φ s;μl;σlð Þds:ðA3cÞ

Equation A3a indicates that the overall probability of
rejecting a lineup is the weighted average of the probability
of rejection for target-present and target-absent lineups. This
value is needed to fit restricted data.

Equations A3b and A3c give the probability of rejection for
target-present and target-absent lineups, and so are used for
full data.

In Equation A3b, the first integral has the same structure as
Equation A1b and gives the probability that the suspect has
the highest strength value and a strength value below c1. The
second integral has the same structure as Equation A2b and
gives the probability that a given filler has the highest strength
value and a strength value below c1, which is multiplied by the
number of fillers that could potentially have the highest
strength value (l – 1). Adding these two terms gives the total
probability that the lineup member with the highest strength
value (whether suspect or filler) has a strength below c1, that
is, the probability that the lineup will be rejected.

Equation A3c has the same structure as Equation A3b,
except that the suspect is now a draw from the lure distribution
to represent a target-absent lineup.

Appendix B Equations for sequential lineups

Let ϕ(s, μ, σ) be the density of a normal distribution with

mean μ and standard deviation σ and let Φ s;μ;σð Þ ¼ ∫
s

−∞
ϕ

x;μ;σð Þdx be the cumulative normal.
Let resp=response, with values sus=suspect, fil=filler, and

rej=reject. Let conf=the response confidence level, with
values 1…max confidence level. Note that, for notational con-
venience, 1 is the lowest confidence level here. Let tar=target,
with values pres=present and abs=absent. Let spos=the sub-
ject position, with values=1…lineup size.

The following model parameters are used: p=P(target pres-
ent), μt=target distribution mean, σt=target distribution stan-
dard deviation, μl =lure distribution mean, σl =lure distribu-
tion standard deviation, ci=the values of the i

th response crite-
rion, where c1 is the lowest response criterion.

The lineup size is given by l.
For the sequential lineups, suspect and filler responses de-

pend on the suspect position.
Also see Fig. 1.

Suspect response

The probability of a suspect response at confidence level i is
given by8

8 Note that the package code implements the joint, rather than conditional
probabilities. See FN 7.
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P resp ¼ sus∩conf ¼ ið Þ
¼ pP resp ¼ sus∩conf ¼ ijtar ¼ presð Þ

þ 1−pð ÞP resp ¼ sus∩conf ¼ ijtar ¼ absð Þ; ðB1aÞ

where

P resp ¼ sus∩conf ¼ ijtar ¼ presð Þ

¼ ∑
l

j¼1
P spos ¼ jð ÞP resp ¼ sus∩conf ¼ ijspos ¼ j∩tar ¼ presð Þ;

ðB1bÞ
where P(spos = j)is the probability that the suspect is in posi-
tion j, as determined by the lineup designer and

P resp ¼ sus∩conf ¼ ijspos ¼ j∩tar ¼ presð Þ

¼ Φ c1;μl;σlð Þ j−1 ∫
ci

ciþ1

ϕ s;μt;σtð Þds ðB1cÞ

and

P resp ¼ sus∩conf ¼ ijtar ¼ absð Þ

¼ ∑
l

j¼1
P spos ¼ jð ÞP resp ¼ sus∩conf ¼ ijspos ¼ j∩tar ¼ absð Þ;

ðB1dÞ
where

P resp ¼ sus∩conf ¼ ijspos ¼ j∩tar ¼ absð Þ

¼ Φ c1;μl;σlð Þ j−1 ∫
ci

ciþ1

ϕ s;μl;σlð Þds: ðB1eÞ

Equation B1a provides the overall probability of a suspect ID
at confidence level i, used for restricted data, by taking the
weighted average of the probability of a suspect ID at confidence
level i for target-present and target-absent lineups. The weight is
determined by the proportion of target-present lineups (p).

