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Abstract
Understanding error and response time patterns is essential for making inferences in several domains of cognitive psychology.
Crucial insights on cognitive performance and typical behavioral patterns are disclosed by using distributional analyses such as
conditional accuracy functions (CAFs) instead of mean statistics. Several common behavioral error patterns revealed by CAFs
are frequently described in the literature: response capture (associated with relatively fast errors), time pressure or urgency
paradigms (slow errors), or cue-induced speed–accuracy trade-off (evenly distributed errors). Unfortunately, the standard way
of computing CAFs is problematic, because accuracy is averaged in RT bins. Here we present a novel way of analyzing
accuracy–RT relationships on the basis of nonlinear logistic regression, to handle these problematic aspects of RT binning.
First we evaluate the parametric robustness of the logistic regression CAF through parameter recovery. Second, we apply the
function to three existing data sets showing that specific parametric changes in the logistic regression CAF can consistently
describe common behavioral patterns (such as response capture, time pressure, and speed–accuracy trade-off). Finally, we discuss
potential modifications for future research.
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In many domains of cognitive psychology, understanding the
different types of error and response time (RT) patterns is nec-
essary for appropriate inferences. Consider, for example, one of
the hallmark experimental paradigms of the cognitive control
literature, the Simon task (Van Campen, Keuken, Van den
Wildenberg, & Ridderinkhof, 2014; Van Maanen, Turner, &
Forstmann, 2015). In this task, participants are asked to respond
to some relevant stimulus feature with either their left or their
right hand. Crucially, the stimulus is placed on the left or right
side of a computer screen, creating a congruency or
incongruency between the stimulus location and the response
hand. On average, incongruent stimulus–response mappings re-
sult in relatively slower and more incorrect responses than do
congruent stimulus–response mappings, suggesting a relatively

simple mechanism. Interestingly, however, analyzing the full
RT distributions of congruent and incongruent mappings for
RT and error patterns resulted in a large body of research ac-
knowledging the existence of a more complex picture of differ-
ent underlying processes within the Simon task (Burle,
Possamaï, Vidal, Bonnet, & Hasbroucq, 2002; De Jong,
Liang, & Lauber, 1994; Forstmann et al., 2008; Hommel,
1993, 1994; Proctor, Miles, & Baroni, 2011; Ridderinkhof,
2002; Stürmer, Leuthold, Soetens, Schröter, & Sommer, 2002;
Tagliabue, Zorzi, Umiltà, & Bassignani, 2000; Van Campen,
Kunert, Van den Wildenberg, & Ridderinkhof, 2018; Van
Campen et al., 2014; Van den Wildenberg et al., 2010).

One popular analysis tool that jointly considers the accura-
cy of responses and the distribution of their RTs is the condi-
tional accuracy function (CAF; Gratton, Coles, Sirevaag,
Eriksen, & Donchin, 1988; Heitz, 2014; Lappin & Disch,
1972; Proctor et al., 2011; Ratcliff, 1979; Ridderinkhof,
2002). A CAF expresses how the accuracy of responses de-
pends on the speed of responses, by formulating how the
probability of a correct response depends on the RT.

Analyzing CAFs is appealing because it allows one to in-
vestigate the categorical relationships between responses (typ-
ically, correct or incorrect) and RTs. The first type of categor-
ical error–RT relationship that is often observed is that the RTs
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of incorrect responses are relatively fast. This is for example
the case in the previously introduced Simon paradigm, in
which a higher proportion of these fast errors for incongruent
stimulus–response mappings than congruent stimulus–re-
sponse mappings is interpreted as “response capture,” the au-
tomatic activation of the (incorrect) response hand invoked by
the stimulus location (Forstmann et al., 2008; Ridderinkhof,
2002; Ulrich, Schroter, Leuthold, & Birngruber, 2015; Van
Campen et al., 2014; Van Campen et al., 2018; Van den
Wildenberg et al., 2010; Van Wouwe et al., 2016).

A second common categorical error–RT relationship en-
tails response times of incorrect responses that are slower than
average. In certain experimental settings, this is sometimes
interpreted as an indication of time pressure or urgency on
behavior. Time pressure would result in a higher proportion
of relatively late incorrect responses, representing that as par-
ticipants “feel” the time pressure, they start to make errors
(Hanks, Kiani, & Shadlen, 2014; Murphy, Boonstra, &
Nieuwenhuis, 2016; Thura & Cisek, 2016).

