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Abstract
Complex span and content-embedded tasks are two kinds of tasks that are designed tomeasure maintenance and processing in the
working memory system. However, a key functional difference between these task types is that complex span tasks require the
maintenance of information that is not relevant to the processing task, whereas content-embedded tasks require the maintenance
of task-relevant information. The purpose of the present researchwas to test the hypothesis that more unique variance in inductive
reasoning would be explained by content-embedded tasks than by complex span tasks, given that inductive reasoning requires
reasoners to maintain and manipulate task-relevant information in order to arrive to a solution. A total of 384 participants
completed three complex span tasks, three content-embedded tasks, and three inductive reasoning tasks. The primary structural
equation model explained 51% of the variance in inductive reasoning; 45% of the variance in inductive reasoning was uniquely
predicted by the content-embedded latent factor, 6% of the variance was predicted by shared variance between the content-
embedded and complex span latent factors, and less than 1% was uniquely predicted by the complex span latent factor. These
outcomes provide a novel extension to the small but growing literature showing an advantage of using content-embedded rather
than complex span tasks for predicting higher-level cognition.
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People use inductive reasoning to make inferences and solve
problems on a daily basis. Inductive reasoning involves rea-
soning from the particular to the general; it is an explicit pro-
cess that involves the discovery of common relationships
among stimulus elements via the formation and testing of
hypotheses within a stimulus set (Carroll, 1993; Ekstrom,
French, Harman, & Dermen, 1976; Johnson-Laird, 2013;
Klauer & Phye, 2008; Klauer, Willmes, & Phye, 2002).
During inductive reasoning, multiple elements and/or rela-
tions between elements are attended to and manipulated in
order to derive a solution (Johnson-Laird, 2013; Klauer &
Phye, 2008). Reasoners can adopt various strategies during
inductive reasoning, such as systematically comparing the
stimulus elements and the relations between elements; a more
heuristic approach, in which the problem is examined globally
and plausible hypotheses are generated and tested; or iterative
combinations of more than one strategy (Klauer & Phye,

2008). Regardless of the strategy used, maintaining task-
relevant information during processing is important for induc-
tive reasoning to take place (Cowan, 1988; Johnson-Laird,
2013; Oberauer, 2002; Oberauer, Süß, Wilhelm, & Sander,
2007; Sternberg, 1986; Sternberg & Gardner, 1983).
Inductive reasoning theories assume that the maintenance of
information during processing is achieved by the working
memory system (e.g., Johnson-Laird, 2013; Sternberg, 1986;
Sternberg & Gardner, 1983).1

Maintenance (achieved by the working memory system) is
important for inductive reasoning because task-relevant infor-
mation must be maintained and combined in order to derive a
solution (Sternberg, 1986). Consistent with the assumption
that maintenance is important for inductive reasoning, a
wealth of research has shown strong positive relationships

1 In a recent review of the workingmemory literature, Cowan (2017) discusses
commonly adopted definitions of working memory and recommends that re-
searchers explicitly state the definition they are adopting to improve concep-
tual clarity in the field. Following this call for specificity, we adopt what
Cowan refers to as the generic working memory definition (Cowan, 1988,
2017), which states that working memory is Bthe ensemble of components
of the mind that hold a limited amount of information temporarily in a height-
ened state of availability for use in ongoing information processing^ (Cowan,
2017, p. 1163).
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between reasoning and working memory (e.g., Ackerman,
Beier, & Boyle, 2002, 2005; Conway, Cowan, Bunting,
Therriault, & Minkoff, 2002; Kane, Hambrick, & Conway,
2005; Oberauer et al., 2007; Unsworth & Engle, 2005).
Importantly, most evidence indicates that reasoning (including
inductive reasoning) and working memory are highly related
but clearly separable constructs (Ackerman et al., 2005;
Kyllonen & Kell, 2017; Oberauer, Schulze, Wilhelm, &
Süß, 2005; but see Kyllonen & Christal, 1990).

Many of the studies investigating the relationship between
working memory and reasoning have examined general rea-
soning, which can encompass several different subtypes of
reasoning (e.g., deductive reasoning, inductive reasoning,
and analogical reasoning). Thus, the tasks used in much of this
research were not limited to inductive reasoning tasks (see
Ackerman et al., 2005, for a comprehensive meta-analysis),
although most studies have included at least one inductive
reasoning task. For instance, one widely used task within this
area of research is the Raven’s Progressive Matrices (Raven,
Court, & Raven, 1977), a version of which was used in the
present research. On each trial of this task, reasoners see a 3×3
matrix in which eight cells contain figures that differ in shape
composition, shading, and/or size, and the ninth cell is left
empty. The reasoner is given eight additional figures and is
asked to identify which figure correctly completes the matrix
(on the basis of one or more unspecified rules that determine
the relationships between the figures in the matrix). The two
other tasks used to measure inductive reasoning in the present
research (discussed in greater detail below) are the letter sets
and locations tasks from the Kit of Reference Tests for
Cognitive Factors (Ekstrom et al., 1976; see also Carroll,
1993; Foster et al., 2015; Harrison et al., 2013; Was,
Dunlosky, Bailey, & Rawson, 2012).

