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Abstract
The multilevel latent growth curve model (MLGCM), which is subsumed by the multilevel structural equation modeling framework,
has been advocated as ameans of investigating individual and cluster trajectories. Still, how to evaluate the goodness of fit ofMLGCMs
has not been well addressed. The purpose of this study was to conduct a systematicMonte Carlo simulation to carefully investigate the
effectiveness of (a) level-specific fit indices and (b) target-specific fit indices in an MLGCM, in terms of their independence from the
sample size’s influence and their sensitivity to misspecification in the MLGCM that occurs in either the between-covariance, between-
mean, or within-covariance structure. The design factors included the number of clusters, the cluster size, and the model specification.
We used Mplus 7.4 to generate simulated replications and estimate each of the models. We appropriately controlled the severity of
misspecification whenwe generated the simulated replications. The simulation results suggested that applying RMSEAT_S_COV, TLIT_

S_COV, and SRMRB maximizes the capacity to detect misspecifications in the between-covariance structure. Moreover, the use of
RMSEAPS_B, CFIPS_B, and TLIPS _B is recommended for evaluating the fit of the between-mean structure. Finally, we found that
evaluation of the within-covariance structure turned out to be unexpectedly challenging, because none of the within-level-specific fit
indices (RMSEAPS_W, CFIPS_W, TLIPS _W, and SRMRW) had a practically significant sensitivity.

Keywords Fit index . Model evaluation . Multilevel latent growth curve model . Multilevel structural equation modeling

A panel study is a powerful longitudinal design in which data are
observed or gathered from exactly the same people, group, or
organization across multiple time points (Neuman, 2009). Panel
studies allow researchers to investigate a moving picture of ob-
served units over time (i.e., a trajectory), rather than a single
snapshot, as in cross-sectional studies. During the past few de-
cades, two-stage cluster sampling (TCS) has been widely
adopted for most large-scale panel studies (e.g., the Education
Longitudinal Study of 2002, Ingels et al., 2013; or the Early
Childhood Longitudinal Study, Kindergarten Class of 1998–

1999, Tourangeau, Nord, Lê, Sorongon, & Najarian, 2009).
Briefly speaking, TCS is conducted by randomly selecting clus-
ters (e.g., schools), and then randomly selecting individuals (e.g.,
students) within the selected clusters (Lohr, 2009). Incorporating
TCS in panel studies not only makes the research design more
cost-efficient (Scheaffer,Mendenhall, &Ott, 2005), but also gen-
erates three-level data (e.g., school/cluster, student/individual,
and time point) that permit a comprehensive investigation of
trajectories at both the individual (e.g., student) and cluster
(e.g., school) levels.

The multilevel latent growth curve model (MLGCM), which
is subsumed by the multilevel structural equation modeling
(MSEM) framework, has been advocated as a means of investi-
gating individual and cluster trajectories (for further discussion,
see B. O. Muthén & Asparouhov, 2011). In an MLGCM, the
time dimension is converted into a multivariate vector, which
allows three-level data to be analyzed with a two-level model
in which individual-related parameters are estimated in thewithin
model and cluster-related parameters are evaluated in the between
model. An example of using an MLGCM to investigate individ-
ual and cluster trajectories can be found inB.O.Muthén’s (1997)
study, in which he analyzed data drawn from the Longitudinal
Study of American Youth (LSAY; Miller, Kimmel, Hoffer, &
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Nelson, 2000), a national panel study ofmathematics and science
education in US public schools.

Still, how to evaluate the goodness of fit of MLGCMs has
not been well addressed. Model evaluation is required in order
to examine the extent to which the hypothesized models, pro-
posed on the basis of solid theories or empirical findings, are
representative of the relationships among the variables, given
the data (Kaplan, 2009; Kline, 2011). One common approach to
model evaluation uses fit indices (e.g., the root mean square
error of approximation [RMSEA], comparative fit index
[CFI], Tucker–Lewis index [TLI], and standardized root mean
square residual [SRMR]) to assess the model fit. However,
because a traditional MLGCM comprises both between and
within models, it has been suggested that the models at different
levels should be evaluated separately by level-specific fit indices
(Hox, 2010; Hsu, Kwok, Acosta, & Lin, 2015; Ryu, 2014; Ryu
& West, 2009). Studies contributing to understanding the per-
formance of level-specific fit indices in MSEM have been con-
ducted in the context of multilevel confirmatory factor analysis
(MCFA; e.g., Hsu, Lin, Kwok, Acosta, & Willson, 2016; Ryu
& West, 2009), multilevel path models (Ryu, 2014), and mul-
tilevel nonlinear models (Schermelleh-Engel, Kerwer, & Klein,
2014). Among these three approaches, MCFA is the most sim-
ilar to MLGCMs. Some researchers have recommended using
the aforementioned level-specific fit indices, on the basis of
simulation studies conducted in the context of MCFA.
Particularly, Ryu and West (2009) investigated whether level-
specific CFI and RMSEA could detect a lack of fit at both the
within and between levels in MCFA, and they found that these
fit indices correctly indicated poor model fit in the models at
different levels, regardless of the sample size. However, we
argue that this recommendation for using level-specific fit indi-
ces is hard to generalize from the context of MCFA to
MLGCM. The reason is that Ryu and West’s simulation study
only considered one misspecification, occurring in the covari-
ance structure of MCFA—the covariance between factors was
0.3 in a two-factor population MCFA model, but it was
misspecified as 1.0. The designed misspecification was mean-
ingful in MCFA but also limited the generalizability of their
recommendations to MLGCMs, because MLGCMs often esti-
mate the covariance structure as well as the mean structure, in
order to have a comprehensive understanding of trajectories (W.
Wu & West, 2010). Consequently, the current recommenda-
tions for using level-specific fit indices cannot effectively guide
applied researchers to evaluate their hypothesized MLGCMs.
For this reason, in our study we attempted to address this gap in
the literature by systematically investigating the sensitivity of
level-specific fit indices to misspecifications occurring within
the different structures of MLGCMs.

In addition to level-specific fit indices, our study also evalu-
ated the performance of target-specific fit indices, originally com-
puted for single-level latent growth curvemodels (SLGCMs) that
have both a covariance structure and a mean structure. If any

misspecifications occur in SLGCMs, traditional fit indices
cannot tell which structure in the model is misspecified. To
obtain more informative model evaluation results, W. Wu and
West (2010) suggested that researchers consider evaluating these
two structures separately. In their study, W. Wu and West gener-
ated and evaluated fit indices targeting the covariance structure
and the mean structure separately. In the present study, we ex-
tended their investigation from the context of SLGCMs to
MLGCMs. In MLGCMs, both the between and within models
contain a covariance structure and a mean structure. However,
the parameters in the within-mean structure are fixed to zero
(dummy zero means; B. O. Muthén, 1997), and therefore
within-level-specific fit indices are sufficient to describe the
misspecification occurring in the within model. Consequently,
we evaluated two kinds of target-specific fit indices in our study:
target-specific fit indices for (a) the between-covariance structure
(T_S_COV fit indices) and (b) the between-mean structure
(T_S_MEAN fit indices). Following W. Wu and West (2010)
aswell as Ryu andWest (2009), we created T_S_COV fit indices
by saturating the within model as well as the mean structure of
the between model. On the other hand, we created T_S_MEAN
fit indices by saturating the within model as well as the covari-
ance structure of the between model.

It should be noted that the extent to which target-specific fit
index findings from SLGCMs can be generalized to MLGCMs
remains a question. Target-specific fit indices are different in
nature in SLGCMs versusMLGCMs. In SLGCMs, there is only
a single-level model, and saturation can only occur in either the
mean structure or the covariance structure. However, as is shown
in Appendix A, which outlines a practical way to derive target-
specific fit indices, the computation of target-specific fit indices
in MLGCM requires that the within model be saturated as well.
To the best of our knowledge, the sensitivity of target-specific fit
indices in MLGCMS has not been investigated, and this study
was intended to close this gap in the literature.

In summary, the purpose of this study was to conduct a
systematic Monte Carlo simulation in order to carefully inves-
tigate the effectiveness of (a) level-specific fit indices and (b)
target-specific fit indices in MLGCMs across varying condi-
tions. We evaluated the extent to which fit indices could be
independent of sampling error due to small sample sizes when
a hypothesized model was correctly specified (Gerbing &
Anderson, 1992; Marsh, Hau, & Grayson, 2005). Moreover,
we evaluated the extent to which different fit indices could
reflect the discrepancy between correctly specified models
and misspecified hypothesized models (i.e., the indices’ sen-
sitivity). We expected desirable fit indices to be less impacted
by sampling error and to demonstrate reasonable sensitivity to
misspecifications. This study contributes to the MSEM litera-
ture in two ways. First, it adds an understanding of the perfor-
mance of level-specific and target-specific fit indices in
MSEMs. Second, it makes recommendations regarding model
evaluation practices for MLGCMs.
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Multilevel latent growth curve models

This section presents a two-level latent growth curve model cap-
turing quadratic growth at both levels as an example. The fea-
tured clustered longitudinal data include repeated measures for
each individual nested within the groups, thus forming a three-
level structure. Consider a multilevel dataset with T waves of
repeated measures for each of N individuals nested within G
groups. For the ith individual within the gth group, yig is a mul-
tivariate normally distributed random vector with T elements of
repeated measures ytig, t = 1, 2,… , T, which can be expressed as

yig ¼ y1ig; y2ig; :::; yTig
h i0

T�1
; i ¼ 1; 2

; :::;N ; g ¼ 1; 2; :::;G:
The random vector yig can be decomposed into its

between-level (B) and within-level (W) components:

yig ¼ yB::g þ yW:ig
¼ μB þΛBηB::g þ εB::g þ μW þΛWηW:ig þ εW:ig

: ð1Þ

Here, two random vectors representing the unique variances
of repeated measures, εB..g and εW. ig, are specified separately for
the two levels and are assumed to be uncorrelated with each
other; εB..g is multivariately normally distributed with mean zero
and varianceΘB, and εW. ig is multivariately normally distributed
with mean zero and variance ΘW. The random vectors of latent
growth factors ηB..g and ηW. ig comprise the latent growth factors
I (intercept factor), L (linear slope factor), andQ (quadratic slope
factor), and the corresponding factor loading matrices ΛB and
ΛW for T (e.g., five) waves of measurements are set as:

ηB::g ¼
IB
LB
QB

2
4

3
5
3�1

withΛB ¼

1 0 0
1 1 1
1 2 4
1
1

3
4

9
16

2
6664

3
7775
5�3

; andηW :ig ¼
IW
LW
QW

2
4

3
5
3�1

withΛW ¼

1 0 0
1 1 1
1 2 4
1
1

3
4

9
16

2
6664

3
7775
5�3

:

The variance–covariance matrix for yig is presented in Eq. 2:

Cov yig
� �

¼ ΛBΨbΛ
0
B þΘB þΛWΨWΛ

0
W þΘW : ð2Þ

Model evaluation in multilevel structural
equation modeling

Level-specific fit indices Previous studies have indicated that
traditional global fit indices (e.g., RMSEA) can only reveal
the model fit of the within models, and thus cannot be used to
evaluate the between models (Hsu et al., 2015; Ryu & West,
2009). Hox (2010) drew attention to the need to develop level-

specific (l-s) fit indices to evaluate the within model and the
betweenmodel separately. Ryu andWest began the evaluation
of l-s fit indices. Several recent published works have recom-
mended that researchers apply l-s fit indices to evaluate the
corresponding models at different levels in MSEMs (Hsu
et al., 2016; Ryu, 2014; Ryu & West, 2009; Schermelleh-
Engel et al., 2014).