A third relationship between accuracy and RTs is that erro-
neous responses are distributed evenly across the RT distribu-
tion, and there is in fact no dependence of the correctness of
the response on RT (Donkin & Van Maanen, 2014; Mulder &
Van Maanen, 2013; Van Ede, de Lange, & Maris, 2012).
However, the proportion of errors might still depend on some
experimental manipulation, such as a cue-induced speed–ac-
curacy trade-off task. In such an experiment, participants are
instructed to focus either on accurately responding (ignoring
response speed) or on response speed. The focus on response
speed typically comes at the cost of making more errors,
which are evenly distributed across the RT distribution
(Heitz, 2014; Schouten & Bekker, 1967; Van Maanen et al.,

2011; Wickelgren, 1977). Theoretical models of this kind of
speed–accuracy trade-off behavior propose that people
confronted with such a trade-off entertain a critical confidence
value (threshold setting in sequential-sampling models; e.g.,
Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis, 2010),
which triggers a response as soon as that critical value is
surpassed. This typically results in an equal distribution of
errors across the RT distribution, even though accuracy and
RTare both affected by changing the critical confidence value.

To draw inferences such as the ones sketched out above,
CAFs have been extensively used. The standard method for
quantifying CAFs is to indicate a set of RT bins, and then to
compute the average proportion of correct responses per RT
bin. However, there is not a generally accepted method for
computing RT bins. Hyndman and Fan (1996) discussed nine
different methods that are used in various statistical packages.
In addition, the number of RT bins is also a matter of judg-
ment. In the cognitive control literature, often three or four
bins are used (Forstmann et al., 2008; Van den Wildenberg
et al., 2010), but in many domains, dividing the RT distribu-
tion into five or six bins is much more common (Brown &
Heathcote, 2008; Heathcote, Brown, & Mewhort, 2002).

The choice of the number of bins may have important conse-
quences for the potential conclusions drawn from a particular data
set. This is illustrated in Fig. 1, inwhichwe present simulated data
from a task in which fast errors occur (Fig. 1a) and from a task in
which slow errors occur (Fig. 1b). The black dots in Fig. 1, with
an accuracy of 0 or 1, represent the responses in a fictional exper-
iment. The locations on the x-axis indicate the associated RTs. In
Fig. 1a, errors (with an accuracy of 0) are relatively fast, which is
visible by the number of error responses on the left side of the x-
axis. In Fig. 1b, errors are slow, indicated by their high relative
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Fig. 1 Two examples in which the number of response time (RT) bins is a
potential threat for statistical inference. (a) The data contain a proportion
of fast incorrect responses, indicated by the larger number of errors (data
points) on the left of the RT scale, relative to the right. The estimated
proportion of fast errors (solid line segments of the CAFs) depends on the

number of bins in the analysis. (b) Decline in accuracy with RT, as
measured by the accuracy difference between the last two bins. The reli-
ability of this measure depends critically on the chosen number of bins
and presents a potential threat for statistical interference.
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frequency, on the right side of the x-axis (as well as by the lower
frequency of correct responses—accuracy of 1—on the right
side). Each panel shows three CAFs (red, blue, and green),
computed by averaging the error proportion for a particular
RT bin. The numbers of bins are 10 (red), 7 (blue), and 4
(green). If errors are predominantly associated with the
fastest responses (Fig. 1a), then the proportion of errors
in the first RT bin depends on the width of that bin. If the
bin is wider, reflecting a larger part of the RT distribution,
then the error proportion will decrease accordingly. In Fig.
1a, this is illustrated as the thicker part of each CAF.

If errors are predominantly associated with slower re-
sponses, then the number of bins influences the measurement
of the change in error proportion. In Fig. 1b, we have
highlighted this in the last segment of each CAF. Also, be-
cause there are fewer responses per RT bin, the uncertainty in
these measurements increases.

In summary, the effect of the chosen number of bins—and
related to this, the width of the bin, as illustrated in Fig. 1—is
the first potential pitfall for applying CAFs. The reliability of
the estimate of the error rate within a bin depends critically on
the chosen number of bins and presents a potential threat for
statistical interferences.