Working memory is most frequently measured using com-
plex span tasks (Conway et al., 2005; Kane et al., 2004;
Shipstead, Harrison, & Engle, 2016). Complex span
tasks are a type of working memory task that involves both
storage (i.e., maintenance) and processing demands (e.g.,
Cowan, 2017; Daneman & Carpenter, 1980). Important for
present purposes, a critical feature of complex span tasks is
that the information being maintained is independent from the
information being processed. To illustrate, consider the read-
ing span task (Conway et al., 2005; Kane et al., 2004). In this
task, participants are presented with sentences one at a time
and are asked to identify whether the sentence makes sense
(i.e., the processing component of the task). After each sen-
tence, participants are shown a word to remember for later
recall (i.e., the maintenance component of the task). After each
block of sentences, participants are asked to recall the to-be-
remembered words in serial order. Although participants are
told to complete both components as accurately as possible,
working memory is measured as performance on the mainte-
nance component. By this measure, working memory reflects

the ability to maintain information that is irrelevant to the
information being processed in the working memory system.

Another way that researchers have measured working
memory is through content-embedded tasks (Ackerman et
al., 2002; Kyllonen & Cristal, 1990; Was, Rawson, Bailey,
& Dunlosky, 2011; Woltz, 1988). Similar to complex span
tasks, content-embedded tasks also involve both maintenance
and processing demands. In contrast to complex span tasks,
the information being maintained for output is the same infor-
mation that is being processed. To illustrate, consider the
ABCD task. On each trial, participants are shown three pieces
of information, one at a time, that specify the ordering of the
same four letters (ABCD). The first piece of information states
the ordering of the letters A and B (e.g., BB comes before A^).
The second piece of information states the ordering of the
letters C and D (e.g., BD comes after C^). The third piece of
information states the ordering of the two sets of letters (e.g.,
Set 1 comes after Set 2). The participant is then asked to
indicate the correct solution (in this case, CDBA). Note that
the information being processed (i.e., the ordering of letters
and sets of letters) is the same information that is being main-
tained for output (e.g., CDBA). This measure of working
memory reflects the ability to maintain and process task-
relevant information in the workingmemory system. This task
characteristic differs from complex span tasks (in which the
information being maintained is task-irrelevant).

Although content-embedded (e.g., Kyllonen & Christal,
1990) and complex span (e.g., Engle, Tuholski, Laughlin, &
Conway, 1999) tasks both correlate with measures of reason-
ing, the vast majority of prior research has used complex
span tasks to measure working memory. Given the assump-
tion that working memory is important for inductive reason-
ing because of its role in maintaining task-relevant informa-
tion to derive a solution (e.g., Sternberg, 1986), we hypoth-
esize that working memory tasks that emphasize the mainte-
nance and processing of the same information (i.e., content-
embedded tasks) would predict more variance in inductive
reasoning than do tasks that emphasize the maintenance of
task-irrelevant information (i.e., complex span tasks).
Importantly, no prior research has simultaneously investigat-
ed the predictive power of complex span and content-
embedded tasks in inductive reasoning.

Although no prior research has investigated how well these
kinds of working memory tasks predict inductive reasoning,
prior research has investigated how well these kinds of tasks
predict other complex cognitive processes. Was, Rawson,
Bailey, and Dunlosky (2011) investigated the extent to which
these two task types predicted reading comprehension.
Similar to the argument proposed in the present research,
Was et al. (2011) hypothesized that reading comprehension
would be predicted better by content-embedded than by com-
plex span tasks, because reading comprehension requires the
maintenance of task-relevant information. As hypothesized,
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reading comprehension was predicted better by content-
embedded than by complex span tasks.

Although this finding provides indirect evidence supporting
our hypothesis that inductive reasoning will be predicted better
by content-embedded than by complex span tasks, reading
comprehension and inductive reasoning are distinct constructs
that may differentially rely on other cognitive processes. For
instance, reading comprehension loads onto a crystalized intel-
ligence factor, whereas inductive reasoning loads onto a fluid
intelligence factor (Carroll, 1993). Thus, the extent to which
inductive reasoning is predicted better by content-embedded
than by complex span tasks remains an open question awaiting
direct empirical investigation.

The purpose of the present research was to test the hypoth-
esis that more unique variance in inductive reasoning would
be explained by content-embedded than by complex span
tasks. Given that both tasks are designed to measure mainte-
nance and processing in the working memory system, we
predicted that content-embedded and complex span tasks
would share some variance explaining inductive reasoning
performance. However, given that content-embedded tasks
measure the maintenance and processing of the same informa-
tion (which is central in inductive reasoning tasks), whereas
complex span tasks measure the maintenance of task-
irrelevant information, we predicted that content-embedded
tasks would also predict unique variance in inductive reason-
ing performance.

Method

Participants

Participants were recruited from the Psychology Department’s
participant pool and received course credit for participation.
The full sample included 384 students from a large
Midwestern university (68% female; 70% white, 14% black,
5% Asian, 4% First Nations, 2% Hispanic or Latino, 1% na-
tive Hawaiian or Pacific Islander); 36% were in their first year
of college (M = 2.2, SE = 0.1), and 30% were psychology
majors. The mean age of participants was 19.9 years (SE =
0.1), and the sample size was determined by rule of thumb for
conducting large individual differences studies (n = around
300). We oversampled in order to account for attrition and
noncompliance. Most importantly, we did not analyze the data
until the full sample was collected.

Materials and procedure

Complex span tasks The complex span tasks used in the pres-
ent research were versions of the span tasks described in Kane
et al. (2004). Each trial of the reading span task (RSPAN)
included a set of sentences. The set size ranged from two to

six sentences. Sentences were presented individually, and par-
ticipants were asked to read each sentence silently and then to
click a button to indicate whether the sentence made sense
(e.g., BMr. Owens left the lawnmower in the lemon^).
Across all trials, half of the sentences made sense, and half
did not. If participants did not respond within 4 s, the comput-
er automatically moved them forward. After each sentence,
participants were presented with an unrelated word (e.g.,
eagle) for 1 s that they were asked to remember for later recall.
At the end of the sentence set, participants were prompted to
recall the words in the order in which they had been presented.
Participants completed 15 trials, with one trial of each set size
in each of three blocks. Trials were presented in a fixed ran-
dom order within each block.