According to Ryu and West (2009), the partially saturated
model method (PS method) can be used straightforwardly to
compute l-s fit indices. For example, using the PS method,
between-level-specific (b-l-s) X 2 test statistics (χ2

PS B ) can be
obtained by specifying a hypothesized between model and satu-
rating the within model (Hox, 2010). A saturated model can be
seen as a just-identified model with zero degrees of freedom, and
thus has aX 2 test statistic equal to zero. As a result, b-l-sX2 test
statistics only reflect the model fit of the hypothesized between
model (Hox, 2010). Afterχ2

PS B is obtained, b-l-s fit indices (e.g.,
RMSEAPS_B, CFIPS _B, and TLIPS _B) can be computed, be-
cause these fit indices are a function of the X 2 test statistics. In
the same way, within-level-specific (w-l-s) X 2 test statistics
(χ2

PS W ) can be also derived by using the PS method, reflecting
the model fit of the hypothesized within model. After χ2

PS W is
obtained, w-l-s fit indices (e.g., RMSEAPS _W, CFIPS _W,
and TLIPS_W) can be computed. In addition, alternative l-s fit
indices, SRMRB and SRMRW, which are not computed on the
basis of l-sX 2 test statistics, are also available to evaluate models
at different levels in some statistical packages (e.g., Mplus). The
formulas for computing l-s fit indices are introduced inAppendix
B. Generally, b-l-s and w-l-s fit indices are expected to detect any
misspecifications occurring in the between model and the within
model, respectively.

Target-specific fit indicesWe also evaluated target-specific (t-s)
fit indices in this study. The idea of t-s fit indices originated inW.
Wu andWest’s (2010) study, which investigated the performance
of fit indices in SLGCMs. SLGCMs contain a covariance struc-
ture and a mean structure. As W. Wu and West pointed out,
traditional fit indices, such as RMSEA, can reflect the overall
fit of an SLGCM, but fail to detect the structure in which the
misspecification occurs. Thus, the results from an SLGCM eval-
uation using global fit indices do not provide sufficient informa-
tion to substantive researchers for further model modification.
Accordingly, W. Wu and West asserted that there is a need for
fit indices that target evaluating the fit of one specific structure
(covariance or mean structure) of the model.

More specifically, t-s fit indices for the mean structure only
(e.g., RMSEAT _ S _Mean, CFIT _ S _Mean, TLIT _ S _Mean, and
SRMRT_S_Mean) can be derived by saturating the covariance
structure of the SLGCM, whereas t-s fit indices for the covari-
ance structure only (e.g., RMSEAT_S_COV, CFIT_S_COV,
TLIT_S_COV, and SRMRT_S_COV) can be derived by saturating
the mean structure of the SLGCM. W. Wu and West (2010)
found that RMSEAT _ S _MEAN, CFIT _ S _ MEAN, TLIT _ S _

174 Behav Res (2019) 51:172–194



MEAN, and SRMRT _ S _ MEAN were more sensitive to
misspecifications in the mean structure than are traditional fit
indices. However, RMSEAT_S_COV, CFIT_S_COV, TLIT_S_COV,
and traditional fit indices performed similarly in terms of their
sensitivity to misspecifications in the covariance structure. Leite
and Stapleton (2011) concurredwithW.Wu andWest’s findings,
by confirming that SRMRT_ S _MEAN has greater power for
rejecting misspecifications in the mean structure than does tradi-
tional SRMR, whereas RMSEAT_S_COV could not improve the
power of detection of traditional RMSEA. W. Wu and West
(2010) explained that saturating the covariance structure could
dramatically reduce the degrees of freedom, which in turn in-
creases the power of the t-s-mean fit indices to detect
misspecified mean structures. On the other hand, saturating the
mean structure usually decreases the degrees of freedom by only
a small amount, and thus cannot substantially change the power
of t-s-cov fit indices.

Although t-s fit indices were recommended as a useful strat-
egy for evaluating SLGCMs, as of yet there has been no empir-
ical evidence in the literature to support the use of t-s fit indices
for MLGCMs. To contribute to the understanding of how t-s fit
indices perform, we examined the effectiveness of t-s fit indices
in the context of MLGCMs. As previously mentioned, we eval-
uated two kinds of t-s fit indices in this study: the target-specific
fit indices for (a) the between-covariance structure
(RMSEAT_S_COV, CFIT_S_COV, TLIT_S _COV, and SRMRT_S_

COV) and (b) the between-mean structure (RMSEAT_S_Mean,
CFIT _ S _Mean, TLIT_ S _Mean, and SRMRT_S _Mean). We note
that we did not evaluate t-s fit indices for the within model,
because the means of growth factors are fixed at zero (dummy
zeromeans; B. O.Muthén, 1997), and it appears self-evident that
any misspecifications detected by the w-l-s fit indices could be
attributed to the within-covariance structure.

FollowingW.Wu andWest (2010) and Ryu andWest (2009),
we created RMSEAT_S_COV, CFIT_S_COV, TLIT _ S _ COV, and
SRMRT_S_COV by saturating the within model as well as the
mean structure of the between model. More specifically, to satu-
rate the mean structure, we freely estimated the intercepts for all
repeatedmeasures and fixed themeans of the growth factors (i.e.,
IB, LB, and QB in Fig. 1) to zero. On the other hand, we created
RMSEAT_S_Mean, CFIT_S_Mean, TLIT_S_Mean, and SRMRT_

S_Mean by saturating the within model as well as the covariance
structure of the between model. Appendix A outlines a practical
way to derive t-s fit indices.

More considerations when computing CFI- and TLI-related
fit indices Both CFI and TLI are used to evaluate model fit by
comparing the hypothesized model to the independence mod-
el (Bentler, 1990; Tucker & Lewis, 1973). Note that the inde-
pendence model must be nested within the hypothesized mod-
el. We created CFI- and TLI-related fit indices based on
Widaman and Thompson’s (2003) approach, in which the
independence model is an intercept-only growth model in

which only the mean of the intercept factor and the residual
variances are freely estimated.

Method

We conducted a Monte Carlo study to assess the performance
both of l-s fit indices (RMSEAPS _ B, CFIPS _ B, TLIPS _ B,
SRMRB, RMSEAPS_W, CFIPS_W, TLIPS_W, SRMRW) and of
t-s fit indices (RMSEAT_S_COV, CFIT_S_COV, TLIT _ S _ COV,
SRMRT_S_COV , RMSEAT_S_Mean, CFIT_ S _Mean, TLIT_ S _

Mean, and SRMRT_S _Mean) in an MLGCM in terms of their
independence from the sample size’s influence and their sensi-
tivity to misspecifications occurring in the between-covariance,
between-mean, or within-covariance structures. The design fac-
tors we considered included the number of clusters, the cluster
size, and the model specification. We used Mplus 7.4 (L. K.
Muthén & Muthén, 1998–2017) to generate simulated replica-
tions and estimate each of the models.

Population model

We adopted an MLGCM, shown in Fig. 1, as the population
model. In line with previous simulation studies (W. Wu &
West, 2010; W. Wu, West, & Taylor, 2009), we used a quadratic
trajectory population model to generate simulated data. The re-
peated measures, denoted as V1–V5, are assumed to be on a
standardized scale (i.e.,M = 0 and SD = 1). The quadratic growth
pattern is modeled at both the within and the between levels. The
factor loadings of the intercept factors (IW and IB) are fixed at
1.0, and those of the linear slope factors (LWand LB) are set to 0,
1, 2, 3, and 4 as part of the growth model parameterization. To
model a quadratic growth pattern, we specified the quadratic
slope factors (QW and QB) with factor loadings set to 0, 1, 4,
9, and 16.

To mimic more realistic conditions from an empirical dataset,
we adopted parameter settings from LSAY (Miller et al., 2000),
which used a two-stage stratified probability sampling
approach—representative schools were randomly selected, and
students within the selected school were then randomly sampled.
The LSAY has been widely used to study the growth in mathe-
matics and science performance (e.g., Ma & Ma, 2004; Ma &
Wilkins, 2007). Following B. O. Muthén’s (2004) study, we
analyzed the Cohort 2 data, which contain 3,102 students nested
within 52 schools. We used an MLGCM, as presented in Fig. 1,
to analyze the students’ grade 7 to grade 11mathematics achieve-
ment scores obtained by item response theory equating. The
intraclass correlation coefficients (ICCs) of five repeated mea-
sures ranged from .15 to .19. The ICC herein is a cluster statistic
(e.g., school level) defined as the ratio between cluster-level var-
iance and total variance (Cohen, Cohen,West, &Aiken, 2003; B.
O. Muthén & Satorra, 1995). The identified magnitudes for the
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ICCs are common in educational research and suggested that
clustering should not be ignored (Hox, 2010).

The parameter settings for the mean structure (αW) and
covariance structure (ΦW) of the population within model
are presented in the following matrices:

αW ¼
0
0
0

2
4

3
5; ΦW

¼
71:453 6:762 τ01ð Þ 0

6:762 τ10ð Þ 14:755 0
0 0 0:703 τ22ð Þ

2
4

3
5:

In αW, the means of IW, LW, and QW, referred to as dummy
zero means by B. O. Muthén (1997), are fixed at zero. In ΦW,
the diagonal values are the variances of IW (71.453), LW
(14.755), and QW (0.703), and the nondiagonal values are
the covariances among the three factors. Following W. Wu
andWest’s (2010) simulation design, the covariances between
IW and QW and between LW and QW are constrained to be
zero for simplicity. The error variances are 11.906, 15.249,
10.321, 12.592, and 1.931 for the repeated measures V1–
V5, respectively, and are uncorrelated over time.

In this simulation, the between model has the same struc-
ture as the within-level model. The parameter settings for the

mean structure and covariance structure in the between model
are presented in matrices αB and ΦB, respectively:

αB ¼
49:956
4:324

−0:127 γ200ð Þ

2
4

3
5; ΦB

¼
16:200 2:819 β01ð Þ 0

2:819 β10ð Þ 0:609 0
0 0 0:018 β22ð Þ

2
4

3
5:

The means of IB, LB, and QB are set to 49.956, 4.324, and
– 0.127, respectively. In ΦB, the diagonal values are the var-
iances of IB (16.200), LB (0.609), and QB (0.018), and the
nondiagonal values are the covariances among the three fac-
tors. The covariances between IB andQB and between LB and
QB are constrained to be zero. The error variances of the
repeated measures V1–V5 are independent and set to 1.800,
1.277, 0.059, 0.541, and 0.305, respectively.

Design factors

We took three related design factors into account: the number
of clusters (NC), cluster size (CS), and model specification.
NC is a critical factor when estimatingMSEMs (Hox&Maas,
2001; Hox, Maas, & Brinkhuis, 2010). Therefore, we

IB LB QB

V 1
V 2 V 3 V 4

IW LW QW

Between-level 

Model

Within-level 

Model

V 5

Fig. 1 A two-level MLGCM
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considered different NCs in accordance with Hox and Maas’s
and J.-Y. Wu, Kwok, andWillson’s (2015) simulation studies:
50, 100, and 200. The CSwas manipulated into three levels, 5,
10, and 20, in line with the simulation design in Hox and
Maas’s (2001) study. This CS range is also consistent with
the CSs found in two large-scale educational databases: the
Early Childhood Longitudinal Study, Kindergarten Class of
1998–99 (CS = 18; Tourangeau et al., 2009) and the Early
Childhood Longitudinal Study, Kindergarten Class of 2010–
11 (CS = 15; Tourangeau et al., 2015).

