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Abstract
In this article we present a nonparametric technique for meta-analyzing randomized single-case experiments by using inverted
randomization tests to calculate nonparametric confidence intervals for combined effect sizes (CICES). Over the years, several
proposals for single-case meta-analysis have been made, but most of these proposals assume either specific population charac-
teristics (e.g., heterogeneity of variances or normality) or independent observations. However, such assumptions are seldom
plausible in single-case research. The CICES technique does not require such assumptions, but only assumes that the combined
effect size of multiple randomized single-case experiments can be modeled as a constant difference in the phase means. CICES
can be used to synthesize the results from various single-case alternation designs, single-case phase designs, or a combination of
the two. Furthermore, the technique can be used with different standardized or unstandardized effect size measures. In this article,
we explain the rationale behind the CICES technique and provide illustrations with empirical as well as hypothetical datasets. In
addition, we discuss the strengths and weaknesses of this technique and offer some possibilities for future research. We have
implemented the CICES technique for single-case meta-analysis in a freely available R function.

Keywords Single-case experiments . Meta-analysis . Effect size . Confidence intervals . Hypothesis testing . Nonparametric
statistics . Randomization tests

Meta-analysis is one of the primary methods for identifying
effective treatments in education, clinical psychology, medical
science, and many other fields, as it can lead to more reliable
conclusions about specific treatments through synthesizing
the results of many individual studies (Shadish, Hedges, &
Pustejovsky, 2014). Single-case experiments (SCEs) are
regarded as a group of experimental designs that allow for
strong causal inferences and that therefore should be included
in meta-analyses to inform evidence-based decision making
(Shadish& Rindskopf, 2007). SCEs are designed experiments
that are suitable to assess the efficacy of a treatment for a
single case. In such experiments, repeated measurements are
recorded for this case on at least one dependent variable under
different levels (i.e., treatments) of one or more independent
variables (Barlow, Nock, & Hersen, 2009; Gast & Ledford,

2014; Kazdin, 2011; Onghena, 2005). Note that the Bsingle
case^ can refer to a unit at various levels of aggregation, such
as a person, a family, a classroom, or a school.

The last decade has seen a growing interest in SCE meta-
analysis (Maggin, O’Keeffe, & Johnson, 2011; Shadish &
Rindskopf, 2007) and various meta-analytic techniques have
been proposed. The most important statistical proposals have
been the calculation of various measures of effect size (ES;
e.g., Burns, 2012; L. G. Hedges, Pustejovsky, & Shadish,
2012, 2013; Heyvaert et al., 2017; Kratochwill & Levin,
2014; Parker, Vannest, & Davis, 2011; Scruggs &
Mastropieri, 2013) and the use of multilevel models (e.g.,
Ferron, Bell, Hess, Rendina-Gobioff, & Hibbard, 2009;
Ferron, Farmer, & Owens, 2010; Moeyaert, Ugille, Ferron,
Beretvas, & Van den Noortgate, 2014; Nugent, 1996;
Shadish & Rindskopf, 2007; Van den Noortgate & Onghena,
2003). In the following paragraphs we will briefly discuss
both categories of meta-analytic techniques.

Calculating effect size (ES) measures is regarded as ex-
tremely important for reporting scientific results (Cohen,
1990, 1994; Kirk, 1996). Moreover, major scientific organi-
zations highly recommend that measures of ES and

* Bart Michiels
Bart.Michiels@ppw.kuleuven.be

1 Faculty of Psychology and Educational Sciences, KU Leuven–
University of Leuven, Leuven, Belgium

Behavior Research Methods (2019) 51:1145–1160
https://doi.org/10.3758/s13428-018-1044-5

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-018-1044-5&domain=pdf
mailto:Bart.Michiels@ppw.kuleuven.be


confidence intervals are reported in addition to p values from
statistical tests (American Psychological Association, 1994,
2001, 2010; Wasserstein & Lazar, 2016; Wilkinson & the
Task Force on Statistical Inference, 1999). Major advantages
of calculating standardized ES measures is that they allow the
comparison of ESs from different studies and that they can be
used for meta-analyzing the results of multiple individual
studies (Shadish, 2014).

Hedges, Pustejovsky, and Shadish (2012, 2013) have pro-
posed a standardized d statistic as an ES measure for single-
case meta-analysis, comparable to the d statistic used in
between-subjects designs. An advantage of this ES measure
is that the proposed d statistic has a formal statistical develop-
ment that makes significance testing and the construction of
confidence intervals possible. A disadvantage of this method
is that several distributional assumptions have to be made in
order to enable statistical inference such as homogeneity of
within-case errors and between-case variation, an AR1 auto-
correlation structure for the within-case errors and normality
for the between-case distribution. Another limitation is that
the d statistic can only be used for ABk phase designs or
multiple-baseline designs but not for single-case designs that
are based on rapid treatment alternation such as an alternating
treatments design or a randomized block design.

Some authors have proposed the use of nonoverlap statis-
tics for meta-analytic purposes in single-case research (Parker
et al., 2011; Scruggs & Mastropieri, 2013). This approach
entails calculating a specific nonoverlap statistic for each in-
dividual study included in the meta-analysis and then averag-
ing the individual values to obtain an average ES. An advan-
tage of this approach is that most nonoverlap statistics are easy
to calculate and interpret. A disadvantage is that most
nonoverlap measures are not based on formal statistical theo-
ry, which makes parametric significance testing impossible. A
small group of nonoverlap measures are formally developed
(e.g., the nonoverlap of all pairs: Parker & Vannest, 2009; the
percentage of all nonoverlapping data: Parker, Hagan-Burke,
& Vannest, 2007), but the statistical tests that can be used to
calculate p values for thesemeasures (e.g., theMann–Whitney
U test for the nonoverlap of all pairs, and the chi-square test
for the percentage of all nonoverlapping data) assume that the
data consist of independent observations, which is often a
questionable assumption in single-case research (Dugard,
2014; Shadish & Sullivan, 2011; Solomon, 2014).