The second potential pitfall is related to the way the size of
the RT bins is determined. The typical approach is to set the
boundaries of each RT bin on the basis of the frequency of
responses per bin (i.e., using the quantiles of the RT distribu-
tion; sometimes the range of the RT distribution is used, to
ensure that the ranges of the RT bins remain equal instead of
the frequency of observations). If one wants to draw a conclu-
sion about a difference between conditions, however, the RT
bins can be determined using the quantiles of each condition
separately or in combination with all others. Which method is
chosenmay considerably impact the conclusion. For example,
if the RT distributions of two conditions are shifted relative to
each other, but the bin sizes are determined according to the
combined RT distribution, then the proportions of fast errors
may seem to differ just because the number of trials from each
condition differs per RT bin.

Finally, the third pitfall is that averaging accuracy over RT
bins raises statistical problems with respect to hypothesis test-
ing. The response variable is treated as continuous on the
interval [0, 1], rather than categorical with two levels (correct
or incorrect response, often coded as 0 or 1). Treating categor-
ical variables as continuous is problematic from a statistical
viewpoint (Jaeger, 2008). For example, the confidence inter-
vals on the expected proportion of correct responses for a
particular RT bin could exceed the levels of the categorical
variable (e.g., a confidence interval of CI = [0.9, 1.03], where
the categorical levels are 0 and 1, exceeds the real maximum
possible score). Furthermore, the general linear model as-
sumes equal variances across groups. As Jaeger pointed out,
this is not the case for categorical variables with two levels

that are binomially distributed, because by definition in bino-
mial distributions, a change in the variable’s mean induces a
change in its variance. This means that testing for accuracy
differences per RT bin using an analysis of variance (an in-
stance of the general linear model) may yield incorrect con-
clusions, because the assumptions of the statistical test(s) are
not met.

In the present article, we will introduce a novel method of
analyzing the accuracy–RT relationship, based on nonlinear
logistic regression. The new method does not suffer from the
issues discussed above, yet it has the flexibility to account for
the most common patterns in accuracy–RT data. It captures
the shape of the accuracy–RT relationship without the specific
potential pitfalls described above. Themethod ismodel-free in
the sense that it does not commit to a specific cognitive model-
ing framework, yet the parameters can be interpreted in light
of a specific hypothesis about the accuracy–RT relationship in
one’s experimental data.

Methods and results

We highlight another approach for estimating the dependence
of accuracy on RTs: nonlinear logistic regression. Logistic
regression models aim to predict a categorical response vari-
able using a continuous predictor variable. In the present case,
this is binary accuracy (i.e., a correct or incorrect response),
which is predicted by RT. Thus, the logistic regression model
estimates the probability of a correct response based on a
particular RT. Although a common assumption of logistic re-
gression is the linear dependence of the response variable
(correct or not) on the predictors, we propose a nonlinear
transformation of the predictors to account for the typical pat-
terns observed in the CAF literature. A first requirement of the
nonlinear transformation is that it is nonmonotonic, meaning
that the probability of a correct response can both decrease and
increase. A second requirement is that the shape of the func-
tion is flexible enough that it can account for asymmetric
response patterns. That is, the increase in the probability of a
correct response with fast RTs is typically faster than the de-
crease with slower RTs. The shape of the patterns of faster
errors is not necessarily the same as the shape on the decrease
of slower errors (unlike in, e.g., a parabola). A third require-
ment is that the function can be parameterized in such a way
that each parameter captures a specific qualitative property of
the shape of a CAF, relating the behavioral phenomena
expressed in CAFs to parameter-specific changes.

Following these requirements, we propose to model the
probability of a correct response at a certain RT using Eq. 1:

p correctjtð Þ ¼ ea

ea þ e b t−dð Þþ c
t−dð Þ ð1Þ
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Equation 1 is an instance of the logistic function
parametrized by four parameters that together account
for the full range of data patterns observed in the accu-
racy–RT relationship. It defines the probability of a cor-
rect response, p(correct | t), as a function of the RT t.
Parameter a defines an asymptote that captures the max-
imum accuracy that is obtained (Fig. 2a). A lower a
gives lower maximum accuracy. Parameter b defines
the downward slope of the second segment of the curve
(Fig. 2b). If b = 0, there is no downward section, but
for all b > 0 the parameter value determines how steep
the function declines after its peak value. Larger b re-
sults in a steeper slope and an increase in the number
of slow errors. Parameter c defines the location of the
peak value or bend point (Fig. 2c). The d parameter
defines a shift of the curve over the x-axis (Fig. 2d).
A positive value of d indicates that the curve is not
defined for RTs smaller than d, which can be interpreted
as a lower bound on the observed RTs: the lower limit
of the accuracy–RT shape.