Each trial of the operation span task (OSPAN) included a
set of mathematical expressions. The set size ranged from two
to five mathematical expressions. Mathematical expressions
were presented individually, and participants were asked to
read each expression silently and then to click a button to
indicate whether it was correct (e.g., BIs (4 × 2) + 5 = 10?^).
Across all trials, half of the expressions were correct, and half
were not. If participants did not respond within 4 s, the com-
puter automatically moved them forward. After each expres-
sion, participants were presented with a word (e.g., phone) for
1 s that they were asked to remember for later recall. At the
end of each set of mathematical expressions, participants were
prompted to recall the words in the order in which they had
been presented. Participants completed 12 trials, with one trial
of each set size in each of three blocks. Trials were presented
in a fixed random order within each block.

Each trial of the counting span task (CSPAN) included a set
of arrays. The set size ranged from two to six arrays; each
array was presented individually for as much time as the par-
ticipant needed. However, participants were told to complete
each array as quickly as possible. Each array was composed of
a random assortment of squares and circles, including three to
nine dark blue circles, a varying number of light blue circles,
and a varying number of dark blue squares (the arrays were the
same across participants). Participants were asked to count the
dark blue circles in each array, clicking on each one as it was
counted. A checkmark appeared on the circle to show the
participant that that circle had been counted. After they fin-
ished counting the dark blue circles in the array, a new array
appeared. Participants were asked to remember the number of
dark blue circles in each array for later recall. At the end of the
array set, participants were prompted to recall the numbers in
the order in which they had been presented. Participants com-
pleted 15 trials, with one trial of each set size in each of three
blocks. Trials were presented in a fixed random order within
each block.

The scores on all complex span tasks were computed using
partial-credit load scoring (see Conway et al., 2005, for
discussion). Additionally, we used serial recall scoring;
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participants only received credit for items recalled in their
correct ordinal position. Furthermore, participants were only
given credit for items that were spelled entirely correctly on
the RSPAN and OSPAN, due to ambiguity concerning wheth-
er misspellings reflected semantic or typographical errors
(e.g., bean or beat for the target word bear). The scores on
all complex span tasks were entered into the model as percent-
ages correct.

Content-embedded tasks The content-embedded tasks used
in the present research were versions of content-embedded
tasks that had been used as measures of working memory in
previous research (e.g., Ackerman et al., 2002; Kyllonen &
Christal, 1990; Was et al., 2011; Was & Woltz, 2007; Woltz,
1988). The stimuli for all content-embedded tasks are avail-
able online at https://osf.io/gcav6/.

On each trial of the ABCD task, participants were required
to process three pieces of information to determine the order-
ing of four letters (A, B, C, and D). First, participants were
given the ordering of the letters A and B (e.g., BB comes
before A^). Participants clicked a button to replace the first
statement with one giving the ordering of the letters C and D
(e.g., BD comes after C^). Participants again clicked a button
to replace the second statement with one giving the ordering
of the two pairs of letters (e.g., BSet 1 comes after Set 2^).
Participants clicked a button to advance to the next screen,
which showed the eight possible orderings of A, B, C, and
D. Participants were asked to select the correct answer, and
then the cycle repeated for the next trial. All screens on each
trial were self-paced; however, participants were told to re-
spond as quickly as possible. Participants completed 23 trials;
the letter and set orderings varied by trial and were presented
in the same fixed, random order across participants.

On each trial of the alphabet task, participants were asked
to transform sets of letters. Participants were presented with
one or two nonadjacent letters from the alphabet with a trans-
formation direction and number (e.g., BT forward 3^; BOZ
backward 2^; the answers are W and MX, respectively).
Once participants had solved the transformation, they clicked
a button to advance to the next screen, which included eight
response options. Participants had up to 5 s to select the cor-
rect answer; if they did not select an answer, they were auto-
matically moved forward and the trial was counted as incor-
rect. Participants completed 12 trials in each of two blocks
(each block contained both one- and two-letter trials).
Letters and transformations varied by trial and were presented
in the same fixed, random order across participants.

On each trial of the digit task, participants were asked to
answer one or two questions about a string of numbers.
Participants were presented with six single-digit numbers for
2 s each (e.g., B5, 8, 1, 4, 9, 8^). After the presentation of the
digit string, participants were asked one or two questions
about the number string (e.g., BHowmany even numbers were

there?,^ BWhat is the smaller of the middle two numbers?^). If
the trial involved two questions, the questions were presented
individually. All answers were numeric, and participants an-
swered by typing in the correct answer. This phase of the task
was self-paced, but participants were asked to answer as
quickly and accurately as possible. Participants completed a
block of 12 single-question trials and then a block of 12
double-question trials. The questions varied by trial and were
presented in a fixed, random order across participants.

The scores on all content-embedded tasks were computed
as the number of correct responses per minute, and all partic-
ipants included in the final analyses completed all trials in all
content-embedded tasks. For the digit task, minutes were
computed as the time spent on the response screen (given that
digit presentation times were fixed). Prior research using
content-embedded tasks indicates that meaningful individual
differences are captured in both speed and accuracy on these
tasks (see Vandierendonck, 2017; Was & Woltz, 2007).

Inductive reasoning tasks The scores on all three inductive
reasoning tasks were computed as percentages correct. We
used the short form of Raven’s Advanced Progressive
Matrices (RAPM; Raven, 1962, Set II), used by Stanovich
and Cunningham (1992). In brief, Stanovich and
Cunningham dropped 18 of the least and most difficult items,
given the frequent floor and ceiling effects in college students
on these items. On each trial, participants saw a 3×3 matrix,
with the first eight cells containing figures differing in shape
composition, shading, and size. Eight additional figures were
presented below the matrix. Participants were asked to click
on the figure that correctly completed the pattern in the matrix.
Participants could complete up to 18 trials and were given up
to 12 min to complete the task. Trials were presented in as-
cending order, from least to most difficult.