Multilevel models have been proposed to synthesize the
results of multiple individual SCEs (e.g., Ferron et al., 2009;
Ferron et al., 2010; Moeyaert et al., 2014; Nugent, 1996;
Shadish & Rindskopf, 2007; Van den Noortgate & Onghena,
2003).Multilevel models allow to estimate various parameters
such as case-specific intercepts and treatments effects, the av-
erage treatment effect over all included SCEs as well as the
within- and between-case variance of the treatment effect.
Multilevel models are most frequently used to analyze data

from multiple-baseline designs but can also be used to inte-
grate multiple single-case phase designs on a particular topic.
An advantage of this method is that it is a very flexible way to
model single-case data patterns. A disadvantage is that signif-
icance testing and the calculation of standard errors of treat-
ment effects in this approach are done using t procedures.
These procedures rely on classical distributional assumptions
and an assumption of random sampling, assumptions that are
often not fulfilled in single-case research (Dugard, 2014).
Furthermore multilevel models generally require quite large
sample sizes for accurate standard error estimation of all mod-
el parameters (Maas & Hox, 2004) whereas single-case re-
search often features rather small datasets.

Rindskopf (2014) has proposed a Bayesian variant of mul-
tilevel models for synthesizing single-case research. The au-
thor argues that the main advantage of Bayesian parameter
estimation in multilevel models is that it does not require large
sample sizes whereas maximum likelihood parameter estima-
tion (i.e., the frequentist approach) does require large sample
sizes for accurate parameter estimation (Rindskopf, 2014).
Although the Bayesian approach is better at applying the mul-
tilevel model to small datasets, it is still required to make
distributional assumptions for the outcome variable (the au-
thor assumes a binomially distributed outcome variable).

Meta-analyzing single-case experiments
using randomization tests

The goal of this article is to propose a statistical technique that
can be used to make statistical inferences and generate confi-
dence intervals for the average treatment effect of multiple
randomized single-case experiments, without resorting to dis-
tributional assumptions about the data or to an assumption of
random sampling. Note that we use the term single-case meta-
analysis to refer to data synthesis from multiple SCEs in gen-
eral, regardless of whether they are replicated SCEs from the
same researchers or various SCEs that were conducted at dif-
ferent times and by different researchers. Although data syn-
thesis is conceptually different in these two situations, there
are no statistical implications for the technique that we will
propose. The technique that we will introduce is based on the
random-assignment model that forms the foundation of the
randomization test (RT). The RT has been proposed as an
appropriate statistical test to evaluate treatment effects in ran-
domized SCEs (e.g., Bulté & Onghena, 2008; Edgington,
1967; Ferron & Levin, 2014; Heyvaert & Onghena, 2014;
Levin, Ferron, & Kratochwill, 2012; Levin, Marascuilo, &
Hubert, 1978; Onghena, 1992; Onghena & Edgington, 1994,
2005). Therefore, from the outset we want to emphasize that
this technique is intended for single-case designs that incor-
porate some form of random assignment. In the Discussion
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section we will explain the implications for the proposed tech-
nique when it is used with nonrandomized designs.

Four steps have to be taken in order to use an RT in the
evaluation of an individual SCE. First, and prior to executing
the actual experiment, all permissible assignments for the cho-
sen experimental design are listed. A permissible assignment
is a random assignment of measurement occasions to treat-
ment conditions that conforms to the restrictions imposed by
the chosen randomization scheme. Second, one permissible
assignment is randomly selected as the assignment for the
actual experiment. Third, a test statistic that is adequate to
answer the research question is chosen. RTs can provide
one-sided or two-sided p values depending on whether the
chosen test statistic is sensitive to the direction of the alterna-
tive hypothesis. For an RTwith a two-sided p value, a nondi-
rectional test statistic (e.g., an absolute mean difference) has to
be used. Fourth, and after the data are collected, the random-
ization distribution is constructed by calculating the value of
the test statistic for all permissible assignments, conditional on
the observed data and their temporal ordering. This randomi-
zation distribution is used as the reference distribution to de-
termine the statistical significance of the observed test statis-
tic: The two-sided p value of an RT is calculated as the pro-
portion of test statistics in the randomization distribution that
are at least as extreme as the observed test statistic. Depending
on the chosen significance level, one then either rejects or
accepts the null hypothesis on the basis of the p value. See
Heyvaert and Onghena (2014) for more details about this ran-
domization test procedure.

It is also possible to use the RT to assess the statistical
significance of the combined treatment effect of multiple in-
dividual SCEs. This can be done by using combined
assignments (i.e., assignments that comprise the individual
assignments of multiple individual SCEs) in the RT. We will
illustrate this concept with an example.

Consider the following two hypothetical SCEs: an AB de-
sign and an alternating treatments design (ATD), both featur-
ing ten measurement occasions. Each randomized SCE is as-
sociated with a collection of permissible assignments. This
collection is determined by the type of single-case experimen-
tal design that is used and the number of measurement occa-
sions in the experiment (Onghena, 2005). For illustration pur-
poses, Table 1 displays a nonexhaustive set of three permissi-
ble assignments for each of the two hypothetical SCEs.

Suppose we select AAABBBBBBB and ABAABABBAB
as the random assignments to execute the AB design and the
ATD, respectively. Table 2 displays the hypothetical data for
both designs alongside the condition labels of the employed
random assignments.

One can conduct individual RTs for each experiment sep-
arately. For a single experiment, this can be done by first
calculating the test statistics for all permissible assignments
in order to obtain the randomization distribution. Next, the p

value can be calculated by determining the proportion of test
statistic values in the randomization distribution that are equal
to or exceed the observed value of the test statistic. Table 3
displays the randomization distribution for each of the two
SCEs using the absolute mean difference between the A ob-
servations and the B observations as the test statistic.

From Table 3 we can see that the p value for the AB design
is 1/3 or .33, and the p value for the ATD is 2/3 or .67.