If b = 0 and c = 0, Eq. 1 reduces to p correctjtð Þ ¼ ea
eaþ1.

In this case, if a approaches infinity, the probability of a
correct response approaches 1. If a = 0, the probability of
a correct response is .5, with negative values for a yield-
ing lower probabilities of a correct response. In this spe-
cific case, the probability of a correct response is also not
predicted to change for different RTs, since the probability
does not depend on t anymore.

If c = 0 but b is positive, the probability of a correct
response is determined by a if t – d = 0 (i.e., at the
fastest response), but declines for increasing RTs t. If c
is positive as well, then the probability of a correct re-
sponse first rises with increasing RTs, but then declines.
In practical situations, this initial rise and eventual drop
is the most typical pattern, and therefore we suggest
constraining all parameters to the positive range when
estimating their values on the basis of empirical data
(see the Application section below).

Parameter recovery

The goal of this analysis tool is to reach better conclusions
about the accuracy–RT relationship, which will help support
or reject hypotheses that researchers have about cognitive pro-
cesses. For this purpose, it is crucial to study whether it is
possible to identify the data-generating parameters in a sample
of synthetic data (Anders, Alario, & Van Maanen, 2016;
Miletić, Turner, Forstmann, & Van Maanen, 2017). If the
data-generating parameters can be recovered reliably, then
the parameters estimated from the data can be interpreted in
support of a specific hypothesis.

To study this, we performed a parameter recovery study.
The setup of the parameter recovery was a follows:

1. We defined the parameter space from which we sampled.
2. Data were generated according to one parameter vector.
3. We estimated the parameters of the logistic regression

model for this new data set.
4. Steps 2 and 3 were repeated 1,000 times, to sample the

full parameter space.

Parameter space To make sure that our parameter recovery
involves reasonable parameter ranges, we estimated parameters
for experimental data from ten experiments with multiple par-
ticipants and conditions, for a total of 750 data sets (Table 1).
The experiments included perceptual judgments, memory-
based choice tasks, and a Simon experiment. Care was taken
to include data sets that we hypothesized would affect every
parameter, to ensure that critical cases were also included in the
parameter space. In addition, the parameter space was
constrained to positive values. The resulting distributions of
parameters from which we sampled are shown in Fig. 3.

Data generation On each of 1,000 iterations, we randomly
sampled a set of parameters estimated from one of the 750
data sets. We computed the predicted accuracy for the range
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Fig. 2 Different parameters have different effects on the shape of the
function. (a) The a parameter defines an upper bound. (b) The b
parameter defines the downward slope of the second segment of the
function. (c) The c parameter defines the initial bend of the first

segment of the function. (d) The d parameter defines a shift of the
function. The black line in each panel is parameterized according to a =
3, b = 0, c = 0.25, d = 0. The colored lines deviate from this in one
parameter, indicated by each legend.

(2019) 51:2378–2389Behav Res 2381



[50 ms–5 s], discretized by steps of 5 ms, and generated binary
response data by performing exactly one Bernoulli trial for
each discrete time step in the range, with the probability of a
positive outcome set at the predicted probability of the logistic
regression model (for this set of parameters). This procedure
resulted in 1,000 simulated data sets consisting of response-
RT pairs that could be subsequently used to estimate
parameters.

Parameter estimation The parameters of the so-generated data
sets were estimated using SIMPLEX optimization of the
squared residuals (Nelder &Mead, 1965). The optimizer min-
imized the weighted sum of the squared errors using the ordi-
nary least squares procedure. As starting values of the
SIMPLEX search, we used the mean values of the parameters
in the parameter space. This procedure resulted in the set of
four parameters for the simulated data that had the lowest
squared error.

Figure 4 displays that the parameters were reliably recov-
ered. The values on the y-axes indicate the parameters that
were used to generate the data sets, and the values on the x-
axis indicate the estimated parameters The panels on the di-
agonal display how well the parameters were recovered. A
perfect recovery would mean that all true estimated pairs
would lie on the dashed line. The blue regression lines indicate
the actual relationship between true and estimated parameters,
which closely follows the perfect line, indicating that on av-
erage the logistic regression model nicely recovered the true
parameters. The diagonal panels also display the correlations

between the true and estimated parameters, as well as the root
mean squared deviations (RMSD) between the true and esti-
mated parameters. These measures indicate that the parameter
recovery of the logistic regression model was satisfactory.