The last design factor, the model specification, had two
scenarios: correct specification and misspecification. Correct
specification meant that a hypothesized model identical to the
population model was specified to fit each of the simulated
replications. An ideal fit index would successfully identify the
correctly specified models. Conversely, if a hypothesized
model with an intentionally imposed misspecification were
fitted to the simulated replications, the ideal fit index would
indicate that the hypothesized model was misspecified. The
following section presents detailed information regarding the
different types of intentional misspecifications.

Intentional misspecifications in the hypothesized models We
created a total of five types of model misspecifications in this
study. In line with previous simulation studies (W. Wu & West,
2010; W. Wu et al., 2009), we considered three intentional
misspecifications in the hypothesized between model for this
simulation study: (1) misspecification of the covariance between
the intercept factor and the linear slope factor at the between level
as 0 (β10/β01 = 0; MIS_COVB), (2) misspecification of the var-
iance of the quadratic slope factor at the between level as 0 (β22 =
0; MIS_VARB), and (3) misspecification of the mean of the
quadratic factor at the between level as 0 (γ200 = 0;
MIS_MEANB). Additionally, we considered two intentional
misspecifications in the hypothesized within model: (4)
misspecification of the covariance between the intercept factor
and the linear slope factor at the within level as 0 (τ10/τ01 = 0;
MIS_COVW), and (5) misspecification of the variance of the
quadratic slope factor at the within level as 0 (τ22 = 0;
MIS_VARW). Consistent with previous studies, we only consid-
ered underparameterized misspecifications in the study. We im-
plemented an underparameterized misspecification by fixing at
zero targeted parameter values whose population values were
nonzero (Hu & Bentler, 1998). In each case, only one
misspecification was imposed in the hypothesized model.
Between-model-related fit indices were expected to detect inten-
tional misspecifications occurring in the between model
(MIS_COVB, MIS_VARB, and MIS_MEANB), and within-
model-related fit indices were expected to detect intentional
misspecifications occurring in the within model (MIS_COVW

and MIS_VARW).
In this study, we did not consider misspecifications in the

residual (co) variances at the between or within levels, for two

reasons. First, the residual variances at the between level are
often trivial (Hox, 2010). Therefore, misspecification in the
residual (co) variances at the between level is less likely to be
of practical concern for researchers. Second, the structure of
residual (co) variances at the within level (i.e., within-subject
residuals) can be very complicated, and an independent sim-
ulation study on this issue is therefore warranted (e.g., Kwok,
West, & Green, 2007)

Population parameters To ensure that the severities of the five
intentional misspecifications were the same (Fan & Sivo,
2005), we adjusted the magnitudes of key parameters in the
population models in order to achieve a severity of
misspecification equal to a power of .80, given the number
of clusters = 100 and the cluster size = 10 (for further discus-
sion, see W. Wu & West, 2010, pp. 427–428), before gener-
ating the simulated replications. Appendix C presents the key
parameter settings in the population models for each of the
five misspecified conditions. For example, population model
M1 in Appendix C was used to generate simulated data for the
MIS_COVB condition (i.e., the intentional misspecification
β10/β01 = 0). The value of the population parameter β10/β01
was adjusted to 4.390 rather than 2.819, and hence the severity
of the misspecification β10/β01 = 0 reached a power of .80. As
a result, the severity of the misspecifications would not con-
found the performance of the fit indices of interest.

Analysis

The two design factors related to the sample size (NC: 50, 100,
and 200; CS: 5, 10, and 20) and six specification conditions
(correc t speci f icat ion, MIS_COVB, MIS_VARB,
MIS_MEANB, MIS_COVW, and MIS_VARW) were integrat-
ed into 54 conditions. For each condition, replications with
convergence problems or improper solutions (e.g., negative
unique variances) were excluded until 1,000 replications had
been generated. The fit indices of interest produced by both
the correctly specified models and the misspecified models
were saved for further analyses.

We conducted two sets of analyses. The first set of analyses
evaluated whether the fit indices of interest could be independent
of sampling errors due to small sample sizes when a hypothe-
sized model was correctly specified. Following Marsh, Hau, and
Grayson (2005), we analyzed the values of the fit indices (i.e.,
outcome variables) under the condition that the hypothesized
models were correctly specified (i.e., correct specification condi-
tion). We conducted a series of factorial analyses of variance
(ANOVAs) on the fit indices values to examine the effects of
the design factors NC and CS on the performance of the fit
indices. Fit indices with lower effect sizes (indicated by eta-
squared, discussed below) of the factors NC and CS were less
influenced by sampling errors. Because RMSEA-, CFI-, and
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TLI-related fit indices were a function of theX 2 test statistic, we
conducted similar ANOVAs on X2 test statistics to inform
readers of the extent to which the X 2 test statistic could be
influenced by design factors.

The second set of analyses evaluated the extent to which
the fit indices were able to reflect the discrepancy between
correctly specified models and misspecified models (i.e., their
sensitivity). Ideal fit indices should reflect the misfit arising
from the imposed misspecification. Therefore, the sensitivity
of fit indices can be captured as a discrepancy between the
values derived from the misspecified model and the correctly
specified model. A larger magnitude of discrepancy suggests
higher sensitivity of a fit index. Analytically, we combined the
fit indices values derived from a misspecified model and from
the correctly specified model into one dataset and then ana-
lyzed the values of fit indices (outcome variables) with
ANOVAs to determine sensitivity. Factors in the ANOVAs
included sensitivity (SEN; i.e., replications fitted to
misspecified models vs. correctly specified models), type of
misspecification (MIS; e.g., MIS_COVB vs. MIS_VARB),
NC, CS, and all interaction terms. Similar ANOVAs were
conducted on X2 test statistics for comparison purposes. On
the basis of the results of these two analyses, we were able to
make recommendations for practical and theoretical research.
These recommendations appear in the Results and Conclusion
sections.

As was mentioned in the Method section, we adjusted
key parameters in the population models (see Appendix
C, population models M1–M5) to ensure that the findings
derived from the five intentional misspecification condi-
tions would be comparable (i.e., not confounded by the
severity of different misspecifications). Population models
M1 and M2 were designed to generate simulated replica-
tions for evaluating fit indices in terms of their sensitivity
to the misspecified between-covariance structure. The
evaluation of the b-l-s and t-s-cov fit indices was based
on replications generated by population models M1 and
M2. In contrast, population model M3 was designed to
evaluate the sensitivity of the fit indices to the
misspecified between-mean structure. Therefore, we eval-
uated the t-s-mean fit indices based on replications gener-
ated by population model M3. Finally, we evaluated the
w-l-s fit indices based on replications generated by popu-
lation models M4 and M5. Furthermore, for each factorial
ANOVA, the total sum of squares (SOS) of each fit index
provided the variability of the fit index values across all
replications under specific simulation conditions. We
computed eta-squared (η2) by dividing the Type III SOS
of a particular predictor or the interaction effect by the
corrected total SOS, which provides the proportion of
the variance accounted for by a particular design factor
or interaction effect term. Following Cohen’s (1988,
1992) suggestion, we adopted a moderate η2 of .0588 in

order to identify influential design factors in the fit indices
values (i.e., practically significant). Note that in cases in
which a fit index had a corrected total SOS close to 0 (or
a variance close to 0), the impact of design factors on the
fit index were self-evidently trivial, even though the η2s
were larger than .0588. In our analysis, when fit indices
have extremely low variability, we have further clarified
the interpretation of their design factors’ η2s in the Results
section.

Results

In this section, three tables have been created to present the
simulation results. Table 1 shows the ANOVA results (η2)

with X 2 test statistics or fit indices values as the dependent
variables to evaluate the sensitivity to sampling errors, where-
as Table 2 shows the ANOVA results to investigate the sensi-
tivity to misspecifications. To understand the difference on the

performance of the targeted fit indices and X 2 test statistics,

we also present the descriptive statistics of X2 test statistics
including means, standard deviations, and Type I error rates/
power in Table 3. Our intent in presenting Table 3 is to inform

researchers under which conditions we encourage thatX 2 test
statistics be used (given reasonable Type I error rates or pow-
er) along with fit indices.

Convergence rates

The convergence rates for each simulation condition were
approximately 100%. The results suggest that the smallest
sample size we considered in this study (NC = 50, CS = 5)
was unlikely to encounter convergence problems if a
MLGCM with five repeated measures was specified and
analyzed.

First set of analyses: Sensitivity to sampling error

The first set of analyses we conducted aimed at evaluating
whether fit indices of interest could be independent of sam-
pling errors due to small sample sizes when a hypothesized
model was correctly specified. The left side of Table 1

presents the ANOVA results (η2) with X 2 test statistics or
fit index values as the dependent variables in order to eval-
uate the sensitivity of each approach to sampling errors.
Note that the main effects of NC and CS were practically
significant for some fit indices (described below), but none
of interaction effects of NC and CS were practically sig-
nificant. We provide a visual representation of the main
effects of NC and CS with boxplots for each fit index in
Figs. 2 and 3, respectively. The horizontal dashed lines
noted on the figures denote the traditional cutoff criteria
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of the fit indices (RMSEA-related fit indices <.06; CFI-
and TLI-related fit indices >.95; SRMR-related fit indices
<.08; Hu & Bentler, 1999). Those lines are expected to
facilitate a better understanding regarding whether these
fit indices were able to accurately identify correct models
across NCs and CSs if the cutoff criteria were applied.

X2 test statistics Provided in Table 1 are the various X 2

test statistics, including χ2
PS B, χ2

PS W , χ2
T S COV , and

χ2
T S MEAN , which had η2s ranging from .000 to .037.

In other words, these X 2 test statistics were not

practically significantly impacted by NC, CS, or NC ×
CS. Presented in Table 3 (top of table) are the means,
standard deviations, and Type I errors of these four X 2

test statistics. In general, χ2
PS B (means ranging from

6.897 to 21.886), χ2
PS W (means ranging from 1.464 to

17.477), χ2
T S COV (means ranging from 5.082 to

13.893), and χ2
T S MEAN (means ranging from 9.520 to

10.097) had means approaching the degrees of freedom when
NC = 200 and CS = 20.

The Type I error rates of the fourX 2 test statistics tended to
be closer to the nominal α level (.05) when the sample size

Table 1 ANOVA results (η2) with X2 test statistics and fit indices values as the dependent variable to indicate the sensitivity to sampling error (left
side) and required NC and CS to accurately identify correct models (right side)

Dependent Variable

Number of 

Cluster (NC)

Cluster Size 

(CS) NC × CS

Required NC and CS to Accurately 

Identify Correct Models
b

Test Statistics NC CS
_

.025 .037 .005 Cannot reasonably identify correct 

models given a sample of 4,000 

(NC/CS = 200/20).

_
.016 .025 .007 2,000 or above (NC/CS = 

100/20, 200/10, or 200/20)

_ _
.005 .013 .006 Cannot reasonably identify correct 

models given a sample of 4,000 

(NC/CS = 200/20).