In the combined-assignment RT, the permissible assign-
ments and their respective data values from both SCEs are
integrated into a combined assignment. In this approach we
calculate the chosen test statistic for each individual SCE and
then average the resulting values into a single test statistic
value for the combined assignment. Calculating the randomi-
zation distribution for the combined-assignment RT then con-
sists of constructing the set of all possible combined assign-
ments for the two SCEs and calculating the selected test sta-
tistic for each of them. To construct a combined assignment
for these two SCEs, one simply selects a permissible assign-
ment from each SCE and combines them into a single assign-
ment. In our example, there are three permissible assignments
per SCE, and thus nine different combined assignments.
Table 4 displays the value of the absolute mean difference of
the A observations and the B observations for each of the
combined assignments.

For the combined-assignment RT, the p value is 1/9 or
.1111. Note that this p value is considerably smaller than the
p values of the individual RTs. As such, the combined-
assignment RT can achieve higher statistical power than RTs
that are applied to separate SCEs.

One can construct combined assignments for any number
of individual SCEs using any combination of single-case ran-
domization schemes. In general, the number of permissible
combined assignments equals

∏ n
i¼1ki

with n being the number of individual SCEs and ki being the
number of permissible individual assignments of SCE i. It is
important to emphasize that the combined-assignment RT is

Table 1 A selection of three permissible assignments (PA) for a single-
case AB design and an alternating treatments design (ATD)

Design MO 1 2 3 4 5 6 7 8 9 10

AB PA1 A A A B B B B B B B

PA2 A A A A A B B B B B

PA3 A A B B B B B B B B

ATD PA1 A B A A B A B B A B

PA2 B A B B A B A A B A

PA3 B B A A B A A B A B

MO = measurement occasion
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perfectly valid if the randomization possibilities of each indi-
vidual study are respected within each combined assignment.

Note that the number of permissible combined assignments
increases exponentially with the number of individual studies
included in the RT. For this reason we will use a random
sample of all permissible combined assignments to execute
the RT (also known as a Monte Carlo RT; e.g., Dwass,
1957; Hope, 1968). Edgington and Onghena (2007) demon-
strated that a Monte Carlo RT is a valid test in its own right. In
addition, the accuracy of the Monte Carlo RTcan be increased
to any desired level by increasing the size of the random sam-
ple. Edgington (1969) showed that an efficient Monte Carlo
RT can be carried out with as few as 1,000 random
assignments.

The combined-assignment RT can be used to compute a
nonparametric p value for the combined ES across all included
individual studies. The main drawback of reporting p values is
that they do not provide information regarding the size of the
effect (Cumming, 2014). Furthermore, there is currently a
widespread consensus that ESs and confidence intervals
should be reported in addition to p values (American
Psychological Association, 1994, 2001, 2010; Wasserstein &
Lazar, 2016; Wilkinson & the Task Force on Statistical
Inference, 1999). In the next section we will describe how
one can construct a nonparametric confidence interval for
the combined ES of multiple studies using the combined-
assignment RT. We will further refer to this technique as con-
fidence intervals for combined effect sizes (CICES).

Constructing confidence intervals for combined effect
sizes

The CICES technique is based on the principle of hypothesis
test inversion (HTI; Garthwaite, 2005; Tritchler, 1984). This
principle uses the equivalence between a 100(1 – α)% two-

sided confidence interval and a two-sided hypothesis test at
significance level α (Neyman, 1937). Both are equivalent in
the sense that for a certain test statistic θ, the 100(1 –α)% two-
sided confidence interval contains all point null values of θ
that cannot be rejected by a two-sided hypothesis test at sig-
nificance level α. HTI can be used with either parametric
hypothesis tests or nonparametric hypothesis tests such as
RTs. Michiels, Heyvaert, Meulders, and Onghena (2017) al-
ready showed that nonparametric confidence intervals for
single-case ESs can be constructed from the RT using HTI.

To construct nonparametric CICES of multiple SCEs, it is
necessary to assume an effect function that models the nature
of the combined treatment effect in the data. For this purpose,
the Bunit-treatment additivity model^ is one particular model
that is most popular and well-studied within nonparametric
statistics (e.g., Cox & Reid, 2000; Hinkelmann &
Kempthorne, 2005, 2008, 2012; Lehman, 1959; Welch &
Gutierrez, 1988). For a single experiment with two conditions,
this model assumes that the experimental condition has a con-
stant additive effect (denoted by Δ) on the scores of the out-
come variable in the control condition. A simple illustration
will clarify the rationale of the model. Consider an AB design
with five measurement occasions in the baseline phase (A)
and five measurement occasions in the treatment (phase).
Table 5 illustrates how the unit-treatment additivity model
expresses the observed scores.

The model assumes a null score for each measurement
occasion (i.e., the score that would be observed for that mea-
surement occasion when the null hypothesis of no treatment

Table 2 Hypothetical datasets for a single-case AB design and an alternating treatments design (ATD), along with their respective random assignments

Design AB ATD

RA A A A B B B B B B B A B A A B A B B A B

DV 4 5 4 7 8 8 9 8 8 7 3 6 4 4 6 4 7 8 5 7

RA = random assignment, DV = data values

Table 3 Test statistic values of all permissible assignments for the AB
design and the alternating treatments design (ATD)

AB Design jA−B | ATD Design jA−B |

AAABBBBBBB 3.5238 ABAABABBAB 2.8

AAAAABBBBB 2.4 BABBABAABA 2.8

AABBBBBBBB 2.875 BBAABAABAB 1.2

The employed random assignment and the corresponding observed test
statistic value are marked in bold

Table 4 Test statistic values of all combined assignments for the AB
design and the alternating treatments design

Combined Assignment jA−B |

AAABBBBBBBABAABABBAB 3.2917

AAABBBBBBBBABBABAABA 0.3750

AAABBBBBBBBBAABAABAB 2.4583

AAAAABBBBBABAABABBAB 2.6

AAAAABBBBBBABBABAABA 0.2

AAAAABBBBBBBAABAABAB 1.8

AABBBBBBBBABAABABBAB 3.011

AABBBBBBBBBABBABAABA 0.0659

AABBBBBBBBBBAABAABAB 2.1319

The employed combined random assignment and the corresponding ob-
served test statistic value are marked in bold
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effect is true), along with a constant additive treatment effect
(Δ) that is added to the null scores of the measurement occa-
sions in the treatment phase. In other words, the model ex-
presses the difference between the observed scores (denoted
by Y) and the null scores (denoted by X) as