Off the diagonal, the relation of the parameter estimates to
the other true parameters is displayed, providing a measure of
trade-off between the parameter estimates. The correlations
between the parameter estimates and the other true parameters
are clearly below the diagonal, although they are quite high for
the a and b parameters. The interpretation of these correlations
is that effects in the data that are explained by the b parameter
are also partially explained by the a parameter. This is poten-
tially a consequence of a quite high correlation in the param-
eter spaces between the a and b parameters of r = .59:
Intuitively, this makes sense: A higher asymptote indeed al-
lows for a greater negative slope in the second half of the
accuracy–RT data.

Recovery in smaller data sets The first parameter recovery
studies had a highly idealized scenario with many observa-
tions equally spaced across the full RT range. However, in
practice, data typically have fewer observations and are not
evenly distributed. To show that our method is resilient to
more realistic data patterns, we performed an additional pa-
rameter recovery, in which we included only 200 responses
per simulated data set. The simulated RT data were generated
according to a shifted Wald distribution function, which is a
common description of RT distributions (cf. Anders et al.,
2016). The mean and shape parameters of the shifted Wald

Table 1 Brief description of the experimental data sets fitted to obtain a sensible parameter space

Reference Experiment Conditions Participants

Forstmann et al. (2010) Perceptual judgment with response bias 5 17

Katsimpokis et al. (2018) Expanded judgment with speed–accuracy trade off and response deadlines 4 24

Katsimpokis et al. (2018) Perceptual judgment with speed–accuracy trade off and response deadlines 4 24

Maass et al. (2016) Delayed expanded judgment task 8 24

Maass et al. (2016) Expanded judgment task with reward 4 24

Maass et al. (2016) Expanded judgment task with response deadline 3 21

Van Campen et al. (2014) Simon task 2 10

Wagenmakers et al. (2008) Lexical decision task with response bias 2 18

Wagenmakers et al. (2008) Lexical decision task with speed–accuracy trade-off 2 17
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Fig. 3 Distributions of parameters estimated from the data sets in Table 1.
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function were uniformly sampled across simulations (between
0.5 and 2 and between 2 and 4, respectively). This parameter
recovery revealed that, although slightly less accurate, the
model still showed strong correlations between the true and
estimated parameters (Table 2). This means that for experi-
ments with around 200 trials, the parameters of the logistic

regression model can be reliably interpreted to study the ac-
curacy–RT relationship.

Application to standard data sets

In this section, we illustrate how conclusions can be drawn by
the application of the non-linear logistic function to the accu-
racy–RT relationship. In Example 1 the model was fit to data
of a lexical decision task in which participants were cued to
apply a speed–accuracy trade-off (Wagenmakers, Ratcliff,
Gomez, &McKoon, 2008). Here we expected the a parameter
to vary across conditions (for reasons that will be specified
below). Example 2 pertains to an experiment in which time
pressure was experimentally manipulated (Van Maanen,
Fontanesi, Hawkins, & Forstmann, 2016), and we expected
differences in the b parameter. In Example 3 the model was fit
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Fig. 4 Results of the parameter recovery. See the text for details.

Table 2 Results of Parameter Recovery 2

True Parameter r RMSD

a .63 2.0

b .89 0.8

c .53 0.3

d .81 0.1

See the text for details.
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to data from a Simon task (Van Campen et al., 2014), and we
expected the c parameter to vary across conditions. Because
the d parameter is comparable to a nondecision time parameter
in sequential-sampling models and is often considered unin-
formative and only used to better fit the data, we will not
provide an additional application example for this parameter.

Cue-induced speed accuracy trade-off Cue-induced speed–
accuracy trade-off refers to the often observed result that
when participants are cued to respond fast, they can only in-
crease their speed of responding at the expense of their re-
sponse accuracy (Bogacz et al., 2010; Heitz, 2014;
Wickelgren, 1977). A common interpretation of this finding
is that in many situations, participants contemplate their ac-
tions until they reach a specific level of certainty about the
planned action, and then commit to that action. When they are
pressed for speed, this level of certainty is hypothesized to be
less. One very prominent class of mathematical models (a
simple diffusion decision model that assumes no between-
trial variability in the rate of evidence accumulation;
Ratcliff, 1978) suggests that although participants indeed
trade response accuracy for response speed in this scenario,
there is no dependence between the probability of a correct
response and response speed within each condition. This sug-
gests that fitting the CAF should result in a lower a parameter
under cue-induced speed stress (see also Fig. 2a), but not
differences between conditions for the remaining parameters.