_ _
.000 .007 .011 200 20

Between-level Specific Fit Indices
_ .124 .041 .008 200 > 20

_ .050 .063 .031 50 5

_ .045 .059 .029 100 10
a .088

a
.189

a
.019 50 5

Within-level Specific Fit Indices
_ .086 .124 .029 50 5

_
a .026 .033 .021 50 5

_
a .025 .032 .021 50 5
a .090

a
.152

a
.016 50 5

Target-specific Fit Indices for the 
Between-Covariance Structure 

_ _ .158 .051 .019 200 > 20

_ _ .069 .071 .050 50 5

_ _ .062 .064 .048 50 5

_ _
a .086

a
.190

a
.019 50 5

Target-specific Fit Indices for the 
Between-Mean Structure

_ _ .133 .114 .021 200 > 20

_ _ .047 .094 .033 50 5

_ _ .061 .120 .038 100 10

_ _
a .031 .078

a
.051 50 5

RMSEA = root mean square error of approximation. CFI = comparative fit index. TLI = Tucker–Lewis index. SRMR = standardized root mean square
residual. Subscripted PS = partially saturated model method. Subscripted TS = target-specific fit indices. Subscripted B = between-level model.
Subscripted W = within-level model. Subscripted COV = fit index for evaluating between-covariance structure. Subscripted MEAN = fit index for
evaluating between-mean structure. a Fit index demonstrated extremely low variability and thus its magnitude of η2 is less practically meaningful. We
highlight (gray shaded cells) η2 ≥ .0588. b The nominal α level (.05) and traditional cutoff criteria of the fit indices (RMSEA-related fit indices < .06;
CFI- and TLI-related fit indices > .95; SRMR-related fit indices < .08; Hu&Bentler, 1999) were applied in order to determine the required NC and CS to
correctly identify correct models for the X2 test statistics and fit indices, respectively.
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increased; however, we found that Type I error rates were
inflated across various NC and CS conditions. More specifi-
cally, the Type I error rates of three of the between-level-
related X 2 test statistics (χ2

PS B, χ
2
T S COV , χ

2
T S MEAN ) were

not satisfactory: χ2
PS B had Type I error rates ranging from

.094 to .421 across all sample conditions; χ2
T S COV ’s error

rates ranged from .116 to .354; and χ2
T S MEAN ’s error rates

ranged from .065 to .285, where .065 occurred when the sam-
ple size was 4,000 (NC/CS = 200/20). On the other hand,
χ2
PS W had Type I error rates ranging from .051 to .426, where

increasing the sample size to 2,000 or above resulted in a
reduced Type I error rate. For example, given a sample size
of 2,000 (NC/CS = 100/20 or 200/10), the Type I error rates of
χ2
PS W were between .062 and .077; given a sample size of

4,000 (NC/CS = 200/20), the Type I error rate was .051.

Between-level-specific fit indices Practically, RMSEAPS _ B

was significantly influenced by NC only (η2 = .124),
whereas CFIPS _ B and TLIPS _ B were by CS only (η2s
= .063 and .059, respectively). As is suggested by Fig.
2a, RMSEAPS _ B approached values indicative of good
model fit (i.e., 0) when NC increased. Thus, NC =
200 is recommended if it is being used to identify a
correct between model. On the other hand, in Fig. 3b,
CFIPS _ B and TLIPS _ B approached values indicative of
good model fit (i.e., 1) when CS increased. CFIPS _ B

was able to identify correct between models given CS
= 5. However, as compared with CFIPS _ B, the values
of TLIPS _ B were more spread out and thus needed CS
= 10 in order to correctly identify correct between
models.

Table 2 ANOVA results (η2) with X2 test statistics and fit indices values as the dependent variable to indicate the sensitivity to misspecifications

Dependent Variable

Sensitivity

(SEN)

Number 

of Cluster 

(NC)

Cluster 

Size

(CS)

Type of 

Misspecification

(MIS)

SEN ×

NC

SEN ×

CS 

SEN ×

MIS

Misspecified 
Between-
Covariance 
Structure

_ .179 .004 .008 .012 .028 .047 .000

_ .148 .079 .002 .032 .003 .046 .002

_ .026 .051 .051 .007 .000 .001 .001

_ .012 .045 .047 .012 .001 .003 .002

.307 .026 .069 .012 .000 .001 .006

_ _ .189 .010 .012 .012 .022 .033 .002

_ .280 .050 .007 .031 .002 .052 .006

_ _ .054 .042 .043 .005 .001 .000 .000

_ _ .082 .029 .031 .016 .001 .001 .006

_ _ .305 .026 .069 .013 .000 .001 .008

Misspecified 
Between-
Mean 
Structure

_ .645 .079 .015 NA
b

.090 .021 NA
b

_ .805 .007 .004 NA
b

.001 .013 NA
b

_ .605 .005 .052 NA
b

.000 .025 NA
b

_ .601 .004 .049 NA
b

.000 .025 NA
b

a .164
a

.082
a

.112
a

NA
b

.001 .000 NA
b

_ _ .393 .030 .001 NA
b

.045 .004 NA
b

_ _ .827 .008 .000 NA
b

.000 .002 NA
b

_ _ .335 .014 .074 NA
b

.005 .049 NA
b

_ _ .403 .011 .072 NA
b

.006 .058 NA
b

_ _
a .223

a
.044 .136

a
NA

b
.003 .009 NA

b

Misspecified 
Within-
Covariance 
Structure

_ .195 .002 .006 .016 .032 .036 .007

_ .056 .083 .117 .021 .004 .007 .010

_
a .020 .064 .094 .011 .000 .000 .003

_
a .009 .055 .083 .016 .001 .002 .006
a .006 .073 .169 .012 .000 .002 .000

RMSEA = root mean square error of approximation. CFI = comparative fit index. TLI = Tucker-Lewis index. SRMR = standardized root mean square
residual. Subscripted PS = partially saturated model method. Subscripted TS = target-specific fit indices. Subscripted B = between-level model.
Subscripted W = within-level model. Subscripted COV = fit index for evaluating between-covariance structure. Subscripted MEAN = fit index for
evaluating between-mean structure. a Fit index demonstrated extremely low variability and thus its magnitude of η2 is less practically meaningful. b Since
there was only one misspecification in the between-mean structure (i.e., γ200 = 0; MIS_MEANB), the η2 s for interaction effect SEN × Type of
Misspecification cannot be computed. Note the η2 s for remaining second-, third-, or higher-order interaction effects were approximately zero and thus
are not reported in the table. We highlight (gray-shaded cells) η2 ≥ .0588
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At first glance, SRMRB appears to be strongly im-
pacted by both NC (η2 = .088) and CS (η2 = .189).
However, the boxplots in Figs. 2a and 3a clearly depict
that the variability of SRMRB is extremely low. Indeed,
the variance of SRMRB, computed on the basis of all
simulated replicates, was close to 0. Therefore, the not-
ed magnitude of the η2s of NC and CS did not neces-
sarily mean that NC and CS had any practical impact
on SRMRB.

Within-level-specific fit indices RMSEAPS _W was impacted
by both NC (η2 = .086) and CS (η2 = .124). On the basis of
the magnitude of η2, RMSEAPS _W was more influenced by
CS than by NC. We found that both CFIPS _W and TLIPS _W
had low variabilities and, practically, were not significantly
influenced by NC or CS. On the other hand, although
SRMRW had practically significant values for the η2s of NC
and CS, SRMRW had very little variability, so NC and CS did
not have practical impacts on SRMRW. For all w-l-s fit

Table 3 Descriptive statistics of X2 test statistics by NC and CS for the correctly specified and misspecified conditions

NC 50 50 50 100 100 100 200 200 200
Specification 

Condition Fit Index
CS 5 10 20 5 10 20 5 10 20

Correctly 

Specified 

Condition

_

(df = 6)

Mean 21.886 16.012 10.306 18.283 9.770 7.585 11.442 7.424 6.897

SD 34.048 24.609 12.937 28.438 11.725 4.860 13.778 4.793 4.158

Type I Error (%) .421 .348 .222 .407 .211 .133 .276 .122 .094

_

(df = 6)

Mean 17.477 13.599 8.026 15.613 8.509 6.404 10.464 6.544 5.969

SD 19.291 14.301 5.844 15.777 6.820 3.655 10.020 3.853 3.491

Type I Error (%) .426 .350 .139 .423 .161 .062 .259 .077 .051

_ _

(df = 4)

Mean 11.094 12.625 10.226 13.893 9.203 6.407 12.444 6.401 5.082

SD 24.207 24.095 20.832 24.850 15.445 7.581 23.971 7.969 4.080

Type I Error (%) .219 .310 .255 .354 .256 .176 .334 .173 .116

_ _

(df = 2)

Mean 5.134 5.515 6.159 6.276 9.566 3.421 10.097 5.999 2.238

SD 14.141 11.958 17.794 13.017 29.456 6.287 26.553 16.150 2.355

Type I Error (%) .165 .199 .204 .206 .274 .124 .285 .207 .065

MIS_COV _

(df = 7)

Mean 32.763 33.714 31.604 32.022 29.231 38.975 28.069 37.702 60.599

SD 41.489 39.285 25.191 35.836 19.863 18.269 20.299 15.957 18.631

Power (%) .574 .726 .865 .732 .843 .987 .810 .968 1.000

_ _

(df = 5)

Mean 17.070 29.530 37.914 31.595 37.042 44.327 37.278 43.207 64.843

SD 25.907 37.250 36.274 40.421 36.872 27.637 39.361 25.411 24.483

Power (%) .364 .689 .910 .699 .892 .994 .867 .986 1.000

MIS_VAR _

(df = 9)

Mean 23.292 21.453 26.380 19.360 23.871 37.573 20.832 33.537 62.649

SD 19.740 12.899 13.179 11.338 11.566 13.320 10.385 12.756 17.554

Power (%) .556 .580 .768 .496 .709 .969 .587 .930 1.000

_ _

(df = 7)

Mean 27.806 22.193 25.232 20.949 22.715 35.802 19.837 32.009 60.681

SD 33.496 19.862 14.966 21.105 12.893 13.584 11.687 13.108 17.513

Power (%) .589 .627 .792 .577 .762 .977 .652 .949 1.000

MIS_MEAN _

(df = 7)

Mean 35.717 34.114 25.338 40.200 31.863 34.147 43.114 45.531 57.009

SD 38.885 33.918 14.509 35.563 16.895 11.684 27.220 15.250 13.682

Power (%) .699 .824 .826 .904 .938 .981 .967 .997 1.000

_ _

(df = 3)

Mean 13.524 25.294 28.110 33.023 44.284 33.816 68.375 55.414 53.360

SD 17.698 27.703 24.797 44.310 44.376 19.979 71.310 37.417 15.041

Power (%) .602 .824 .931 .896 .971 .991 .988 1.000 1.000

MIS_COV _

(df = 7)

Mean 22.165 22.884 21.130 24.507 21.631 27.067 23.984 26.853 44.022

SD 20.046 17.952 11.460 18.297 12.447 10.709 13.903 11.619 12.753

Power (%) .554 .651 .724 .700 .710 .912 .766 .877 .998

MIS_VAR _

(df = 9)

Mean 22.214 17.355 16.481 17.950 16.414 20.642 17.203 20.547 31.292

SD 16.579 10.761 7.437 10.621 7.948 7.809 8.889 8.371 10.302

Power (%) .512 .398 .415 .453 .405 .656 .431 .646 .939
MIS_COVB =misspecification of the covariance between the intercept factor and linear slope factor at the between level as 0 (β10/β01 = 0). MIS_VARB

= misspecification of the variance of the quadratic slope factor at the between level as 0 (β22 = 0). MIS_MEANB = misspecification of the mean of the
quadratic factor at the between level as 0 (γ200 = 0). MIS_COVW = misspecification of the covariance between the intercept factor and the linear slope
factor at the within level as 0 (τ10/τ01 = 0). MIS_VARW = misspecification of the variance of the quadratic slope factor at the within level as 0 (τ22 = 0).
All Type I error rates of the X2 test statistics were inflated (≥ .05). Power of the X2 test statistics ≥ .80 is highlighted in gray
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indices, NC = 50 (as indicated by Figs. 2a and 2b) and CS = 5
(as indicated by Figs. 3a and 3b) were sufficient to correctly
identify correct within models.