Yi = Xi +DiΔ,with i = 1 . . . nmeasurement occasions,Di =
0 for the measurement occasions in the A phase, andDi = 1 for
the measurement occasions in the B phase. Consequently, the
null hypothesis (H0) under this model can be written as

H0 : Yi = Xi.
Note that the adequacy of the unit-treatment additivity

model depends on the specific data pattern analyzed and that
alternative models can be used as an effect size function in
CICES. We will come back to this issue in the Discussion
section. In this article, we will use a constant Δ value for the
combined treatment effect across all SCEs included in the
meta-analysis. Constructing the nonparametric CICES then
boils down to performing the combined-assignment RT for a
range of hypothesizedΔ values and retaining the nonrejected
Δ values as part of the interval. The test statistic that we will
use as the combined ES across all included SCEs in this illus-
tration is the pooled average absolute mean difference be-
tween all A observations and all B observations (we will de-
note this test statistic as θ). However, the CICES technique can
be used with different types of test statistics. The R function
we have written for the CICES technique currently supports
three test statistics: on the one hand the absolute mean phase
difference as an unstandardizedmeasure and on the other hand
the Hedges, Pustejovsky, and Shadish (2012) d statistic and
the Hedges’s (1981) g statistic with correction for small sam-
ple size bias as standardized measures. In the CICES method,
the selected ESmeasure is always calculated for each included
SCE separately and then averaged across all the individual
studies to produce the combined ES.

We will now discuss the steps that need to be taken to
construct a nonparametric confidence interval for θ. First, we
calculate the observed value of θ (θobs). Second, we use the
unit-treatment additivity model (see above) to conduct a
combined-assignment RT for different values of Δ. The null
hypothesis of the RT can be rewritten as

Y iA : Y i ¼ X i

YiB : Yi = Xi +Δ,with YiA being the observed scores in the A
phase and YiB being the observed scores in the B phase. For
each Δ value, we test the null hypothesis that YiB − YiA =Δ

against the alternative hypothesis that YiB − YiA ≠Δ. To make
the data correspond to the tested null hypothesis, we subtract
Δ from the B scores of the observed data and perform the RT.
Third, the randomization distribution for θ is constructed by
selecting a random sample (of size j) of combined assignments
and calculating the selected test statistic for all j combined
assignments. Fourth, we use the randomization distribution
to derive the p value. A p value equal to or smaller than the
selected α level indicates that the testedΔ value is part of the
100(1 – α)% confidence interval of θ. In practice we will use a
computer algorithm that uses θobs as the initial value for Δ to
perform the first RT and then incrementally increases the size
ofΔ according to a prespecified step size until the boundaries
of the confidence interval are reached. The most computa-
tionally efficient way to calculate the confidence interval
is to start with a relatively large step size to get a rough
estimate of the boundaries quickly and then starting the
algorithm again from the last Δ that yielded a p value
smaller than the significance level but now with a step
size that is ten times smaller. This iterative stepwise pro-
cedure can be used to calculate the confidence interval
boundaries to any number of decimal places.

We will provide three illustrations of the CICES method.
The first illustration uses empirical data from replicated
ABAB designs and the second illustration uses empirical data
from a multiple-baseline design (MBD). The third illustration
uses hypothetical data to show how the results from SCEs
using different types of experimental designs can be
synthesized.

Illustration 1: Lambert et al. (2006)

As a first illustration of the CICESmethod, we use data from a
study by Lambert, Cartledge, Heward, and Lo (2006), which
evaluated the effects of response cards on the disruptive be-
havior of students in two urban fourth-grade classrooms. The
study utilized an ABAB design, replicated over nine students,
in which two conditions (A = Bsingle-student responding^ and
B = Bwrite-on response cards^) were compared. The depen-
dent variable was defined as the number of times a disruptive
behavior was recorded by the observers during the experi-
ment. See Lambert et al. for more details about this study
and for their definition of Bdisruptive behavior.^

This dataset was also reanalyzed in an article by Shadish,
Hedges, and Pustejovsky (2014), using Hedges et al.’s (2012)

Table 5 Illustration of the way in which the unit-treatment additivity model expresses the observed scores of a single-case AB phase design

MO 1 2 3 4 5 6 7 8 9 10

CL A A A A A B B B B B

DV X1 X2 X3 X4 X5 X6 + Δ X7 + Δ X8 + Δ X9 + Δ X10 + Δ

MO = measurement occasion, CL = condition labels, DV = data values
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d statistic. This provides an opportunity to compare the con-
fidence interval that Shadish et al. reported to the confidence
interval of the CICES technique for the same dataset.

Figure 1 displays the Lambert et al. (2006) data. Note that
the dataset contains somemissing values. Shadish et al. (2014)
dealt with this issue by omitting the measurement occasions
with missing values from the analysis. CICES handles miss-
ing data by keeping the measurement occasions with missing
values in the analysis (to keep the random assignment of mea-
surement occasions to treatment conditions intact) but calcu-
lating the test statistic from only the available data points.
Edgington and Onghena (2007) showed that the presence of
missing data does not compromise the validity of the RT,
provided that the occurrence of missing data is caused by a
random factor and not a structural one. Because CICES is
based on the RT rationale, the previous statement also holds
for CICES. Note that in this sense CICES can also be used to
synthesize the results frommultiple-probe designs that feature
probe-based measurement of the outcome variable rather than
continuous measurement (Horner & Baer, 1978).