In the lexical decision task of Wagenmakers et al. (2008),
participants were asked to indicate with a button press
whether or not a letter string presented on a computer screen
was a valid English language word. Each of 17 participants
contributed 960 responses while it was stressed that being
accurate was more important than being fast, and 960 re-
sponses while the opposite instruction was provided: The
speed of responding was more important than accuracy. In
half of the trials, valid words were presented, and in the
remaining trials items were presented that resembled words
but in which one or a few characters were adjusted to create
an invalid word (for details about the experimental design,

we refer the reader to Wagenmakers et al., 2008). The word
and nonword trials are collapsed for the purposes of the
present analysis.

We fit the CAF separately to the individual speed–accuracy
conditions and participants. The parameters of the CAF were
optimized using SIMPLEX optimization (Nelder & Mead,
1965), with reasonable starting points (a = 3, b = 0.1, c =
0.01, d = 0.1) that did not differ across participants and con-
ditions. All parameters were bound within the (0, Inf) range
(i.e., parameter estimates could not become negative).

Because of floor effects on the possible parameter esti-
mates, we log-transformed the b and c parameters before
performing statistical analysis. Paired t tests indicated a sig-
nificant difference in the estimates of a [t(16) = 3.16, p =
.006], as well as a significant difference in the log-
transformed estimates of c [t(16) = – 2.65, p = .017]. The other
two parameters did not differ significantly [t values < 1.1; a
test on the nontransformed b estimate also did not reach sig-
nificance: t(16) = 1.4, p = .16].

Thus, as predicted, the cue-induced speed–accuracy in-
struction provided in this experiment was reflected in the a
parameter, yielding CAFs that asymptoted at different levels
(Fig. 5). In addition, it seems that in this data set, part of the
speed–accuracy trade-off behavior can be explained by a
higher proportion of fast guesses, as indicated by the higher
estimate of c for speed-instructed trials (Dutilh,Wagenmakers,
Visser, & Van der Maas, 2011; Schneider & Anderson, 2012;
but see Van Maanen, 2016).

Urgency Recent work has suggested that an error rate that
increases with RT is a signature of time pressure or urgency
(Hanks et al., 2014; Murphy et al., 2016; Thura & Cisek,
2016). That is, if participants have to make decisions under
time pressure (e.g., before a certain time limit has been
reached, but not if they are simply cued to be fast, as above;
cf. Katsimpokis et al., 2018), then they might make more
mistakes the longer the decision process takes, resulting in a
negative slope of the CAF, which is expressed by the b pa-
rameter (see also Fig. 2b). An increase in b therefore may

Acc Spd

2

3

4

5

6

7

a

Acc Spd

0

1

2

3

4

b

Acc Spd

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

c

Acc Spd

0.0

0.1

0.2

0.3

0.4

d

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

RT (s)

P
r
o

b
.

c
o
r
r
e

c
t

Acc

Spd

Fig. 5 Parameter estimates of the speed–accuracy trade-off data set. The right panel shows a representative participant, with the predicted nonlinear
logistic CAFs overlaid on the bin-based accuracy estimates. Acc: accuracy instructions; Spd: speed instructions.

(2019) 51:2378–2389Behav Res2384



reflect a decision boundary that decreases over time (Frazier &
Yu, 2008; Malhotra, Leslie, Ludwig, & Bogacz, 2017).

Van Maanen and colleagues (Van Maanen et al. 2016)
explored this line of reasoning using an expanded judgment
paradigm, in which participants were asked to make a
choice about a noisy stimulus that slowly built up on the
screen. The researchers manipulated the speed of the build-
up, thereby inducing time pressure effects without experi-
mentally manipulating the choice difficulty. Specifically,
the interval between consecutive updates of the stimulus
was either 200 or 400 ms, meaning that the same amount
of information about the stimulus was presented in half the
time in one condition as compared to the other condition
(on average, across trials). Van Maanen et al. (2016) found
that when the stimulus updated quickly, participants felt
pressed for time and made decisions based on less informa-
tion on the screen. Moreover, a negative relation was found
between RT and the amount of information, similarly indi-
cating that participants felt time pressure during a trial. A
nonnegative b parameter in the present analysis would be
conceptually similar to these findings. Here we present the
data from their Experiment 2, which was conducted while
participants were in an MRI scanner (for details of the
experimental design, we refer the reader to Van Maanen et
al., 2016).