Target-specific fit indices for the between-covariance struc-
ture RMSEAT _ S _ COV practically was significantly

influenced by NC (η2 = .158) but not by CS (η2 = .051).
As is suggested in Fig. 2a, RMSEAT _ S _ COV required NC
= 200 in order to accurately identify correct between-
covariance structures. On the other hand, both CFIT _ S _

COV and TLIT _ S _ COV were practically significantly affect-
ed by both NC (η2s = .069 and .062, respectively) and CS

(a)

(b)

Fig. 2 (a) Box plot of RMSEA- and SRMR-related fit indices values
derived from correctly specified models by number of clusters (50, 100,
and 200). (b) Box plot of CFI- and TLI-related fit indices values derived
from correctly specified models by number of clusters. Horizontal dashed

lines indicate the traditional cutoff criteria of fit indices (RMSEA-related
fit indices < .06; SRMR-related fit indices < .08; CFI- and TLI-related fit
indices > .95, Hu & Bentler, 1999)
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(η2s = .071 and .064, respectively). Nevertheless, we found
that NC = 50 (indicated by Fig. 2b) and CS = 5 (indicated
by Fig. 3b) were sufficient to accurately identify correct
between-covariance structures. As for SRMRT _ S _ COV,

we found that its variance computed on the basis of all
simulated replicates was close to 0. Therefore, SRMRT _ S

_ COV’s larger noted values of η2 for NC and CS did not
mean it was practically affected by NC and CS.

(a) 

(b)

Fig. 3 (a) Box plot of RMSEA- and SRMR-related fit indices values
derived from correctly specified models by cluster size (5, 10, and 20).
(b) Box plot of CFI- and TLI-related fit indices values derived from
correctly specified models by cluster size. Horizontal dashed lines

indicate the traditional cutoff criteria of fit indices (RMSEA-related fit
indices < .06; SRMR-related fit indices < .08; CFI- and TLI-related fit
indices > .95, Hu & Bentler, 1999)
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Target-specific fit indices for the between-mean structure
RMSEAT_ S _MEAN practically was significantly influenced
by both NC (η2 = .133) and CS (η2 = .114.), and so was
TLIT _ S _MEAN (η2: NC = .061, CS = .120). RMSEAT_ S _

MEAN had a higher demand on both NC (200, as indicated
by Fig. 2a) and CS (> 20, as indicated by Fig. 3a) in order to
accurately identify correct between-mean structures, whereas
TLIT _ S _ MEAN had a moderate demand (NC = 100, as
indicated by Fig. 2b, and CS = 10, as indicated by Fig.
3b). CFIT _ S _MEAN was practically significantly affected
by CS (η2 = .094), but nonetheless we found that CS = 5
was sufficient. On the other hand, SRMRT_ S _MEAN had a
variance close to 0, and thus NC and CS had no practical
effect on it.

Required NC and CS in order to accurately identify correct
models/structures We have summarized the required values
of NC and CS for the X 2 test statistics and each fit index on
the right side of Table 1. As we mentioned earlier, the Type I
error rates of the four X 2 test statistics were inflated across
all sample conditions (see Table 3). The results provided
that χ2

PS B and χ2
T S COV could not reasonably identify cor-

rect models even when the sample size was as large as
4,000. In contrast, χ2

PS W and χ2
T S MEAN had Type I error

rates close to .05 when sample sizes were 2,000 or above
(NC/CS = 100/20, 200/10, or 200/20) and 4,000 (NC/CS =
200/20), respectively. In general, all fit indices had low de-
mand on NC (50) and CS (5), except for the following fit
indices. Specifically, three of the RMSEA-related fit
indices—namely RMSEAPS _ B, RMSEAT _ S _ COV, and
RMSEAT _ S _MEAN—had high demand on NC (= 200) and
CS (> 20) in comparison to the other fit indices. Moreover,
two of the TLI-related fit indices, TLIPS _ B and TLIT _ S _

MEAN, had medium demand of NC (100) and CS (10). Our
results suggested that the fit indices (except for RMSEA-
related fit indices) were more effective in identifying correct
models/structures than were the X 2 test statistics.

Second set of analyses: Sensitivity to misspecification

In this section, we evaluate the performance of the fit
indices under various scenarios in which the hypothe-
sized models were misspecified. We present η2s for the
main effects of sensitivity (SEN), NC, CS, and type of
misspecification (MIS), as well as for some of their
second-order interaction effects, in Table 2. The remain-
ing second-, third-, or higher-order interaction effects
are not presented in this table because the results
showed that none of η2s of the interaction effects were
practically significant. The means of the fit indices

across different sample size conditions can be requested
by contacting the first author.

Misspecified between-covariance structure The top ten rows
of Table 2 contain the η2s of the design factors for both the b-l-
s and t-s-cov X 2 test statistics and fit indices. Note that the
factor MIS included two types of misspecifications,
MIS_COVB and MIS_VARB, and a practically significant η2

of MIS indicated that the fit index was more sensitive to one
type of misspecification (e.g., MIS_COVB) than to the other
(e,g., MIS_VARB).

The results suggested that both χ2
PS B and χ2

T S COV had
practically significant η2s for sensitivity (.179 and .189, re-
spectively) and were not impacted by the other design factors.
The means, standard deviations, and powers of χ2

PS B and

χ2
T S COV for the MIS_COVB and MIS_VARB conditions

are reported in Table 3. Although the values of χ2
PS B and

χ2
T S COV were not practically sensitive to our design factors,

Table 3 suggests that these two X 2 test statistics were able to
detect a misspecified between-covariance structure when the
sample sizes were large. Specifically, in the MIS_COVB con-
dition, both χ2

PS B and χ
2
T S COV had adequate power (≥ .800)

given a sample size of 1,000 (NC/CS = 50/20, 100/10, or 200/
5), whereas in the MIS_VARB condition, a sample size over
1,000 was required in order to reach an adequate power level.
The results also suggested that χ2

T S COV outperformed χ2
PS B

in most sample size scenarios. In summary, a sample size over
1,000 was suggested for χ2

PS B and χ2
T S COV to appropriately

detect misspecified between-covariance structures. Moreover,
χ2
T S COV was favored over χ2

PS B due to its relatively higher
power in most sample size conditions.

On the other hand, the t-s-cov fit indices (saturating both
the within model and the between-mean structure) had rela-
tively larger sensitivity η2s than did the b-l-s fit indices (satu-
rating the within model only), except for SRMR. For example,
the η2 of sensitivity for RMSEAT_ S _ COV was .280, which
was larger than that of RMSEAPS _ B (.148). Similarly, TLIT
_ S _ COV had a larger η2 of sensitivity (.082) than did TLIPS _ B
(.012). Although CFIT _ S _ COV had a larger η2 of sensitivity
(.054) than did CFIPS _ B (.026), both η2s were not practically
significant.

Alternatively, SRMRB and SRMRT_ S _ COV had similarly
high η2s of sensitivity (.307 and .305, respectively), suggest-
ing that both fit indices performed equally well in terms of
their sensitivity to the misspecified between-covariance struc-
ture. Nevertheless, we noticed that both SRMRB and SRMRT

_ S _ COV were also practically significantly affected by CS (η2s
= .069). In other words, when the between-covariance struc-
ture was misspecified, the values of SRMRB and SRMRT_ S _
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COV reflected not only the severity of the misspecification, but
also the size of CS. Our further data analysis showed that the
means of SRMRB and SRMRT_ S _ COVapproached the values
indicative of poor model fit (i.e., 1) when CS decreased.

In summary, SRMRB and SRMRT _ S _ COV acted
comparably—both had the highest sensitivity to misspecified
between-covariance structures, relative to all other fit indices,
but they were also influenced by CS. Therefore, researchers
are encouraged to use either SRMRB or SRMRT_ S _ COV, but
they need to be aware that a small CS (e.g., 5) can contribute
to the values of SRMRB and SRMRT _ S _ COV (leading to
values indicative of poor model fit). Computing t-s-cov fit
indices for RMSEA and TLI (i.e., RMSEAT _ S _ COV and
TLIT _ S _ COV) was a favorable strategy for between-
covariance structure evaluation. Strategically, researchers
should rely more on RMSEAT _ S _ COV than on TLIT _ S _

COV, because RMSEAT_ S _ COV had a larger η2 of sensitivity.
The results did not support CFIPS _ B or CFIT _ S _ COV having
a practically significant sensitivity. In addition, on the basis of
the performance of χ2

PS B and χ2
T S COV discussed earlier, we

encourage researchers to use χ2
PS B or χ2

T S COV (especially
the latter, because of its higher power) in combination with
fit indices when the sample size is over 1,000.

Misspecified between-mean structure The middle ten rows in
Table 2 contain η2s of the design factors for both the b-l-s and

t-s-covX 2 test statistics and fit indices. The factor MIS for the
between-mean structure by design included only one type of
misspecification (MIS_MEANB), and thus this factor had no
variation, and its η2 cannot be computed. Our original simu-
lation design included three levels of NC (50, 100, and 200)
and of CS (5, 10, and 20). Our preliminary analysis resulted in
12.77% of the replications for CS = 5 producing TLIT _ S _

MEAN < 0 (the descriptive statistics of TLIT _ S _MEAN for these
12.77% of the replications wereM = – 4.52, SD = 18.75, min
= – 369.56, and max = 0.00). Moreover, we also found that a
high percentage (7.11%) of the replications for CS = 10 pro-
duced TLIT _ S _MEAN < 0 (M = – 4.25, SD = 19.70, min = –
230.47, and max = 0.00), whereas most replications (57.36%)
were with NC = 50. To more comprehensively evaluate the
impacts of NC and CS on the b-l-s and t-s-mean fit indices, we
expanded on our original work by considering larger sizes for
NC and CS: NC = 100, 200, and 300; and CS = 10, 20, and 30.
Changing the levels of the NC and CS design factors did not
compromise our findings because we analyzed the values of
the fit indices produced by the M3-model-simulated replica-
tions separately.

The results indicated that both χ2
PS B and χ2

T S MEAN had
practically significant η2s of sensitivity (.645 and .393,

respectively). However, χ2
PS B ’s sensitivity was impacted by

NC (η2 = .079) and also moderated by NC (η2 = .090). The
results suggested that increasing NC from 200 to 300 caused a
larger growth in χ2

PS B ’s means than did increasing NC from

100 to 200. On the other hand, χ2
T S MEAN was not

practically significantly impacted by either NC or CS.
We report the means, standard deviations, and power

of χ2
PS B and χ2

T S MEAN in the MIS_MEANB condition
in Table 3. For simplicity, we do not report that infor-
mation for NC = 300 or CS = 30 in the table, given
that the patterns of the means, standard deviations, and
powers of χ2

PS B and χ2
T S MEAN exhibited across NC =

100 to 200 and CS = 10 to 20 were quite clear. The
results suggested that χ2

PS B and χ2
T S MEAN had adequate

power to detect misspecified between-mean structures
when the sample size was 500 (NC/CS = 50/10 or
100/5) or above. In addition, we found that the two
χ2 test statistics performed similarly in most sample size
conditions. In sum, considering that χ2

PS B is less com-

putationally complicated, researchers might use χ2
PS B

when the sample size is approximately 500 or above.
Both RMSEAPS _ B and RMSEAT _ S _ MEAN performed

comparably: Both had outstanding sensitivity (η2s = .805
and .827, respectively) and were not significantly impacted
practically by the design factors. On the basis of the magni-
tudes of sensitivity η2 values, we found that using RMSEAT_

S _MEAN instead of RMSEAPS _B did not gain much sensitiv-
ity. On the other hand, CFIPS _ B was superior in comparison to
CFIT _ S _MEAN—CFIPS _ B had a larger η

2 of sensitivity (.605)
than did CFIT _ S _MEAN (.335). In addition, unlike CFIT _ S _