Equations B1b and B1c give the probability of a suspect ID
at confidence level i for target-present lineups. Equation B1c
assumes a given suspect position and Equation B1b calculates
this value across the full distribution of suspect positions. In
Equation B1c, the first term is the probability that the witness
would reach the suspect position (j) in the lineup; that is, that
all j – 1 preceding fillers would have strength values below the
identification criterion c1. The second term is the probability
that the witness would identify the suspect with confidence
level i, found by integrating the probability density of the
target distribution between the criteria defining the bounds
of confidence region i. Multiplying the two terms gives the
probability that the witness would reach the suspect in the
lineup sequence and would identify them with confidence
level i once they do so. Equation B1b takes the weighted

average of the values returned by Equation B1c for each sus-
pect position, where the weights are taken from the probability
distribution of suspect positions.

Equations B1d and B1e have the same structure as
Equations B1b and B1c, except that the suspect strength
comes from the lure distribution instead of the target
distribution to represent a target-absent lineup.

Filler response

The probability of a filler response at confidence level i is
given by

P resp ¼ fil∩conf ¼ ið Þ
¼ pP resp ¼ fil∩conf ¼ ijtar ¼ presð Þ

þ 1−pð ÞP resp ¼ fil∩conf ¼ ijtar ¼ absð Þ; ðB2aÞ

where

P resp ¼ fil∩conf ¼ ijtar ¼ presð Þ

¼ ∑
l

j¼1
P spos ¼ jð ÞP resp ¼ fil∩conf ¼ ijspos ¼ j∩tar ¼ presð Þ;

ðB2bÞ
where P(spos = j)is the probability that the suspect is in posi-
tion j, as determined by the lineup designer, and

P resp ¼ fil∩conf ¼ ijspos ¼ j∩tar ¼ presð Þ

¼ ∑
l

k¼1

0 if k ¼ j

Φ c1;μl;σlð Þk−1 ∫
ci

ciþ1

ϕ s;μl; σlð Þds if k < j

Φ c1;μl;σlð Þk−2Φ c1;μt;σtð Þ ∫
ci

ciþ1

ϕ s;μl; σlð Þds if k > j

8
>>>><

>>>>:

ðB2cÞ
where k denotes each lineup position, and

P resp ¼ fil∩conf ¼ ijtar ¼ absð Þ

¼ ∑
l

j¼1
P spos ¼ jð ÞP resp ¼ fil∩conf ¼ ijspos ¼ j∩tar ¼ absð Þ;

ðB2dÞ
where

P resp ¼ fil∩conf ¼ ijspos ¼ j∩tar ¼ absð Þ

¼ ∑
l

k¼1

0 if k ¼ j

Φ c1;μl; σlð Þk−1 ∫
ci

ciþ1

ϕ s;μl; σlð Þds if k < j:

Φ c1;μl;σlð Þk−2Φ c1;μl;σlð Þ ∫
ci

ciþ1

ϕ s;μl; σlð Þds if k > j

8
>>>><

>>>>:

ðB2eÞ

297Behav Res  (2021) 53:278–300



Equations B2a, B2b, and B2d are directly analogous to
Equations B1a, B1b, and B1d. See the explanation of those
equations. Equations B2c and B2e are similar to Equations
B1c and B1e, but they give the probability of selecting any
of the fillers (as opposed to the single suspect) with a given
confidence level.

First consider Equation B2c. The sum goes over all
the positions (k) in the lineup (1 through l). For each
position, the bracketed equations give the probability of
selecting a filler at confidence level i for that position.
This value is 0 if the suspect (and not a filler) is in that
position (the first “if” statement). Recall that the suspect
is in position j. The second “if” statement applies to
filler positions that come before the suspect position in
the lineup. For these positions, the equation is the prob-
ability of rejecting all of the k – 1 fillers that came

before the filler in position k – that is, the probability
that k – 1 random draws from the lure distribution would
all fall below the identification criterion c1 – multiplied
by the probability of selecting confidence level i for the
filler in position k, which is found by integrating the
probability density of the lure distribution between the
confidence criteria defining this confidence region. The
third “if” statement applies to filler positions that come
after the suspect position. The only change from the
equation just discussed is that now the probability of
getting “past” the faces before position k is found by
multiplying the probability that each of the k – 2 preced-
ing fillers fell below the identification criterion and the
probability that the one preceding guilty suspect fell be-
low the identification criterion.