Figure 6 presents the distributions of the estimated param-
eters. Because of floor effects on the possible parameter esti-
mates, we again log-transformed the c parameter before
performing statistical analysis. In this case, we judged this
additional step unnecessary for the b parameter, because the
median RTs were sufficiently above the floor value of 0.
Although the parameter estimates did not differ significantly
[at an alpha level of .05, t(19) = 1.90, p = .07], we believe that
it is interesting that the direction of the effect was consistent
with the previous results and with the previous analyses of
these data (Van Maanen et al., 2016). Also note that no other
parameter showed an effect [a: t(19) = 1.28, p = .21; with
respect to the c and d parameters, t values < 1].

Response capture In certain experimental paradigms, the
stimuli are such that they seem to engage an automatic pro-
cess, resulting in very fast but error-prone responses. This
process, sometimes referred to as response capture, occurs
in the Simon task. In this task, participants are asked to indi-
cate with a left or right button press whether a stimulus has a
specific color. Because the stimuli appear on the left or right
side of the screen, this often elicits a fast response with the
hand on the same side as the stimulus. If the stimulus location
is congruent with the (correct) response hand, indicating that
an automatic button press yields a correct outcome, there is no
decrease in accuracy for fast responses. For incongruent trials,
however, this leads to a large proportion of errors, decreasing
the overall accuracy for fast responses (Forstmann et al., 2008;
Ridderinkhof, 2002; Van Campen et al., 2014; Van Campen et
al., 2018; Van den Wildenberg et al., 2010). Although the
standard method in the field has been to compute the propor-
tion of errors in the first RT bin, as we outlined above, a novel
methodology has recently become available that addresses the
specific question of response capture (Servant, Gajdos, &
Davranche, 2018).

We predict that response capture should be visible in the c
parameter of the CAF function, since that parameter decreases
the accuracy in the initial segment of the curve for incongruent
trials, which would be consistent with the higher fast-error rate
associated with response capture (see also Fig. 2c).

Van Campen et al. (2014) did a fairly standard version of
the Simon task, in which ten participants had to respond with a
right or left button press (counterbalanced across participants)
to whether a circle that appeared on the screen was green or
blue. During the experiment, single-pulse transcranial mag-
netic stimulation (TMS) was administered in order to obtain
indices of corticospinal excitability. Crucially for the present
purpose, the single-pulse TMS did not disrupt behavior in any
way (for details of the experimental design, we refer the reader
to Van Campen et al., 2014).

Figure 7 displays the distributions of parameter estimates,
as well as the typical CAFs for one representative participant.
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Because of floor effects on the possible parameter estimates,
we again used log-transformation of the b and c parameters
before performing the statistical analyses. Paired t tests result-
ed in a significant difference in the c parameter [t(9) = 5.9, p <
.001], suggesting that participants indeed had more fast incor-
rect responses in the incongruent than in the congruent condi-
tion. In addition, the a parameter differed between conditions
[t(9) = 2.7, p = .02], indicating that the asymptote of the CAF
was higher for the incongruent than for the congruent condi-
tion. The b and d parameters did not differ between conditions
(t values < 1.6).

Another inferential method: Model comparison

Another method of inference is to compare how well models
balance their goodness of fit and their flexibility to account for
data (Pitt & Myung, 2002). That is, if a model has many
parameters, in many cases it can also account for many differ-
ent patterns in the data. Thus, a model that is overly flexible in
this way might overfit the data, and so not generalize to other
data sets. In those cases, a simpler model might account for the
data almost as well, by explaining the true effects in the data
but not the noise that is inherent in a specific data set.

Many methods exist to formally compare the goodness of
fit of two models with different levels of flexibility. One typ-
ical method for this model comparison is the Akaike informa-
tion criterion (AIC; Akaike, 1974), which corrects the good-
ness of fit for the number of free parameters of each model.
We illustrate this method here on the data of VanMaanen et al.
(2016), to illustrate its use in the context of CAFs and show
that there is evidence that the c parameter is effectively zero in
this data set, as was already suggested by Fig. 6. In this case,
we wanted to test whether a nonzero c parameter explained a
significant proportion of the explained variance. Therefore,
we compared the full model discussed above, in which all
parameters were estimated, with a reduced model in which

we forced the c parameter to be c = 0. Consequently, the
reduced model had fewer free parameters, and one could com-
pare the balance of the flexibility of the models with respect to
their goodness of fit. If the reduced model fit almost as well as
the more complex full model, even though it was less flexible,
it would be considered the better model.