MEAN, which was practically significantly impacted by CS (η2

= .074), CFIPS _ B was not practically significantly impacted
by any design factor. A similar pattern was found when we
compared the performance of TLIPS _ B against that of TLIT _ S

_MEAN.
As for SRMR, the results suggested that SRMRT _ S _

MEAN (η2 of sensitivity = .223) outperformed SRMRB

(η2 = .164) regarding thei r sens i t iv i ty to the
misspecified between-mean structure. However, we also
recognize that SRMRB and SRMRT _ S _MEAN had both
means and variances close to 0 across different combi-
nations of NC and CS, given the misspecified between-
mean structure. In other words, both SRMRB and
SRMRT _ S _MEAN were not sensitive to the misspecified
between-mean structure, and therefore their η2s of sen-
sitivity had no practical meaning and thus can be ig-
nored. On the basis of this finding, we suggest that both
SRMRB and SRMRT _ S _MEAN not be used for between-
mean structure evaluation.
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To sum up, RMSEAT _ S _MEAN slightly outperformed
RMSEAPS _ B in terms of i ts sensi t ivi ty to the
misspecification. However, considering that RMSEAPS

_ B (saturating the within model only) can be computed
in a less complicated way than RMSEAT _ S _MEAN (sat-
urating both the within model and the between-
covariance structure), RMSEAPS _ B was favored. For
CFI and TLI, their b-l-s forms (CFIPS _ B and TLIPS _ B)
were preferred, too, because they had a larger sensitivity
to misspecification and were not practically significantly
impacted by other design factors. Although the η2s of
sensitivity for both SRMRB and SRMRT _ S _MEAN were
practically significant (.164 and .223, respectively), the
results showed they had both means and variances close
to 0 across different combinations of NC and CS, given
the misspecified between-mean structure. As a result,
these practically significant η2s of sensitivity did not
have a practical meaning, and neither SRMRB nor
SRMRT _ S _ MEAN was recommended. Comparing the
η2s of sensitivity for RMSEAPS _ B, CFIPS _ B, and
TLIPS _ B that were useful for between-mean structure
evaluation, we found that RMSEAPS _ B was more sen-
sitive to the misspecified between-mean structure and
therefore should be used preferentially. Both CFIPS _ B

and TLIPS _ B, on the other hand, performed alike and
thus can be used interchangeably. In addition, according
to our findings on χ2

PS B and χ2
T S MEAN , we suggest that

researchers use the aforementioned fit indices along
with χ2

PS B (because it can be easily computed and

was as effective as χ2
T S MEAN ) when the sample size

is 500 or above.

Misspecified within-covariance structure The last five rows in
Table 2 contain the η2s of the design factors for both the w-l-s

X 2 test statistics and fit indices. Note that the factor MIS
included two types of misspecifications, MIS_COVW and
MIS_VARW. The results suggested that χ2

PS W had a practical-
ly significant η2s of sensitivity (.195) and was not impacted by
the other design factors. The means, standard deviations, and
power of χ2

PS W for the MIS_COVW and MIS_VARW condi-
tions are reported in Table 3. In the MIS_COVW condition,
χ2
PS W had adequate power given a sample size of 2,000 or

higher (NC/CS = 100/20, 200/10, or 200/20), whereas in the
MIS_VARW condition, a sample size larger than 2,000, and
closer to 4,000, was needed.

The results showed that none of the w-l-s fit indices had a
practically significant η2 of sensitivity, and all were impacted
by CS or by both NC and CS. Nevertheless, a deep investiga-
tion of the data showed that CFIPS _W, TLIPS _W, and SRMRW

had variances approaching 0 across different combinations of
NC and CS, given the misspecified within-covariance struc-
ture. That is, the impacts of NC and CS on CFIPS _W, TLIPS _
W, and SRMRW were not practically significant. Our findings
raised a concern that using w-l-s fit indices might yield an
invalid conclusion on the fitness of the within-covariance
structure. On the basis of our findings regarding χ2

PS W , re-

searchers might use χ2
PS W to evaluate the within-covariance

structure. However, in general, a large sample size (larger than
2,000 and closer to 4,000) was needed for χ2

PS W to reach an
adequate power level, which would not necessarily be
practical.

Discussion

Sample size

In this study, we evaluated the performance of l-s and t-s fit
indices in terms of their independence from sample size influ-
ence and sensitivity to misspecifications in a MLGCM. We
expected ideal fit indices to be less influenced by sampling
errors arising from a small sample size and to be more sensi-
tive to misspecifications. Accordingly, we investigated the
extent to which the fit indices of interest could be influenced
by sampling errors, based on simulated data derived from
correctly specified models. Table 1 presents the influences
(in terms of η2) of NC and CS (left side). The results showed
that most of the fit indices were practically significantly influ-
enced by NC or CS. Specifically, the fit indices indicated poor
model fit as the sample size (a function of NC or CS) de-
creased, even though the hypothesized models were correctly
specified (i.e., the hypothesized model was the same as the
population model). This finding is in line with previous re-
search (Marsh, Balla, & McDonald, 1988; Marsh et al., 2005;
McDonald & Marsh, 1990; W. Wu & West, 2010; W. Wu
et al., 2009) that has explored the issue of sample size depen-
dency among fit indices. As was pointed out by Marsh et al.
(2005), the discrepancy between the covariance matrix
reproduced by a correctly specified model and a sample co-
variance matrix can vary systematically with the sample size.
The reason is that a sample covariance matrix derived from a
small sample size no longer approaches the population covari-
ance matrix due to sampling error, and this in turn increases
the discrepancy between the two matrices.

We would note that not all small sizes of NC or CS raised
practical concerns when fit indices were applied. Specifically,
traditional cutoff criteria of the fit indices (RMSEA-related fit
indices < .06; CFI- and TLI-related fit indices > .95; SRMR-
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related fit indices < .08; Hu & Bentler, 1999) were evaluated
to determine the NC and CS required in order to accurately
identify correct models (see Figs. 2a, 2b, 3a, and 3b). We
summarize the required NC and CS for each fit index on the
right side of Table 1. We found that the CFI- and SRMR-
related fit indices were not practically affected by sampling
errors resulting from a small NC or CS, because they were
able to identify correct models even if a small NC (50) and CS
(5) was given. The performance of SRMR-related fit indices
was noteworthy. The ANOVAs on values of the SRMR-
related fit indices had a corrected total SOS close to 0 (or a
variance close to 0), so the impact of NC and CS on SRMR-
related fit indices was self-evidently trivial. In contrast,
RMSEA-related fit indices for the between-model evaluation,
including RMSEAPS _ B, RMSEAT_ S _ COV, and RMSEAT_ S

_MEAN, were very likely to be affected by sampling errors in
practice. Large NC (200) and CS (> 20) are recommended
when these fit indices are used. Two TLI-related fit indices
for the between-model evaluation, namely TLIPS _ B and TLIT
_ S _ MEAN, needed a moderate NC (100) and CS (10).
Substantive researchers need to be aware of these characteris-
tics of the fit indices and to strive for a sufficient sample size to
obtain a more accurate model evaluation. Future studies can
further investigate the necessary sample sizes for different
population models—for example, a model with more time-
point measures or with different types of trajectories (e.g., a
piecewise-linear trajectory).

Furthermore, NC and CS, two parameters related to sample
size in MLGCMs, might also impact the performance of fit
indices in different ways. In fit indices for between-model
evaluation, NC determines the sample size of the between
model. As we discussed earlier, the NC decides the magnitude
of the sampling error carried into the model—where smaller
NC increases the amount of the sampling errors in model
estimation. Consequently, some between-level fit indices can
fail to identify correctly specified between models unless the
NC is large (e.g., NC = 200 for RMSEAPS _B, RMSEAT_ S _

COV, and RMSEAT _ S _MEAN). On the other hand, CS can
influence the quality of the scores of indicators (e.g., V1g–
V5g in Fig. 1) in the between model of MLGCMs (Lüdtke,
Marsh, Robitzsch, & Trautwein, 2011). Note that in our sim-
ulation (and in practice), the scores of between-level indica-
tors were estimated by the scores of within-level indicators.
As was pointed out by Lüdtke et al., the quality of the esti-
mated between-level indicator scores can be influenced by
CS—where smaller CS increases the amount of sampling er-
ror in the between-level indicators scores. As a result, some
between-level fit indices can fail to identify correctly specified
between models unless the CS is large (e.g., CS > 20 for
RMSEAPS _ B, RMSEAT _ S _ COV, and RMSEAT _ S _MEAN).

In contrast to the case of fit indices for between-model evalu-
ation, both NC and CS jointly determine the sample size of the
within model, and therefore influence the performance of fit
indices in similar ways.

Finally, in the exploration of the performance of four X 2

test statistics (χ2
PS B, χ

2
PS W , χ

2
T S COV , and χ2

T S MEAN ), we
found that their Type I error rates were inflated unless the
sample size was extremely large. These findings were consis-
tent with Schermelleh-Engel et al.’s (2014) study, which in-

vestigated the effectiveness of l-s X 2 test statistics (χ2
PS B and

χ2
PS W ) under 6,000, 15,000, and 30,000 sample size condi-

tions (NC/CS = 200/30, 500/30, and 1,000/30), which were
much larger than our greatest sample size condition (NC/CS =
200/20). Schermelleh-Engel et al. found that χ2

PS B and χ
2
PS W

had Type I error rates lower than .05 when the sample sizes
were 30,000 and 15,000, respectively. As a result, it was not

surprising to see inflated Type I error rates for the fourX 2 test
statistics in our study. Given our findings, researchers need to

be aware that using theseX 2 test statistics will very likely lead
to overrejection of correctly specified MLGCMs. Therefore,
using fit indices jointly to evaluate model fit is highly
recommended.

Fit indices for evaluating between-covariance
structures

Our results in Table 2 show that RMSEA, CFI, and TLI in the
form of t-s-cov (RMSEAT_S_COV, CFIT_S_COV, and TLIT _ S _

COV) expressed a higher sensitivity to the misspecified
between-covariance structure than did those same statistics
in the form of b-l-s (RMSEAPS _ B, CFIPS _ B, and TLIPS _ B).
This finding supports computing RMSEA, CFI, and TLI by
saturating the within model as well as the between-mean
structure as a favorable strategy for the evaluation of the
between-covariance structure. The results also suggest that
resea rchers should pr io r i t i ze the ut i l i za t ion of
RMSEAT_S_COV, CFIT_S_COV, and TLIT _ S _ COV.
Specifically, researchers can rely more on RMSEAT_ S _ COV

than on TLIT _ S _ COV, because RMSEAT_ S _ COV had a larger
η2 of sensitivity. CFIT_S_COV, on the other hand, had no prac-
tically significant sensitivity and was therefore not recom-
mended. The aforementioned finding that fit indices in the t-
s-cov form were superior to those in the b-l-s form was ex-
pected, because the results presented in Table 3 suggested that
χ2
T S COV was favored over χ2

PS B due to its relatively higher
power in most sample size conditions. Since the t-s-cov fit
indices are a function of χ2

T S COV , it was not surprising to
find that fit indices in the t-s-cov form outperformed those in
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the b-l-s form in terms of their sensitivity to misspecified
between-covariance structures.

Alternatively, we found that SRMRB and SRMRT_ S _ COV

acted comparably. That is, computing SRMR in the form of t-
s-cov or of b-l-s did not make any difference. On the basis of
this finding, we recommend saturating only the within model
to obtain SRMRB as a simple strategy to using SRMR.We did
find that both SRMRB and SRMRT_ S _ COV had the largest
sensitivity to misspecification, in comparison to the other fit
indices. However, the results also suggested that SRMRB and
SRMRT_ S _ COV were also influenced by CS—that is, a small
CS (e.g., 5) resulted in SRMRB and SRMRT_ S _ COV values
indicative of poor model fit. Overall, we recommend that
SRMR be used along with other t-s-cov fit indices, especially
when the CS is small.