On each trial of the locations task (Carroll, 1993; Ekstrom
et al., 1976), participants were asked to extract a pattern from
an array of Xs and dashes (see Fig. 1a for a sample trial). Each
array included four rows, and each row contained sets of
dashes with an X inserted within one of the sets. The place-
ment of the X in each row was determined by an unstated rule
(e.g., in Fig. 1a, the rule is to place the X in the second set of
dashes in the position n + 1 from the previous row). Below the
array, participants were presented with a fifth line that includ-
ed a set of dashes with the numbers 1 through 5 dispersed in
five locations. Participants were asked to figure out the rule
and then to select the number that indicated where the X
should be placed, given the rule (e.g., in Fig. 1a, the answer
is 3). Participants were instructed that the task goal was to get
a high score on the test, but to skip a problem if they were
unsure of the answer, because they would be penalized for
answers that were incorrect. Participants could complete up
to 14 trials in each of two blocks and had up to 5 min to spend
on each block of trials. If a participant skipped one or more
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trials and had time left within the 5-min block, the skipped
trials were presented again until either the participant had se-
lected an answer or the 5 min were up.

In each trial of the letter sets task (Carroll, 1993; Ekstrom et
al., 1976), participants received five sets of four letters (see
Fig. 1b for a sample trial). A rule determined the composition
of four of the sets of letters, and one set did not follow the rule
(e.g., in Fig. 1b, the rule is three copies of one letter plus one
copy of a different letter, and the letter set QPPQ does not
follow this rule). Participants were asked to figure out the rule
and then to click on the set of letters that did not follow the rule
(e.g., in Fig. 1b, the answer is A). Participants were instructed
that the task goal was to get a high score on the test, but to skip
a problem if they were unsure of their answer, because they
would be penalized for answers that were incorrect.
Participants could complete up to 15 trials in each of two
blocks and had up to 5 min to spend on each block of trials.
If a participant skipped one or more trials and had time left
within the 5-min block, the skipped trials were presented again
until either the participant had selected an answer or the 5 min
were up.

The data reported were collected as a part of a larger indi-
vidual differences study. Participants completed additional
tasks that are not relevant for the present purposes and will
not be reported in this article.2 The entire study involved four
sessions across a two-week period. Participants did not com-
plete more than one task for any given latent factor during the
same session (Session 1: alphabet and locations; Session 2:

ABCD, OSPAN, and RAPM; Session 3: RSPAN and letter
sets; Session 4: digit and CSPAN).

Results

Prior to conducting the analyses, we examined the data for
attrition and evidence of noncompliance. Participants were
excluded from analyses if they had more than one missing
value from a single latent factor, either due to attrition (n =
36) or due to computer error (n = 1). Of the remaining 347
participants, 13 were excluded from the analysis, given evi-
dence of noncompliance on more than one measured variable
on a single latent factor [i.e., for RSPAN and OSPAN tasks,
the participant did not respond to more than 60% of the pro-
cessing trials; for the alphabet task, participant spent less than
90 s on the entire task (including the instructions); for the
locations and letter sets tasks, participant spent less than 60 s
on the first block (including the instructions) and/or 30 s on
the second block; for the RAPM, participant spent less than
120 s on the entire task (including the instructions and practice
problems)]. Instead of excluding participants who showed
noncompliance on a single measure, we treated that single
measured variable as missing data. In total, 34 participants
had missing data but were still included in the analysis, given
that they were missing no more than one measured variable
per latent factor (n = 14 due to attrition, n = 19 due to non-
compliance, n = 1 due to a lost data file). No more than 4% of
the data were missing for each measured variable. Less than
2% of the data were missing from the entire set of data.

The final sample included 334 participants. Given that we
used structural equation modeling and that the parameter es-
timates were derived using maximum likelihood, a minimum
of five cases per parameter estimate is recommended
(Mueller & Hancock, 2010). Our sample size well exceeded
the minimum requirement for the model to be tested (i.e., 21

a b

Fig. 1 Sample trials from the locations and letter sets tasks. (a) Locations task. (b) Letter sets task

2 For purposes of full disclosure (see Simmons, Nelson, & Simonsohn, 2011),
the other tasks from which data were collected included example-based learn-
ing tasks and final comprehension tests, as well as individual differences
measures of verbal ability and spelling. These data have not yet been analyzed
and will be reported elsewhere. For purposes of clarification, we also note that
the data reported here are new data from a different sample of participants than
were used in the study byWas et al. (2011). The data reported in this article are
available online at https://osf.io/4wqp7/.
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estimated parameters, with 16 cases per parameter). All anal-
yses were conducted in MPlus version 7.31 (Muthén &
Muthén, 2015).3 The values for missing data were estimated
using full-information maximum likelihood.

Preliminary analyses

To ensure that participants were complying with the task in-
structions and engaging in both the storage and processing
tasks for the RSPAN and OSPAN, we checked performance
on the processing component of each task. High performance
on the processing components of these tasks suggested that
participants were complying with the task instructions
(RSPAN: M = 84%, SD = 12; OSPAN: M = 77%, SD = 15).
Performance on both components of the RSPAN and OSPAN
was similar to the performance found in previous research
(e.g., Lewandowsky, Oberauer, Yang, & Ecker, 2010).