CICES, based on RT inversion, needs a randomization
model. In this respect, it is important to notice that Lambert
et al. (2006) do not mention that the intervention points for
their ABAB design were randomized a priori, and from ex-
amining their graphs it is very unlikely that they were. For
illustration purposes, we will assume that their SCE is ran-
domized. However, it is important to note that the validity of
the CICES inference cannot be guaranteed for nonrandomized
SCEs, since the random-assignment assumption is not ful-
filled. Hence, CICES results for nonrandomized SCES should
be interpreted with caution. We will come back to this issue in
the Discussion section. Following the recommendations by
Kratochwill et al. (2010), that a phase should contain at least
three measurement occasions, we will assume that the mini-
mally required length of each phase in the ABAB design was
three measurement occasions. The research question we want
to answer is whether there is an average treatment effect of the
response card treatment on the disruptive behavior of these
nine students. To answer this question, we will calculate a
nonparametric 95% CICES using Hedges et al.’s (2012) d
statistic. A few steps need to be taken to use the CICES tech-
nique for the analysis of this dataset.

First, we calculate Hedges et al.’s (2012) d statistic for the
Lambert et al. (2006) data. The observed value of the test
statistic (θobs) is 2.51. We select 2.51 as the first Δ value,
subtractΔ from all the B phase observations across all includ-
ed studies and execute the combined-assignment RT. Second,
we construct the set of combined assignments. The number of
permissible assignments in a single-case phase design is given
by the following formula (Onghena, 1992):

N−nð Þ kþ1ð Þþk
k

� �
, with N being the number of measurement

occasions, n being the minimum amount of measurement

occasions in each phase and k being the number of phase
changes in the design. Table 6 displays the number of possible
assignments for each individual SCE of the Lambert et al. data.

To obtain the total number of possible combined assign-
ments, we multiply all numbers of possible assignments for
each individual study. This value runs into the billions, and
even with the speed of today’s computers, it would be unfea-
sible to calculate the test statistic for every possible combined
assignment. For this reason, we select only a random sample
(of size j) of the combined assignments for which we will
calculate the test statistic, and perform a so-called Monte
Carlo RT. For this example, we will use a random sample of
size 5,000. Fourth, we construct the randomization distribu-
tion by calculating the test statistics for all 5,000 combined
assignments. Fifth, we derive the p value from the randomi-
zation distribution. If we take the observed value of the test
statistic as the first Δ value, then the p value takes on the
maximal value of 1, which is larger than any conventional
significance level and indicates that this value (2.51 in the
example) is in the confidence interval. Next, we select a larger
Δ value and repeat all of the previous steps.We keep selecting
a larger Δ value until we reach the end of the confidence
interval to the desired number of decimal places. Using the
search algorithm implemented in the R function we have de-
veloped (available from https://ppw.kuleuven.be/home/
english/research/mesrg/appletsandsoftware), the resulting
95% confidence interval at a precision of two decimal places
is [1.47 ; 3.55]. The fact that the value of zero is not included
in the confidence interval indicates that the response card
treatment had a statistically significant effect on the number
of disruptive behaviors across all the included students, given
a 5% significance level. The corresponding two-sided p value
of the combined-assignment RT is .0002, which also indicates
a statistically significant treatment effect.

The confidence interval can be interpreted as follows: If the
authors were to repeat their entire experiment a large number
of times and subsequently analyze the resulting data, the ob-
served value of Shadish et al.’s (2014) d statistic (2.51) would
be contained in the nonparametric confidence interval in 95%
of the repetitions (Moore, McCabe, & Craig, 2014). In addi-
tion, the interpretation of this nonparametric confidence inter-
val is valid without having to make specific distributional
assumptions, such as the equality of variances or normality
of the data, or an assumption of random sampling.

Hedges et al.’s (2012) d statistic has a formal statistical
development that makes it possible to estimate the variance
of this measure and consequently to construct a confidence
interval for it. Shadish et al. (2014) reported a 95% confi-
dence interval of [2.12 ; 2.91] for the Lambert et al. (2006)
data. We will return to the difference between the confi-
dence interval reported by Shadish et al. (2014) and the
confidence interval from the CICES technique in the
Discussion section.
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Fig. 1 Lambert et al. (2006) data for the Bdisruptive behavior^ dependent
variable for four (A1 to A4) and five (B1 to B5) students in two separate
classrooms. Note that there are some gaps in the graphs due to missing

data. The phases marked by BA^ are the baseline phases, whereas the
phases marked by BB^ are the treatment phases



Illustration 2: Multiple-baseline design

As a second illustration of the CICES technique, we use
data from a study by Boersma, Linton, Overmeer,
Jansson, Vlaeyen, and de Jong (2004). This study evaluated
a graded-exposure in vivo treatment (GEXP; Vlaeyen, de
Jong, Geilen, Heuts, & van Breukelen, 2001) for lowering
fear–avoidance behavior and enhancing function in patients
with chronic back pain and a high fear of movement (re)in-
jury. The study used a multiple-baseline design with six
participants. Each individual SCE consisted of a baseline
phase followed by a treatment phase followed by a posttest
phase. However, the staggering of intervention points only
pertained to the start of the treatment phase, not to the start
of the posttest phase. For this reason, we will limit our
reanalysis to the data from the baseline phase and the treat-
ment phase. The Boersma et al. dataset contains some miss-
ing data, which we will omit from the analysis. BFear–
avoidance^ was the primary dependent variable. Fear–
avoidance ratings (on a scale from 1 to 10) were recorded
daily throughout a ten-week time period for all participants.
The GEXP treatment was initiated at different time points
for each participant, with a one-week interval between par-
ticipants. Figure 2 displays the Boersma et al. data for the
first baseline phase and the treatment phase. See Boersma
et al. for graphs that include the data from the posttest.

The research question we want to answer is whether the
GEXP treatment had an effect on fear and avoidance. To
demonstrate the CICES technique with an unstandardized
ES measure, we now choose the mean score differences
between the baseline phase and the treatment phase, aver-
aged over each participant, as the test statistic. The ob-
served value of this test statistic is 2.38. Using a precision
of two decimal places, the 95% confidence interval for the
average treatment effect across all six participants is [– 0.93
; 5.70]. The 95% confidence interval indicates that the
GEXP treatment does not have a significant effect on
fear–avoidance beliefs. The corresponding two-sided p

value of the combined-assignment RT is .6456. This result
contradicts the conclusion of the authors that the GEXP
treatment was highly effective in reducing fear and avoid-
ance beliefs in the six participants. Several considerations
might explain these contradicting conclusions, which we
will come back to in the Discussion section.