Our findings are not consistent with W. Wu and West’s
(2010) study, in which they concluded that saturating the
mean structure did not influence the sensitivity of fit indices
except for SRMR (p. 446) in the context of a single-level
latent growth curve model. We consider our findings to be
reasonable for the following reasons. First, as W. Wu et al.
(2009) mentioned, RMSEA is based only on the chi-squared
statistic (χ2) for the hypothesized model, and CFI and TLI are
also defined byχ2. Therefore, these three fit indices can reflect
the fit of a model to the mean structure. In other words, satu-
rating the between-mean structure can influence the sensitivity
of RMSEA, CFI, and TLI. Alternatively, SRMR is a weighted
function of the model residuals, and it is not necessary to take
into account the residuals of the means (deviations of the
sample means from the model-implied means; W. Wu et al.,
p. 193). That is, SRMR disregards the information from the
between-mean structure, so that saturating the between-mean
structure therefore has no influence on SRMR.

Fit indices for evaluating between-mean structures

When evaluating misspecified between-mean structures, we
found that (a) RMSEA, CFI, and TLI in the form of t-s-
mean (RMSEAT _ S _MEAN, CFIT _ S _ MEAN, and TLIT _ S _

MEAN) did not necessarily display a higher sensitivity to
misspecifications than those same statistics in the form of b-
l-s (RMSEAPS _B, CFIPS _ B, and TLIPS _ B), and (b) SRMRB

and SRMRT_ S _MEAN had both means and variances close to
0 across different combinations of NC and CS, given the
misspecified between-mean structure. As a result, their prac-
tically significant η2s of sensitivity did not have practical
meaning, such that both SRMRB and SRMRT_ S _MEAN are
not recommended. This initial finding suggested that re-
searchers would not make substantial gains by using t-s-
mean fit indices (RMSEAT _ S _MEAN, CFIT _ S _MEAN, and

TLIT _ S _MEAN). As is shown in Table 2, RMSEAPS _B dem-
onstrated high sensitivity to misspecified between-mean struc-
tures (.805), and its sensitivity was very close to RMSEAT_ S _

MEAN’s (.827). On the other hand, both CFIPS _ B and TLIPS _ B
outperformed CFIT _ S _MEAN and TLIT _ S _MEAN, respective-
ly, in terms of their sensitivity to misspecifications. As a result,
we recommend that researchers use RMSEAPS _B, CFIPS _ B,
and TLIPS _ B to evaluate between-mean structures, and
RMSEAPS _B should be used with a higher priority, because
it was more sensitive to the misspecified between-mean struc-
ture. These findings are not consistent withW. Wu andWest’s
(2010) study, which concluded that saturating the covariance
structure could increase the sensitivity of fit indices in the
context of single-level latent growth curve models. We con-
sider our findings to be reasonable, because we found that
χ2
PS B and χ

2
T S MEAN performed similarly in most sample size

conditions, in terms of their power to detect the misspecified
between-mean structures (see Table 3). Because RMSEA,
CFI, and TLI are computed from χ2, the fit indices in the t-
s-mean formwere expected to perform comparably to those in
the b-l-s form. We encourage future studies to validate our
findings in a multilevel context.

On the other hand, SRMR is not necessary for reflecting
the model fit for means. Leite and Stapleton (2011) confirmed
the superior sensitivity of RMSEA and the limited sensitivity
of SRMR for identifying misspecified mean structures in la-
tent growth models. In line with Leite and Stapleton’s find-
ings, we found that both SRMRB and SRMRT _ S _MEAN had
means close to zero as well as trivial variability across all
sample size conditions.

We note that the η2s shown in Table 2 were derived
from larger sizes for NC (100, 200, and 300) and CS
(10, 20, and 30). Our original simulation design (NC =
50, 100, and 200; CS = 5, 10, and 20) resulted in a high
percentage of replications producing TLIT _ S _MEAN < 0,
especially when (a) CS = 5, regardless of NC, or (b) CS
= 10 and NC = 50. We extracted those replications and
found that they produced extremely large chi-squared
values when we intended to compute t-s-mean fit indices
(i.e., saturating the within model as well as the between-
covariance structure) for the model with a misspecified
between-mean structure. In fact, saturating the between-
covariance structure in order to obtain t-s-mean fit indices
raises the number of estimated parameters (e.g., increasing
four parameters in our study), and in this case, the small
sample size resulted in a larger than expected obtained chi-
squared value (Bentler & Dudgeon, 1996; Jackson, 2003).
On the basis of our simulation results, NC = 100 and CS =
10 were required for computing t-s-mean fit indices, but we
encourage future studies to investigate this issue further.

188 Behav Res (2019) 51:172–194



Last but not least, on the basis of the η2s presented in Table 2,
there was a tendency for the fit indices of interest to have a higher
sensitivity to themisspecified between-mean structure than to the
misspecified between-covariance structure. Nevertheless, as we
mentioned, the η2s in this section were derived from an alterna-
tive NC and CS design (NC = 100, 200, and 300; CS = 10, 20
and 30). Therefore, these η2s were not necessarily comparable to
the η2s derived from the original NC and CS design (NC = 50,
100, and 200; CS = 5, 10 and 20). Additional efforts will be
needed to verify this tendency.

Fit indices for evaluating within-covariance structures

None of the w-l-s fit indices demonstrated promise in de-
tecting a misspecified within-covariance structure. We did
not expect to observe such low or near-zero sensitivity
values for w-l-s fit indices, because previous research sim-
ulation studies (e.g., Ryu & West, 2009) had shown that w-
l-s fit indices can successfully detect misspecified within
models in the context of MCFA models. We therefore won-
dered whether traditional fit indices (e.g., RMSEA, CFI,
TLI, and SRMR) could be more effective in identifying
misspecified within-covariance structures. After compar-
ing the performance of the w-l-s fit indices with that of
traditional fit indices, we found that these two types of fit
indices acted almost identically, showing little to no sensi-
tivity to the misspecifications. We validated our finding by
comparing it with W. Wu and West’s (2010) study, which
had evaluated fit indices in the context of a single-level
latent growth curve model. More specifically, according
to the information presented in Fig. 3 of W. Wu and West
(2010, p. 437), they had an RMSEA close to .04, an SRMR
close to .06, and a CFI/TLI > .99 across sample sizes from
125 to 1,000, given a moderate severity of misspecification
(defined as power = .80, which we also adopted) in the
covariance structures. Their findings are consistent with
ours, except that they found slightly higher SRMR values.
Moreover, the findings on w-l-s fit indices are also con-
firmed by our findings on χ2

PS W (see Table 3). Specifically,

we found that χ2
PS W had little power to detect misspecified

within-covariance structures unless the sample size was
larger (greater than 2,000, and closer to 4,000). For those
w-l-s fit indices that were a function of χ2

PS W (RMSEAPS _

W, CFIPS _W, and TLIPS _W), it was not surprising to see
that they were not sensitive to the misspecification. In sum-
mary, our findings, as well as those of W. Wu and West,
suggest that the evaluation of within-covariance structures
can be challenging. Substantive researchers might be over-
ly optimistic about the fit of the within model in
MLGCMs, and future researchers are encouraged to vali-
date our findings and look for an optimal strategy for
within-model evaluation.

Limitations and future research direction

Because it is not possible to consider all plausible scenarios in
a single simulation study, generalizations beyond the set of
conditions investigated in our study should be made with cau-
tion. First, we adopted an MLGCM, as is shown in Fig. 1, for
data generation. Therefore, our findings can only be general-
ized to studies that use similar MLGCMs. Further studies are
encouraged to investigate whether our findings can also be
replicated using different models (e.g., piecewise-linear trajec-
tory models). Second, in our study, we did not consider
misspecifications in the residual (co) variances for the be-
tween and within models. Practically, the residual variances
at the between level are often low (Hox, 2010). Freely esti-
mating between-level residual variances and constraining the
covariances to zero seems to be a reasonable approach.
Therefore, we did not consider misspecifications in residual
(co) variances at the between level. On the other hand, the
structure of residual (co) variances at the within level (i.e.,
within-subject residuals) can be more complicated (Kwok
et al., 2007). Misspecifications in within-subject residuals
are possible and deserve further systematic investigation in
another simulation study. Future studies could evaluate fit
indices in scenarios in which within-subject residuals are
misspecified. Third, in our study, we considered a limited
number of design factors. Additional scenarios created by
adopting different design factors, such as unbalanced designs
(unequal group conditions), the number of time-point mea-
sures, and ICCs of repeated measures, will be needed in future
studies.

Last but not least, in our simulation design, the variance of
the quadratic slope factor in the between-level (or within-
level) population model was nonzero but was constrained to
0 as a type of misspecification (i.e., conditions MIS_VARB or
MIS_COVW). In each misspecification condition, only one
parameter was misspecified. However, in practice, when the
variance of the quadratic slope factor is misspecified (i.e.,
constrained to 0), two other parameters would be also auto-
matically constrained to 0: (a) the covariance between the
quadratic slope factor and the linear slope factor, and (b) the
covariance between the quadratic slope factor and the inter-
cept factor. Consequently, the findings on sensitivity of fit
indices to a misspecified quadratic slope factor may be con-
founded with two additional potential misspecified parame-
ters. To address this issue, W. Wu and West’s (2010) specifi-
cation (the two aforementioned covariance parameters also
being set to 0 in the population model) can be applied to
control the confounding factors. Nevertheless, W. Wu and
West’s specification of the population model might decrease
the generalizability of our findings to empirical research.
Future studies will be needed to validate our findings using
a population with the aforementioned covariance parameters
not equal to 0.
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Conclusion

Previous simulation studies have investigated the performance
of level-specific fit indices in the context ofMCFA (Hsu et al.,
2016; Ryu, 2014; Ryu &West, 2009). Our study has extended
this research line by systematically examining the effective-
ness of level-specific fit indices (RMSEAPS _W, CFIPS _W,
TLIPS _W, SRMRW, RMSEAPS _ B, CFIPS _ B, TLIPS _ B, and
SRMRB) and target-specific fit indices (RMSEAT_S_COV,
CFIT_S_COV, TLIT _ S _ COV, SRMRT _ S _ COV, RMSEAT _ S _

Mean, CFIT _ S _Mean, TLIT _ S _Mean, and SRMRT_ S _Mean) in
terms of their independence from the sample size’s influence
and their sensitivity to misspecification in MLGCMs. We ap-
propriately controlled the severity of misspecification when

we generated the simulated replications. On the basis of our
simulation results, we recommend applying RMSEAT _ S _

COV and TLIT _ S _ COV along with SRMRB in order to maxi-
mize the capacity to detect misspecifications in the between-
covariance structure. On the other hand, we recommend using
RMSEAPS _ B , CFIPS _ B , and TLIPS _ B to de tec t
misspecifications in the between-mean structure. Evaluation
of the within-covariance structure turned out to be unexpect-
edly challenging, as none of w-l-s fit indices (RMSEAPS _W,
CFIPS _W, TLIPS _W, and SRMRW) had a practically signifi-
cant sensitivity. Future researchers are encouraged to validate
our findings and to look for an optimal strategy for within-
model evaluation.