Table 1 includes summary statistics, zero-order correlations,
and reliability estimates for the measured variables.
Importantly, the three measures composing each latent factor
correlated highly with each other. 4 We also screened for uni-
variate normality and multivariate normality. Concerning uni-
variate normality, the skewness statistics on each measured
variable were all smaller than 1.6, and the kurtosis statistics
were all smaller than 3.2, meeting the assumption of univariate
normality for the use of maximum likelihood. Concerningmul-
tivariate normality, Mardia’s measures of multivariate skew-
ness and kurtosis were significant (z = 652.57, p < .001, and
z = 13.05, p < .001, respectively), indicating multivariate
nonnormality. To ensure that multivariate nonnormality did
not affect the qualitative pattern of findings, we also calculated
estimates for all primary models using 500 bootstrap samples.
The parameter estimates were similar following bootstrapping,
and the 95% confidence intervals for the standard errors of the
regression coefficients indicated that significant parameter es-
timates were not affected by the bootstrap sampling.

Structural equation modeling

Primary model Both the complex span and content-embedded
latent factors were expected to predict inductive reasoning;
accordingly, the primary model included paths for both of
these directional effects. Additionally, given that we predicted

that both complex span and content-embedded tasks measure
some of the same facets of the working memory system, the
complex span and content-embedded latent factors were ex-
pected to correlate with one another. Accordingly, the model
included a path for this nondirectional effect. Fig. 2 depicts the
hypothesized model with standardized path coefficients and
estimated factor correlations.

Concerning model fit, the chi-square test of model fit indi-
cated that the model did not fit the data well (see Table 2,
Model 1). However, two limitations of the chi-square test of
model fit include (1) that it assumes multivariate normality,
and even slight deviations from the specified model may pro-
duce large chi-square values, and (2) that it is overly strict
when the sample size is large (Bentler & Bonett, 1980;
McIntosh, 2006). Given that the multivariate normality as-
sumption was not met and that the sample size was large, other
model fit indices were more appropriate. Importantly, all other
model fit indices indicated that the model fit the data well (see
Table 2, Model 1). All measured variables significantly loaded
onto their respective latent factor, and the latent factors were
strongly correlated with one another.

All model relationship statistics are reported using stan-
dardized estimates. As predicted, the complex span and
content-embedded latent factors were strongly correlated (r
= .75, p < .001). Of primary interest, we predicted that the
content-embedded latent factor would strongly predict induc-
tive reasoning, given that content-embedded tasks involve the
maintenance of task-relevant information. Indeed, the content-
embedded latent factor uniquely predicted inductive reasoning
[β = .67, SE = .13, p < .001; 95% CI: (.42, .93)]. Interestingly,
the complex span latent factor did not uniquely predict induc-
tive reasoning [β = .06, SE = .13, p = .65; 95%CI: (– .21, .32)].
In total, the model predicted 51% of the variance in inductive
reasoning: 45% of the variance was uniquely explained by the
content-embedded factor, 6% was explained by overlapping
variance between the latent factors, and less than 1%
(0.004%) was uniquely explained by the complex span factor.

This statement was verified by testing the two models pre-
sented in Fig. 3. In the first model, we cross-loaded content-
embedded tasks onto the complex span latent factor (see Fig.
3a). When tasks are loaded in this way, the content-embedded
factor only reflects variance unique to content-embedded
tasks, whereas the complex span factor reflects both variance
unique to complex span tasks and overlapping variance be-
tween the two factors. In this model, the complex span factor
explained 31% of the variance in inductive reasoning (β =
.56). More importantly, the content-embedded factor still pre-
dicted 21% of the variance above and beyond the variance
explained by the complex span factor (β = .46). This finding
indicates that the content-embedded latent factor still uniquely
predicted a substantial amount of variance in inductive rea-
soning, even when overlapping variance between the factors
was allotted to the complex span factor (p < .001).

3 The primary analyses were also conducted in AMOS version 22, and the
values were almost identical to those found in Mplus (Arbuckle, 2013).
4 The one exception was the locations task. The zero-order correlations be-
tween locations and the other inductive reasoning tasks were somewhat weak-
er than expected. To foreshadow, this task significantly loads onto the induc-
tive reasoning factor, although the loading was numerically weaker than ex-
pected. All three of the inductive reasoning tasks have been used to compose a
single latent factor in previous research in which the locations task loaded
more strongly (Was et al., 2012). Most importantly, neither of the working
memory factors would be differentially disadvantaged by this loading, given
that the task was part of the inductive reasoning factor.
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In the second model, we cross-loaded complex span tasks
onto the content-embedded latent factor (see Fig. 3b). When
tasks are loaded in this way, the complex span factor only
reflects variance unique to complex span tasks, whereas the
content-embedded factor reflects both variance unique to
content-embedded tasks and overlapping variance between
the two factors. In this model, the content-embedded factor
explained 52% of the variance in inductive reasoning (β =
.72). Importantly, the complex span factor now predicted less
than 1% of the variance above and beyond the variance ex-
plained by the content-embedded factor (β = .02), indicating
that the complex span latent factor does not predict variance in
inductive reasoning when overlapping variance between the
factors was allotted to the content-embedded factor (p = .80).
Collectively, the models in Fig. 3 support our hypothesis that

more unique variance in inductive reasoning is explained by a
content-embedded latent factor than by a complex span latent
factor.