Fig. 16 Figure generated from sdtlu_compare_2with the Palmer et al. (2013) short and long delay simultaneous lineup data. To removewhitespace, the
figure has been reformatted

Appendix D Full sdtlu_compare_2 figure
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Equation B2e is like Equation B2c, except that, because
this is for a target-absent lineup, the suspect term in the third
“if” statement is defined by the lure distribution.

No identification

Lineup rejections do not depend on suspect position. The
probability of rejecting the lineup, that is, failing to identify
any individual, is given by
P resp ¼ rejð Þ ¼ pP resp ¼ rejjtar ¼ presð Þ

þ 1−pð ÞP resp ¼ rejjtar ¼ absð Þ; ðB3aÞ

where

P resp ¼ rejjtar ¼ presð Þ
¼ Φ c1;μt;σtð ÞΦ c1;μl;σlð Þl−1 ðB3bÞ

and

P resp ¼ rejjtar ¼ absð Þ
¼ Φ c1;μl;σlð ÞΦ c1;μl;σlð Þl−1: ðB3cÞ

Equation B3a provides the overall probability of re-
jection across all lineups, used for fitting restricted data,
by taking the weighted average of the probability of re-
jection for target-present and target-absent lineups.
Equation B3b gives the probability that all members of
a target-present lineup would fall below the identification
criterion c1, obtained by multiplying the probability that
a draw from the target distribution falls below this crite-
rion by the probability that all of the l – 1 fillers also fall
below this criterion. Equation B3c is the same as equa-
tion B3b, except now all lineup members are assumed to
be draws from the lure distribution.

Appendix C Equations for AUC
and diagnosticity

Area under the curve

Let Ta = P(suspect pick | target absent) for a given set of
model parameters θ. Let T*

a be the highest Ta on the ROC
curve, which can be less than 1 for lineups. Let Tp(x) =
P(suspect pick | target present) when Ta = x. Then,

AUC ¼ ∫
T*
a

0
Tp xð Þdx: ðC1Þ

Analytic solutions do not typically exist for AUC. Here,
AUC is computed numerically using iterative quadrature.

Diagnosticity

Letϕ(s, μ, σ) be the density of a normal distribution with mean

μ and standard deviation σ and let Φ s;μ;σð Þ ¼ ∫
s

−∞
ϕ x;μ;σð Þ

dx be the cumulative normal. Let μt=target distribution mean,
σt=target distribution standard deviation, μl =lure distribution
mean, σl =lure distribution standard deviation, ci=the values of
the ith response criterion, where c1 is the lowest response crite-
rion. Let the lineup size be given by l. Also see Fig. 1.

Simultaneous lineups

First, consider diagnosticity for simultaneous lineups. Overall
diagnosticity, collapsing over response threshold, is given by

diagnosticity ¼ ∫∞c1 ϕ s;μt;σtð ÞΦ s;μl;σlð Þl−1ds
∫∞c1 ϕ s;μl;σlð ÞΦ s;μl;σlð Þl−1ds ðC2Þ

and diagnosticity at confidence level i is given by

diagnosticity ¼ ∫ci
ciþ1

ϕ s;μt;σtð ÞΦ s;μl;σlð Þl−1ds
∫ci
ciþ1

ϕ s;μl;σlð ÞΦ s;μl;σlð Þl−1ds
: ðC3Þ

Sequential lineups

Next, consider diagnosticity for sequential lineups. Overall
diagnosticity, collapsing over confidence, is given by

diagnosticity ¼
∑
l

j¼1
P spos ¼ jð ÞΦ c1;μl; σlð Þ j−1 ∫∞c1 ϕ s;μt; σtð Þds

∑
l

j¼1
P spos ¼ jð ÞΦ c1;μl; σlð Þ j−1 ∫∞c1 ϕ s;μl; σlð Þds

; ðC4Þ

where P(spos=j) is the probability of a suspect at position j.
The diagnosticity at confidence level i is given by

diagnosticity ¼
∑
l

j¼1
P spos ¼ jð ÞΦ c1;μl;σlð Þ j−1 ∫ci

ciþ1

ϕ s;μt;σtð Þds

∑
l

j¼1
P spos ¼ jð ÞΦ c1;μl;σlð Þ j−1 ∫ci

ciþ1

ϕ s;μl;σlð Þds
: ðC5Þ
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