Because we applied least-squares parameter estimation, it
was possible to compute AIC values through the residual sum
of squares of the models (RSS; Burnham & Anderson, 2002).
For each participant and condition, the AIC was computed
according to the formula AIC= 2k− n ln(RSS), with n being
the number of observations per cell, and k the number of free
parameters, which was k = 8 for the full model and k = 6 for
the reduced model. Comparison of the AIC values obtained in
this way revealed that in 92.5% of the cases, the reduced
model was preferred over the full model (for 90% of the par-
ticipants in the 200-ms condition, and 95% of the participants
in the 400-ms condition). Akaike weights (Wagenmakers &
Farrell, 2004) showed that the reduced model was about twice
as likely to be correct as the full model [averaged AICw(Full)
= .32; averaged AICw(Reduced) = .68]. Thus, although the
difference between the AIC values was not big (as revealed
by the Akaike weights), the reduced model was consistently
preferred over the full model, leading to the inference that
there were no specifically fast incorrect responses in this data
set. This conclusion thus also corroborates our previous anal-
ysis that showed no significant difference between the c-pa-
rameters in the Van Maanen et al. (2016) data, but with the
stronger claim that these parameters were in fact equal to 0.

Discussion

There are many researcher degrees of freedom in the typical
methods for identifying relationships between accuracy and
RTs, and potential pitfalls exist in interpretation due to the
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chosen strategy. For this reason, we introduced a novel ap-
proach to computing CAFs, which is based on nonlinear lo-
gistic regression and solves the problem of choosing the exact
amount of RT bins. The logistic regression model assumes a
flexible functional form that accounts for the typical patterns
in the data, and using least squares regression the best fitting
parameters can be estimated. In simulation and in example
applications, we showed that the estimated parameters are
accurate and that meaningful inferences can be made.

It is pertinent to finish the discussion of this approach by
stressing its limitations. In our view, three important limita-
tions warrant discussion. First, it is worth mentioning that the
logistic regression model is only applicable to binary out-
comes (typically correct/incorrect). For most application do-
mains, however, this is not problematic.

Second, although it is an improvement over current prac-
tices, the new method still allows for some researcher degrees
of freedom. Specifically, as with any mathematical model,
there are multiple ways of drawing inferences. We have fo-
cused here on performing statistical tests on the estimated
parameters. Another method that we discussed is to compare
the fit quality and the flexibility of two (or more) models that
implement different theoretical assumptions about the data.
We illustrated this approach with a model that did not allow
for specifically fast incorrect responses, and one that did, and
compared these using AICs. Other methods are also available,
potentially leading to different inferential outcomes (Dutilh et
al., 2018).

A related issue is that the standard statistical tests that we
chose to perform on the parameters have relatively strong
assumptions. Violating these assumptions might increase the
chance of an incorrect inference if this were not properly con-
trolled for. In the case of the logistic regression model, the
lower bound on the parameter space may result in non-
Gaussian distributions of the parameters. Here we chose to
apply a logarithmic transformation of the data to obtain more
Gaussian-like distributions when this was the case, but this is a
degree of freedom that is allowed to the researcher, as well
(Gelman & Loken, 2014).

A third important limitation is that the present setup of the
model does not allow for the inclusion of random effects,
which may be pertinent in application domains where stimuli
differ from trial to trial (Anders, Oravecz, & Alario, 2018).
Here we chose to estimate the model parameters independently
for each condition and to do inference on the group level in a
second stage, but in situations with small sample sizes or large
item effects, an analysis that included (crossed) random effects
might increase power (Baayen, Davidson, & Bates, 2008).

Conclusion

The present article has introduced a newmethod for analyzing
conditional accuracy in a principled, model-free way. The

method alleviates some of the problems associated with RT
binning to obtain different accuracy levels per RT bin.
Specifically, the researcher degrees of freedom are reduced.
Using this method, we can reliably identify the presence of
fast or slow errors, which may be beneficial in many domains
of cognitive psychology in which the relationship between
responses and RTs is of theoretical importance.
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