To provide further evidence that inductive reasoning is pre-
dicted better by the content-embedded latent factor, we con-
ducted an additional set of models. First, we conducted a
model that included only the complex span latent factor and
inductive reasoning. Consistent with prior research (e.g.,
Conway et al., 2002; Kane et al., 2005; Kane et al., 2004;
Was et al., 2012), the complex span latent factor significantly
predicted inductive reasoning (b = .23, SE = .05, p < .001; r =
.56, SE = .07). Next, we conducted another model in whichwe
added the content-embedded latent factor back into the model
and constrained the relationship between the complex span
latent factor and the inductive reasoning latent factor to be

Fig. 2 Hypothesized model displaying standardized parameter estimates
(error variances are not displayed in the figure). Estimated factor
correlations are shown in parentheses (these values indicate zero-order

correlations between latent factors). Standardized path coefficients are
shown in bold type (these values indicate relationships between the
latent factors when all latent factors are in the model)

Table 1 Means, standard deviations, and correlations of the nine measured variables

Variable M SD 1 2 3 4 5 6 7 8 9

1. RSPAN 64 19 (.86) .76 .58 .46 .35 .54 .30 .23 .40

2. OSPAN 81 16 .63 (.79) .57 .50 .46 .52 .28 .27 .35

3. CSPAN 80 17 .46 .46 (.87) .42 .26 .49 .35 .28 .35

4. ABCD 3 1 .40 .42 .36 (.89) .53 .59 .39 .34 .48

5. Alphabet 4 1 .29 .37 .22 .45 (.81) .52 .18 .24 .45

6. Digit 8 3 .47 .43 .43 .52 .45 (.87) .30 .31 .42

7. RAPM 34 17 .23 .21 .28 .31 .14 .23 (.72) .24 .56

8. Locations 38 14 .17 .19 .21 .26 .17 .23 .15 (.64) .38

9. Letter sets 55 15 .34 .28 .30 .41 .37 .36 .42 .28 (.83)

Complex span (Variables 1–3) and inductive reasoning scores (Variables 7–9) are out of 100%. Content-embedded scores (Variables 4–6) are number
correct per minute. All ps < .008. Internal reliability estimates were computed using Cronbach’s alpha and are presented on the diagonal (bolded and in
parentheses). The observed correlations are presented below the diagonal. The correlations corrected for attenuation are presented above the diagonal
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equal to the unstandardized parameter estimate when the
content-embedded latent factor was not in the model (b =
.23). A chi-square difference test between the freely estimated
primary model and this fixed parameter model indicated that
the primary model fit the data better [Δχ2(1) = 11, p < .01].

Taken together, the findings across these models indicated
that inductive reasoning is predicted better by the content-
embedded latent factor than by the complex span latent factor.

Alternative scoring methods and models Although we attrib-
uted the primary results to functional differences between
content-embedded and complex span tasks, we conducted a
series of models to rule out alternative, artifactual explanations
for why inductive reasoning was predicted better by the
content-embedded latent factor compared to the complex span
latent factor. To facilitate comparison between the models, the
basic outcomes and model fit statistics for all models are pro-
vided in Table 2.

First, although complex span tasks have traditionally been
scored as percentages correct on the maintenance portion of
the task, meaningful individual differences may also be found

in performance on the processing portion of the task. If per-
formance on both the maintenance and processing portions of
the complex span tasks were taken into account, the complex
span factor might be a better predictor of inductive reasoning.
To ensure that the same results would hold when processing
performance was taken into account in complex span task
scores, we ran a model in which complex span task scores
included performance on both the maintenance and process-
ing portions of the tasks.5 This model yielded the same qual-
itative pattern of results as Model 1 (see Table 2, Model 2).

Another plausible reason for why inductive reasoning
was better predicted by the content-embedded latent factor
could be because scores on the content-embedded tasks

Table 2 Model fit indices and path coefficients for the primary model (Model 1) and the alternative models (Models 2–7)

3

Complex
span

Induc�ve 
reasoning

Content-
embedded

Model Number Path 1 Path 2 Path 3 RMSEA CFI AIC χ2 Test of Model Fit

1 .06 .67* .75* .05 (.03, .08), p = .42 .97 19,732 χ2(24) = 45.55, p = .005

2 .10 .63* .86* .05 (.03, .07), p = .46 .98 19,380 χ2(24) = 44.30, p = .007

3 – .15 .90* .81* .09 (.07, .11), p = .002 .92 19,644 χ2(24) = 81.96, p < .001

4a – .16 .83* .83* .06 (.04, .08), p = .17 .97 16,135 χ2(24) = 54.95, p < .001

4b – .29 .95* .88* .06 (.04, .08), p = .24 .97 15,817 χ2(24) = 51.61, p < .001

5 – .17 .88* .80* .07 (.05, .09), p = .10 .96 19,746 χ2(24) = 59.16, p < .001

6 .02 .70* .73* .05 (.02, .08), p = .53 .98 17,111 χ2(17) = 29.49, p = .03

7 n/a n/a n/a .09 (.08, .11), p < .001 .91 19,783 χ2(26) = 100.79, p < .001

The values for Paths 1, 2, and 3 are listed as standardized beta coefficients. The preferred values for the fit indices are as follow: RootMean Square Error
of Approximation (RMSEA): between .05 and .00; Comparative Fit Index (CFI): between .95 and 1.00; Akaike Information Criterion (AIC): smaller
values;χ2 test of model fit: smaller values and non-significant (seeMueller & Hancock, 2010, for additional information onmodel fit indices). Numbers
listed in parentheses in the RMSEA column reflect 90% confidence intervals. * Path is statistically significant at p < .05

5 RSPAN and OSPAN scores were computed as averages between the per-
centage correct on the maintenance task and the percentage correct on the
processing task. Note that an integrated measure for the CSPAN would be
redundant withmaintenance scores alone, given that participants were required
to perform at 100% on the processing task (i.e., by clicking all of the dark blue
circles prior to moving forward to the next screen). Therefore, in models
involving a combined maintenance-and-processing score for complex span
tasks, CSPAN scores are the same as in Model 1.
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included some variation in processing speed (as they were
computed as the number correct per minute), whereas scores
on the complex span tasks did not (as they were computed as
percentages correct). To ensure that the inclusion of process-
ing speed was not the reason why inductive reasoning was
predicted better by the content-embedded latent factor, we
conducted a series of three models (i.e., Models 3, 4a, and 4b).