Illustration 3: Hypothetical data from a variety
of single-case designs

In the previous illustrations, we synthesized the results of
SCEs that had used the same type of single-case design. An
advantage of the CICESmethod is that we can also synthesize
the results from SCEs using different types of single-case
designs. For example, suppose that a researcher wants to syn-
thesize the results of six individual SCEs that assess the effect
of a customized behavioral treatment on depression. The six
SCEs use Likert scales to measure the dependent variable, but
with different numbers of points on the scale. Furthermore, the
studies consist of various single-case designs: two studies
using an AB design with a minimum phase length of five
observations, one study using an ABAB design with a mini-
mum phase length of three observations, two studies using an
alternating-treatment design (ATD) with a maximum of two
consecutive administrations of the same condition, and one
study using a randomized-block design (RBD). Figure 3 dis-
plays the data for the six studies.

The AB designs used in Studies 1 and 2 are among the
most commonly used designs in single-case research
(Shadish & Sullivan, 2011). The ABAB design used by
Study 3 is an extension of the basic AB design and features
two separate AB phase pairs. In both the AB design and the
ABAB design, the random assignment of measurement occa-
sions to treatment conditions pertains to the starting point of
the intervention (Onghena, 2005). In the AB design there is
only one moment of phase change, and thus only one random
starting point for the intervention. In the ABAB design there
are three moments of phase change, and thus three random
starting points for the intervention need to be selected. Studies
4 and 5 use an ATD, which does not feature separate phases,
but rather quick alternations of the experimental condition.
Study 6 uses an RBD, which groups measurement occasions
in pairs and randomizes the treatment order within each pair
(Onghena, 2005). Due to the different types of single-case
designs and numbers of measurement occasions, each of these
hypothetical SCEs has a different set of permissible assign-
ments. The number of permissible assignments for each of the
six studies is displayed in Table 7.

Consequently, the total number of permissible combined
assignments is 7*3*20*84*518*64 = 1,169,602,560. As in
the previous examples, we will use a random subset of these
assignments for CICES, rather than the entire set.

Table 6 Number of possible assignments (PA) for each individual
single-case experiment of the Lambert et al. (2006) data

SCE N PA

1 31 1,540

2 31 1,540

3 30 1,330

4 31 1,540

5 34 2,300

6 34 2,300

7 34 2,300

8 31 1,540

9 34 2,300
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Because the six SCEs use different measurement scales,
and because it is unlikely that they would exhibit the same
level of within-case variability, it is recommended to use a
standardized ES measure for the CICES technique. Using a
standardized ES measure enables us to calculate compara-
ble ESs across the various SCEs that can be pooled into
one combined ES. One possibility for the standardized ES
measure is the Hedges et al. (2012) d statistic, which we
used in the first illustration. However, this measure was
specifically developed for use with ABk phase designs,
and it is thus not suited for use with single-case alternation
designs. For this reason, we will use Hedges’s (1981) g
statistic with correction for small sample size bias as an
alternative standardized ES measure in this example.
Note that to obtain the actual test statistic in the CICES
procedure, we calculate g separately for each individual
study and then average these values. The observed value
of this test statistic is 2.91. Using a precision of two deci-
mal places, a significance level of 5%, and a Monte Carlo
RT with 5,000 random assignments, we obtain a 95% con-
fidence interval of [0.52 ; 5.31] for the average g across all
six individual studies. The absence of the value 0 from the
confidence interval indicates that the customized behavioral

treatment has a significant average effect across the six in-
dividual studies at the 5% significance level. The corre-
sponding two-sided p value is .0002. Although the different
studies use different types of randomization schemes, the
reported confidence interval is still valid, since the random-
ization scheme of each individual study is respected in the
CICES technique. The width of the constructed nonpara-
metric confidence interval functions as a measure of uncer-
tainty about the observed average g.

As a final remark pertaining to the three illustrations, note
that the average ESs are quite large and that the 95% confi-
dence intervals are wide. The width of the intervals is due to
the fact that CICES averages the effect sizes of all the individ-
ual studies into one effect size. This averaged effect size is
used for statistical inference but may result in wide confidence
intervals if the individual effect sizes vary considerably be-
tween studies. Furthermore, we should stress that g values in
single-case research are not directly comparable to g values in
a between-subjects design, because the denominator of g rep-
resents two different things in these contexts (Shadish et al.,
2014). As a result, interpretational guidelines for the Hedges g
in between-subjects research are not applicable to single-case
research.
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Fig. 2 Boersma et al. (2004) data for the baseline phase (A) and the treatment phase (B). Note that there are some gaps in the graphs due to missing data



Discussion

In this article we have presented CICES as a nonparametric
meta-analytic technique for randomized SCEs and provided
illustrations with empirical data as well as hypothetical data.
In this section we will first recapitulate the main features of the
CICES technique. Second, we will make a few additional
remarks regarding the three illustrations of CICES in this ar-
ticle. Third, we will discuss some considerations regarding the

statistical conclusion validity of the CICES technique. Fourth,
we will discuss the limitations of CICES and talk about pos-
sibilities for future research.

CICES uses a random assignment model to construct a
nonparametric CICES by inverting repeated randomization
tests. A first characteristic of the CICES technique for
single-case meta-analysis is that no distributional assumptions
or an assumption of random sampling have to be made in
order to make valid statistical inferences. A second
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Fig. 3 Hypothetical data for six single-case experiments using various experimental designs. For each experiment, the baseline measurements are
marked by the letter A, and the treatment measurements are marked by the letter B



characteristic of the technique is that it can be applied to the
different types of single-case ES measures that are used
throughout the literature. A third characteristic of CICES as
a meta-analytic technique is that it can be used to synthesize
single-case experiments that use different types of randomized
single-case designs (e.g., phase designs, alternation designs,
etc.).