Appendix A

Appendix B. Equations of the partially
saturated level-specific and target-specific fit
indicesB1

Chi-squared statistic Three χ2 statistics can be computed for
between-level model evaluation: (a) level-specific (l-s) χ2

(χ2
PS B ), (b) target-specific (t-s) χ2 for the between-mean struc-

ture (χ2
T S MEAN ), and (c) χ2 for the between-covariance struc-

ture (χ2
T S COV ). According to Ryu andWest (2009), the follow-

ing equation can be used to obtain χ2
PS B:

χ2
PS B ¼ FML ΣB θ̂

� �
;ΣW θ̂S

� �h i
−FML ΣB θ̂S

� �
;ΣW θ̂S

� �h i
; ðB1Þ

where FML ΣB θ̂
� �

;ΣW θ̂S
� �h i

is the value of fitting func-

tion for the two-level model with a hypothesized model be-
tween levels and a saturated model within levels (partially

saturated model); FML ΣB θ̂S
� �

;ΣW θ̂S
� �h i

is the value of

fitting function when both the within-level and between-
level models are saturated (fully saturated model). The de-
grees of freedom of χ2

PS B (denoted by dfPS _ B) are equal to
the difference between the numbers of parameters in the fully
saturated model and the partially saturated model.

A different FML ΣB θ̂
� �

;ΣW θ̂S
� �h i

in Eq. B1 is required in

order to obtain χ2
T S MEAN and χ2

T S COV . More specifically, FML

ΣB θ̂
� �

;ΣW θ̂S
� �h i

for χ2
T S MEAN is the value of the fitting

function for a partially saturated model in which the between-
covariance structure is saturated. Using our population model
shown in Fig. 1 as an example, a saturated between-covariance
structure can be specified by freely estimating the (co) variances of
V 1g, . . ., V 5g at the between level and constraining the (co)
variances of the intercept, linear slope, and quadratic slope factors
to be zero (W. Wu & West, 2010). The degrees of freedom of

Appendix A A practical way to derive fit indices of interest

Fit Index Saturate the
Between Model

Saturate the
Within Model

Saturate the Covariance
Structure of the Between Model

Saturate the Mean Structure
of the Between Model

Between-level-specific fit indices
(e.g., RMSEAPS _B)

✓

Within-level-specific fit indices
(e.g., RMSEAPS _W)

✓

Target-specific fit indices for the
between-covariance structure

(e.g., RMSEAT_ S _ COV)

✓ ✓

Target-specific fit indices for the
between-mean structure

(e.g., RMSEAT_ S _MEAN)

✓ ✓
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χ2
PS B Mean (denoted by dfT_S_MEAN) are equal to the difference

between the numbers of parameters in the fully saturated model
and in the partially saturated model with the saturated between-
covariance structure.

Alternatively, FML ΣB θ̂
� �

;ΣW θ̂S
� �h i

for χ2
T S COV is the

value of fitting function for a partially saturated model in
which the mean structure between levels is saturated. A satu-
rated between-mean structure can be specified by freely esti-
mating the intercepts of V 1g, . . ., V 5g between levels and
constraining the intercepts of the intercept, linear slope, and
quadratic slope factors to be zero (W. Wu &West, 2010). The
degrees of freedom of χ2

T S COV (denoted by dfT _ S _COV) are
equal to the difference between the numbers of parameters in
the fully saturated model and in the partially saturated model
with the saturated between-mean structure.

A level-specific (l-s) χ2 (χ2
PS W ) is computed for the

within-level model. χ2
PS W can be obtained through Eq. B2:

χ2
PS W ¼ FML ΣB θ̂S

� �
;ΣW θ̂

� �h i
−FML ΣB θ̂S

� �
;ΣW θ̂S

� �h i
; ðB2Þ

where FML ΣB θ̂S
� �

;ΣW θ̂
� �h i

is the value of the fitting func-

tion for the saturated between-level model. The degrees of
freedom of χ2

PS W (denoted by dfPS _W) are equal to the dif-
ference between the numbers of parameters in the fully satu-
rated model and the partially saturated model.

RMSEA Given conventional χ2
PS B and its corresponding df,

the l-s RMSEA for the between-level model (conventional
RMSEAPS_B) can be derived by Eq. B3:

RMSEAPS B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Max

χ2
PS B−df PS B

df PS B Jð Þ ; 0

� �s
: ðB3Þ

In Eq. B3, J is the between-level sample size (number of
groups), which functions as a penalty for large sample size.
The RMSEAPS _B is is set to zero, providing that conventional
χ2
PS B is smaller than dfPS _ B. Note that RMSEAT _ S _MEAN

and RMSEAT _ S _ COV can be also obtained via Eq. B3 by
using χ2

T S MEAN (and dfT _ S _MEAN) and χ2
T S COV (and dfT _

S _COV), respectively.
RMSEAPS_W can be obtained from Eq. B4, where N de-

notes the within-level total sample size:

RMSEAPS W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Max

χ2
PS W−df PS W

df PS W Nð Þ ; 0

� �s
: ðB4Þ

CFI CFI is an incremental fit index used to evaluate model fit by
comparing the hypothesized model to the independence model
(Bentler, 1990). According to Ryu and West (2009), the l-s CFI
for the between-level model (CFIPS_B) can be defined as:

CFIPS B ¼ 1−
Max χ2

PS B−df PS B

� �
; 0

	 

Max χ2

I B;S W−df I B;S W

� �
; 0

h i ; ðB5Þ

where χ2
I _ B, S _W represents the χ2 test statistic with an

independence between-level model and a saturated within-
level model:

χ2
I B;S W ¼ FML ΣB θ̂I

� �
;ΣW θ̂S

� �h i
−FML ΣB θ̂S

� �
;ΣW θ̂S

� �h i
: ðB6Þ

Note that the independence between-level model is an
intercept-only growth model, in which only the mean of the
intercept factor and residual variances are freely estimated.
Moreover, the independence between-level model needs to re-
flect any constraint on the residual variances in the hypothesized
between-level model (Widaman & Thompson, 2003). The de-
grees of freedomofχ2

I _B, S _W (denoted by dfI _B, S _W) are equal
to the difference between the numbers of parameters in the fully
saturated model and in the model with the independence
between-level model and a saturated within-level model.

To compute CFIT_S _MEAN and CFIT_S _COV, the numerator
of Eq. B5 needs to be substituted with χ2

T S MEAN (and dfT _ S _
MEAM) and χ2

T S COV (and dfT _ S _COV), respectively. Regarding
the denominator of Eq. B5, CFIT_ S _MEAN needs the χ2 test
statistic and df for a model with an independence between-level
model with a saturated covariance structure and a saturated
within-level model through Eq. B6, whereas CFIT_S_COV needs
the χ2 test statistic and df for a model with an independence
between-level model with a saturated mean structure and a satu-
rated within-level model.

The CFIPS _W can be computed by Eq. B7:

CFIPS W ¼ 1−
Max χ2

PS W−df PS W

� �
; 0

	 

Max χ2

S B;I W−df S B;I W

� �
; 0

h i : ðB7Þ

χ2
S _ B, I _W, shown in Eq. B8, represents the χ

2 test statistic
with a saturated between-level model and an independence
within-level model. The independence within-level model is
an intercept-only growth model, in which only residual vari-
ances are freely estimated. The independence within-level
model needs to reflect any constraint on the residual variances
in the hypothesized within-level model (Widaman &
Thompson, 2003). The degrees of freedom of χ2

S _ B, I _W

(denoted by dfS _ B, I _W) are equal to the difference between
the numbers of parameters in the fully saturated model and in
the model with the independence within-level model and a
saturated between-level model.

χ2
S B;I W ¼ FML ΣB θ̂S

� �
;ΣW θ̂I

� �h i
−FML ΣB θ̂S

� �
;ΣW θ̂S

� �h i
ðB8Þ

TLI The TLI is a nonnormed fit index that penalizes for adding
parameters in themodel (Tucker&Lewis, 1973). TLIPS_B can be
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used to evaluate the between-level model by comparing the hy-
pothesized between-level model and the independence between-
level model under the condition that the within-level model is
saturated. The information for computing conventional CFIPS_B
is sufficient for computing conventional TLIPS _B via Eq. B9. In
the same manner, the information for computing CFIT_S _MEAN

andCFIT_S _COVis also sufficient for computing TLIT_S _MEAN

and TLIT_S _COV, respectively.

TLIPS B ¼

χ2
I B;S W

df I B;S W
−
χ2
PS B

df PS B

χ2
I B;S W

df I B;S W
−1

ðB9Þ

TLIPS_W can be used to evaluate the within-level model by
comparing the hypothesized within-level model and the inde-
pendence within-level model under the condition that the
between-level model is saturated. The equation for TLIPS _W
is presented in the following equation (B10).

TLIPS W ¼

χ2
S B;I W

df S B;I W
−
χ2
PS W

df PS W

χ2
S B;I W

df S B;I W
−1

ðB10Þ

SRMR SRMR can be computed for the within-level (SRMRW)
and between-level (SRMRB) models. Note that SRMR can be
derived from the deviation between the sample and the
reproduced variance–covariance matrices. We adopted
SRMRW and SRMRB as reported by Mplus in the present

study. More specifically, SRMRB reflects the normed average
distance between the sample variance matrix of p observed
variables and the model-implied variance matrix at the be-
tween level. SRMRB can be represented as follows:

SRMRB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ∑

p

i¼1
∑
i

j¼1

ΣBij−ΣB θð Þijð Þ
ΣBiiΣBjj

� �2
p pþ 1ð Þ

vuuuut ðB11Þ

SRMR for evaluating between-mean structure (SRMRT_ S

_MEAN) can be derived using Eq. B11, where the model-
implied variance matrix is produced by a model with a satu-
rated between-covariance structure and a saturated within-
level model. SRMR for evaluating between-covariance struc-
ture (SRMRT _ S _ COV) can be also derived by Eq. B11, where
the model-implied variance matrix is produced by a model
with a saturated between-mean structure and a saturated
within-level model.

SRMRW reflects the normed average distance between the
sample variance matrix and model-implied variance matrix at
the within level. SRMRW can be represented as follows:

SRMRW ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ∑

p

i¼1
∑
i

j¼1

ΣWij−ΣW θð Þijð Þ
ΣWiiΣWjj

� �2
p pþ 1ð Þ

vuuuut ðB12Þ

B1 All theX 2 values in the fit index equations are robustX 2

values from MLR.

Appendix C

Appendix C Key parameter settings in the population models for each of the five misspecified conditions

Between-Level Model Within-Level Model

Covariance Structure Mean Structure Covariance Structure

Model # Purpose β10/β01 β22 γ200 τ10/τ01 τ22
M1 Generate replications for MIS_COVB condition 4.390a .018 – .127 6.762 .703

M2 Generate replications for MIS_VARB condition 2.819 .105a – .127 6.762 .703

M3 Generate replications for MIS_MEANB condition 2.819 .018 – .184a 6.762 .703

M4 Generate replications for MIS_COVW condition 2.819 .018 – .127 6.930a .703

M5 Generate replications for MIS_VARW condition 2.819 .018 – .127 6.762 .082a

a To ensure that the severities of the five intentional misspecifications were the same (Fan& Sivo, 2005), we adjusted themagnitudes of key parameters in
the population models to achieve a severity of misspecification equal to a power of .80 given number of cluster = 100 and cluster = 10. MIS_COVB=
misspecification of the covariance between the intercept factor and linear slope factor at the between level as 0 (β10/β01 = 0). MIS_VARB=
misspecification of the variance of the quadratic slope factor at the between level as 0 (β22 = 0). MIS_MEANB = misspecification of the mean of the
quadratic factor at the between level as 0 (γ200 = 0). MIS_COVW= misspecification of the covariance between the intercept factor and the linear slope
factor at the within level as 0 (τ10/τ01 = 0). MIS_VARW= misspecification of the variance of the quadratic slope factor at the within level as 0 (τ22 = 0)
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