In Model 3, we scored complex span tasks as percentages
correct on the maintenance portion of the task and content-
embedded tasks also as percentages correct (i.e., processing
speed is not taken into account in both factors). In Models 4a
and 4b, we computed complex span task scores as percentages
correct per minute and the used number correct per minute
scores for the content-embedded tasks (i.e., taking processing
speed into account in both factors). The percentage correct

portion of the scores in Model 4a was based only on perfor-
mance on the maintenance portion of the tasks, whereas the
percentage correct scores in Model 4b were based on perfor-
mance in both the maintenance and processing portions of the
tasks. Models 3, 4a, and 4b all yielded the same qualitative
pattern of results as Model 1 (see Table 2), suggesting that
processing speed is not the reason why inductive reasoning
was predicted better by the content-embedded latent factor
than by the complex span latent factor.

Models 5 and 6 concerned the use of the CSPAN as part of
the complex span latent factor. In brief, we used the same three
complex span tasks as in the earlier study byWas et al. (2011),
given that these three tasks are commonly used together to
create latent complex span factors (for a discussion, see Was
et al., 2011). Although the CSPAN did not load strongly onto

a

b

Fig. 3 Models with cross-loaded tasks. Standardized path coefficients are shown in bold type (error variances are not included)
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the complex span factor in Was et al. (2011), we retained the
CSPAN in the present study in order to allow for the possibil-
ity that the weaker factor loading in their study was spurious
(particularly given that CSPAN performance was near ceiling
(92%) in that study). The CSPAN loaded onto the complex
span latent factor more strongly in the present study than in
Was et al. (2011; .61 as compared to .47, respectively).
However, Was et al. (2011) found better model fit when the
CSPANwas loaded onto the content-embedded rather than the
complex span factor. They also conducted a follow-up model
in which they removed the CSPAN from the model altogether,
but they found the same qualitative pattern of results as in their
primary model. We conducted these same models with the
present data set. The model fit was not improved by loading
the CSPAN onto the content-embedded latent factor (Model
5). However, the model fit was improved by removing the
CSPAN from the model altogether (Model 6). One possible
reasonwhy the model fit could have been negatively impacted
by having the CSPAN in the model is that the processing trials
in the CSPAN were self-paced (in contrast to those in the
RSPAN and OSPAN). This self-pacing may have increased
the extent to which individual differences in strategy use con-
tributed to task performance (for relevant discussion, see
Friedman & Miyake, 2004, and Lewandowksy et al., 2010).
Most importantly, both Models 5 and 6 revealed the same
qualitative pattern of results as Model 1 (see Table 2).

Finally, we also compared our hypothesized model to a
model in which all working memory tasks were loaded onto
a single working memory factor, to ensure that this more par-
simonious model would not fit the data better. This model is
also relevant to the argument that using a heterogeneous bat-
tery of tasks is important to reducing task-specific variance
and tomeasuring workingmemory better at the construct level
(e.g., Lewandowky et al., 2010). Although the single working
memory factor significantly predicted inductive reasoning (β
= .69, p < .001), the model fit statistics indicated worse fit in
this single-factor model than in our hypothesized model (see
Table 2, Model 7). A chi-square difference test comparing the
two models suggested that the model was oversimplified
when working memory tasks were loaded onto a single factor
[Δχ2(2) = 55.24, p < .01]. Furthermore, less variance in in-
ductive reasoning was explained by this model than by the
primary model (47% vs. 51%).

General discussion

The present research tested the hypothesis that more unique
variance in inductive reasoning would be explained by
content-embedded than by complex span tasks. To revisit, a
key difference between content-embedded tasks and complex
span tasks concerns whether the information being maintained
in working memory is relevant to the processing task (i.e., in

content-embedded tasks) or irrelevant to the processing task
(i.e., in complex span tasks). Given that inductive reasoning
tasks require the reasoner to maintain and manipulate task-
relevant information to derive a solution, we predicted that
more unique variance in inductive reasoning would be ex-
plained by content-embedded than by complex span tasks.
Confirming this prediction, our primary model explained
51% of the variance in inductive reasoning; 45% of the total
variance was uniquely explained by the content-embedded
factor, whereas only 6% was explained by overlapping vari-
ance between the factors, and less than 1% was uniquely ex-
plained by the complex span latent factor. Furthermore, we
ruled out numerous artifactual reasons that could account for
these results, by testing a series of alternative models. In all of
the models tested, inductive reasoning was better predicted
better by the content-embedded latent factor than by the com-
plex span latent factor.

Most theories of working memory assume that working
memory is a multifaceted system (see Miyake & Shah,
1999, for perspectives on the nonunitary nature of working
memory), but the number of facets and their independence
from one another are still up for debate. Likewise, the working
memory literature includes some disagreement as to what pro-
cesses of the working memory system are reflected in various
kinds of tasks proposed to measure the construct. Although
the present research was not designed to tease apart the finer-
grained processes involved in complex span versus content-
embedded tasks, the present outcomes may inform these the-
oretical issues.