In the empirical illustration of the CICES technique for
the Lambert et al. (2006) data we calculated a nonparametric
confidence interval for Hedges et al.’s (2012) d statistic.
Here we will compare the d confidence interval constructed
by CICES to the d confidence interval reported by Shadish
et al. (2014). The confidence interval reported by Shadish
et al. is constructed by estimating the variance of d and using
this value to construct confidence bounds for the observed d
statistic. Hedges et al. (2012) note several distributional
assumptions that have to be made in order to enable statis-
tical inference for their d statistic such as the homogeneity
of within-case errors and between-case variation, an AR1
autocorrelation structure for the within-case errors and nor-
mality for the between-case errors. In contrast, using the
CICES technique, one does not have to make these assump-
tions in order to construct confidence intervals for Hedges
et al.’s (2012) d statistic or any other ES measure for that
matter. When comparing the two types of confidence inter-
vals, one can see that the 95% confidence interval produced
by the CICES technique is wider than the 95% confidence
interval reported by Shadish et al. This extra width can be
regarded as the cost of giving up on the distributional as-
sumptions that the confidence interval reported by Shadish
et al. required. In this sense, we argue that both types of
confidence intervals for Hedges et al.’s (2012) d statistic
can be complementary, depending on the assumptions one
wishes to make about the data.

In the second empirical illustration of the CICES tech-
nique, we calculated a 95% nonparametric CICES of the
Boersma et al. (2004) data. The authors’ conclusion that there
was a substantial effect of the GEXP treatment on fear–avoid-
ance conflicts with the fact that a null effect was included in
the 95% CICES we calculated. Several reasons might explain
these contradictory conclusions. First of all, the authors did

not statistically analyze the data, but only performed visual
analysis. Although visual analysis is obvious and straightfor-
ward when analyzing single-case data, it is recommended to
complement the visual analysis with a statistical analysis in
order achieve greater certainty about the efficacy of the treat-
ment. Second, the authors’ visual analysis might have focused
on individual subjects, whereas the CICES technique looks at
the combined ES across all subjects. Third, we did not include
the data from the posttest phase in the analysis, because this
phase did not entail an experimental manipulation. However,
the fear–avoidance scores still decreased considerably in the
posttest phase, whichmight have influenced the authors’ judg-
ment with respect to the visual analysis. Fourth, the data in
Fig. 2 show striking trends and delayed changes in level dur-
ing the treatment phase. Such data characteristics might have
given an impression of substantial impact in Boersma et al.’s
visual analysis, but they are not sufficient to demonstrate a
convincing causal relationship between treatment and out-
come in an inferential procedure such as the CICES technique.
Finally, it is also possible that the unit-treatment additivity
model that was used for this analysis might not hold for these
particular data, since they contain trends and delayed changes
in level. As such, the results from CICES for this example
should be interpreted cautiously. We will come back to this
issue in the Limitations section.

In the third empirical illustration, we demonstrated that the
CICES technique can be used to synthesize the raw data of
SCEs that use different experimental designs. This is an im-
portant characteristic of the CICES technique, because differ-
ent studies that investigate the same type of treatment some-
times use different types of single-case designs.

Throughout the illustrations in this article, we also
showed that the CICES technique can be used with differ-
ent single-case ES measures. This is also a handy feature of
the CICES technique, because a plethora of different
single-case ES measures are currently being used in the
literature, and at this moment there is no widespread con-
sensus about which ES measure is optimal for synthesizing
the results of multiple SCEs (Kratochwill et al., 2010;
Parker et al., 2011; Wolery et al. 2010). In addition, some
proposed ESs for SCEs are not based on formal statistical
distribution theory and therefore cannot be used with com-
mon parametric tools for meta-analysis (e.g., fixed or ran-
dom effects meta-analysis; Shadish et al., 2014). However,
all of these ES measures can be used with the CICES tech-
nique because the statistical reference distribution is de-
rived from the randomization model, not from specific dis-
tributional assumptions.

CICES can be used with various types of test statistics,
including standardized mean differences such as Hedges g.
However it is important to note that standardized effect sizes
in single-case research are not directly comparable to stan-
dardized effect sizes in between-subjects research (Shadish

Table 7 Numbers of permissible assignments (PA) for six hypothetical
single-case experiments

Study PA

1 7

2 3

3 20

4 84

5 518

6 64
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et al., 2014). As such, interpretational guidelines for standard-
ized effect sizes that were originally developed for between-
subjects research (e.g., Cohen’s d) do not apply to single-case
research. Consequently the need arises to develop appropriate
interpretational guidelines for standardized effect sizes in
single-case research. For example, Robey and Beeson
(2005) provide tentative benchmarks for standardized single-
case effect sizes for a treatment that focuses on syntactic pro-
duction in the aphasia literature. Endeavors such as these are
highly necessary to make informed interpretations about treat-
ment effect size magnitude in various domains of single-case
research.

Limitations

CICES has a few limitations that we will now address:
First of all, and most importantly, the nonparametric confi-

dence intervals based on the CICES method only have guar-
anteed validity if all individual studies included in the analysis
are randomized SCEs. This is a nontrivial requirement as a
considerable number of SCEs in published research are not
randomized. Incorporating random assignment into an SCE
increases the internal validity of the SCE substantially (e.g.,
Cook & Campbell, 1979; Edgington & Onghena, 2007;
Heyvaert, Wendt, Van den Noortgate, & Onghena, 2015;
Kratochwill & Levin, 2010; Shadish, Cook, & Campbell,
2002). Furthermore, recently published single-case reporting
guidelines such as SCRIBE (Tate et al., 2016) and CENT
(Vohra et al., 2015) note random assignment as an important
methodological quality indicator for SCEDs. Random assign-
ment strengthens the SCE’s internal validity because it yields
statistical control over confounding variables such as history
and maturation (Levin & Wampold, 1999; Onghena, 2005).