Some theoretical accounts have been forwarded about
the processes underlying complex span tasks and the
importance of those processes for reasoning. For example,
Unsworth and Engle (2007) argued that performance on
complex span tasks reflect both maintenance in primary
memory and controlled search and retrieval of content from
secondary memory. In contrast, although performance on
content-embedded tasks also likely reflects maintenance in
primary memory, these tasks likely do not reflect controlled
search and retrieval from secondary memory to the same
extent that complex span tasks do. In complex span tasks,
an interpolated processing task forces to-be-remembered
items from primary memory to secondary memory (given
that primary memory is capacity-limited). In content-
embedded tasks, task-relevant information is not displaced
from primary memory by an unrelated processing task, and
maintenance of the task-relevant information is less likely to
exceed the limits of primary memory.

Although differential involvement of controlled search and
retrieval from secondary memory in complex span versus
content-embedded tasks is plausible, the extent to which this
difference may have contributed to the pattern of outcomes
observed here is less clear. Unsworth and Engle (2007) argued
that controlled search of secondary memory is particularly
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important for reasoning. Consistent with Unsworth and
Engle’s (2007) argument, Mogle, Lovett, Stawski, and
Sliwinski (2008) found that reasoning performance on the
Raven’s Advanced Progressive Matrices was predicted by
complex span tasks when controlling for primary memory,
but that complex span tasks predicted nothing above and be-
yond measures of secondary memory. By this account, com-
plex span tasks would have been better than content-
embedded tasks at predicting inductive reasoning in the pres-
ent study, which was clearly not the case. Additionally, other
studies have yielded somewhat mixed results concerning the
role of secondary memory in reasoning. For example,
Unsworth, Brewer, and Spillers (2009) found that mainte-
nance in primary memory and retrieval from secondary
memory both uniquely predict reasoning, and findings from
Wilhelm, Hildebrandt, and Oberauer (2013) suggested that
primary memory is more important for reasoning than second-
ary memory. If so, inductive reasoning may have been better
predicted by content-embedded tasks versus complex span
tasks because they more heavily reflect maintenance in prima-
ry memory.

Other processes that may be differentially involved in
content-embedded and complex span tasks include those in-
volved in updating (i.e., the transformation and replacement
of contents in working memory with more accurate or task-
relevant information; see Miyake et al., 2000). Some re-
search has suggested that updating itself involves multiple
components (Ecker, Lewandowsky, Oberauer, & Chee,
2010). One component of updating that is of particular inter-
est for present purposes involves intentionally disengaging
from outdated or incorrect information in working memory
(Ecker et al., 2010; Shipstead et al., 2016). Shipstead et al.
recently emphasized the importance of disengagement for
successful reasoning, given that initial focus on particular
stimuli elements, relationships, and hypotheses may be in-
correct. Importantly, although previous research shows a
strong relationship between updating tasks and complex
span tasks (i.e., Schmiedek, Hildebrandt, Lövdén,
Wilhelm, & Lindenberger, 2009), Shipstead et al. argued that
this strong relationship is largely driven by the other two
proposed components of updating (i.e., retrieval and trans-
formation). Furthermore, they argued that complex span
tasks do not heavily reflect the disengagement component
of updating. In contrast, disengagement may be captured to a
greater degree by content-embedded tasks. For example, in
the ABCD task, the stimuli and the structure of the instruc-
tions are the same on every trial (the letters ABCD, informa-
tion about the relationship between A and B, the relationship
between C and D, and the relationship between set orders).
Given that the same elements are used on every trial and only
relationships change, intentionally disengaging from tempo-
rary relationships between elements at the start of each trial
is important to reduce interference. Otherwise, lingering

relationships from previous trials may make it difficult to
maintain and output the correct solution in the current trial.
To the extent that disengagement plays a key role in success-
ful reasoning, the predictive power of content-embedded
tasks over complex span tasks in part may reflect greater
involvement of disengagement processes.

Another possible explanation for why inductive reason-
ing was predicted better by the content-embedded latent
factor than by the complex span latent factor concerns the
extents to which these tasks involve the use of rules.
Arguably, both content-embedded and complex span tasks
involve rule application. For instance, in the alphabet
task, participants are required to apply a transformation
rule to a set of letters (e.g., BOZ backward 2^).
Similarly, in the OSPAN, participants are required to ap-
ply rules of mathematics during the processing portion of
the task. With that said, when the complex span task
scores are based on performance on the maintenance por-
tion of the task alone, variability in rule application would
not be reflected in these scores. Indeed, when perfor-
mance on the processing portion was taken into account
into complex span task scores, the estimated correlation
between the complex span and content-embedded latent
factors was stronger relative to the models that only in-
cluded performance on the maintenance portion of the
task (see Table 2, Models 2 and 4b). However, inductive
reasoning was still predicted better by the content-
embedded latent factor than by the complex span latent
factor, suggesting that rule application must not be the
differentiating factor between these task types. Note that
in both of these types of working memory tasks, partici-
pants are simply required to apply the provided rule. In
contrast, the quintessential feature of inductive reasoning
tasks is that leaners must infer the rule themselves before
applying. This task feature represents an important func-
tional difference between inductive reasoning tasks and
both of these types of working memory tasks.

Importantly, the theoretical discussion here is only spec-
ulative—this research was not designed to isolate what pro-
cesses are differentially tapped by content-embedded and
complex span tasks. Nonetheless, the novel findings report-
ed here will be informative for guiding further theoretical
work on the component processes involved in these two
kinds of working memory task and their involvement in in-
ductive reasoning. These outcomes also provide an impor-
tant extension to the small but growing literature showing an
advantage of using content-embedded tasks versus complex
span tasks for predicting higher-level cognition (e.g., reading
comprehension; Was et al., 2011). Thus, future research in-
vestigating the involvement of working memory in complex
cognitive tasks that involve the maintenance and processing
of task-relevant information will likely profit from including
content-embedded tasks as measures of working memory.
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