Although random assignment is obviously very important
for the methodological quality of a single-case design, it is not
the case that nonrandomized studies are completely useless for
inference. First, when random assignment is absent an overall
treatment effect can still be detected by CICES (along with a
corresponding confidence interval) but then one cannot unam-
biguously attribute this overall treatment effect to the experi-
mental manipulations in the SCEs. In other words, for
nonrandomized SCEs the results of CICES can only be
interpreted descriptively and not inferentially. Second, when
RTs or CICES are used for nonrandomized designs, nominal
Type I error rates are not guaranteed (Ferron, Foster-Johnson,
& Kromrey, 2003). See Winch and Campbell (1969) for a
more thorough discussion on the issue of using randomization
tests for nonrandomized designs. Given these considerations
we recommend caution in the interpretation of the results
when using CICES for nonrandomized designs.

Some authors are opposed to the practice of randomizing
single-case designs. For example, one of the arguments pre-
sented against the use of randomization tests for analyzing

SCEs is that response-guided experimentation becomes im-
possible (e.g., Kazdin, 1980). The argument is that in single-
case research decisions to implement, withdraw, or alter treat-
ments are often based on the observed data patterns during the
course of the experiment. However, randomization tests re-
quire determining in advance and in a random fashion when
the treatment will be implemented, thus making response-
guided adjustments to the experiment impossible. Edgington
(1980) responded to this criticism by proposing an RT in
which only part of the measurement occasions of the SCE
are randomized and thus gives control to the researcher over
the nonrandomized part. As another point of criticism, Kazdin
(1980) argues that the randomization requirements of the RT
are often at odds with the practical feasibility of an SCE in a
clinical context. For example, the administration of a treat-
ment during an SCE might require administrative support
and special monitoring procedures from several staff mem-
bers. If the times at which the treatment is administered is
determined randomly, it is likely that logistic problems will
occur with respect to the availability of the required staff and
equipment for the proper administration of the treatment at that
time. Given these considerations we would recommend to ran-
domize SCEs whenever the practical consequences of random-
ization do not form an obstacle for conducting the SCE.

In practice it is likely that single-case meta-analysts will
have a mix of randomized and nonrandomized studies.
Strictly speaking, when CICES is used for a set of studies that
include at least one nonrandomized study the validity of the
overall inference is potentially compromised. One solution for
this problem would be to do separate meta-analyses for ran-
domized SCEs and nonrandomized SCEs. Furthermore one
could perform a sensitivity analysis by comparing the results
of both groups of SCEs. If the results for both groups of SCEs
are similar, it is more plausible that there were no major con-
founding variables at play in the nonrandomized studies.

The validity of the nonparametric confidence interval pro-
duced by CICES is also based on the assumption that the unit-
treatment additivity model (see above) is an accurate concep-
tualization of the treatment effect. Hence, an important ques-
tion then is whether the unit-treatment additivity model pro-
vides an accurate description of a treatment effect in single-
case data. Indeed the assumption of a constant additive treat-
ment effect might not be tenable in every type of research
situation. For example, research has shown that single-case
data can contain time-related effects such as serial correlation
(e.g., Matyas & Greenwood, 1997; Shadish & Sullivan, 2011)
and trends (e.g., Beretvas & Chung, 2008; Manolov &
Solanas, 2009; Solomon, 2014). In such a situation, it is pos-
sible that the onset of the treatment interacts with these time-
related effects. For example, the onset of the treatment might
instigate a trend change relative to the baseline phase (Van den
Noortgate & Onghena, 2003) or induce a change in score
variability (Ferron, Moeyaert, Van den Noortgate, &
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Beretvas, 2014). These unit-treatment interactions are not
accounted for in the unit-treatment additivity model and may
thus confound treatment effect estimates when such interac-
tions are present.

One way to account for time-related effects in the data
would be to incorporate a time parameter in the unit-
treatment additivity model along with a parameter for the ex-
pected time-related effect. For example one could formulate
an effect size model that accounts for deterministic trends in
the null scores: Yi = (Xi + tβ) +DiΔ with t being a time vari-
able and β being a constant trend effect. The null hypothesis
for this model is H0 : Yi = (Xi + tβ). This model could be used
to evaluate a treatment for a patient that is expected to exhibit
spontaneous recovery in the outcome variable. Alternatively
one could devise a model in which the treatment causes a
mean level shift as well as a deterministic trend: Yi = Xi +
Di(Δ + tBβ) with tB being the time variable for the treatment
phase. In this case the null hypothesis is H0 : Yi = Xi. The in-
clusion of a time variable t into the model could also account
for delayed treatment effects. Instead of additive models one
could also consider multiplicative models that assume a non-
linear relation between the null scores and the observed
scores. For example one could formulate a model in which
the magnitude of the treatment effect for experimental unit i is
inversely related to its null score: Y i ¼ X i þ Di

1
X i

Δ.
Generally speaking, the difference between a set of null scores
and a set of observed scores can be modeled using any type of
function f as long as the equation Yi = f(Xi) holds. In other
words the effect size function should be a bijective function
between the null scores and the observed scores.

The previously mentioned models are all deterministic:
Given a function f(), there is a perfect correspondence between
the null scores and the observed scores. However the effect
model can also incorporate random effects. One example is
the extended unit-treatment additivity model (Cox & Reid,
2000): Yi = Xi +DiΔ + εi. In this model the εi are independent
and identically distributed random variables with a mean of
zero and a variance of σ. Of course in this model the distribu-
tional characteristics of the εi must be specified, which in-
vokes a distributional assumption in the CICES procedure.
Random effects can be used to allow for variations in treat-
ment effect size across j included studies in CICES: Yij = Xij +
Dij(Δ + εj) + εi.

These examples illustrate that CICES actually has a tre-
mendous flexibility with regard to the effect size functions
that can be used for the statistical inference. However it should
be noted that the effect size function that is chosen prior to
conducting the experiment must be plausible and well inter-
pretable. Note also that misspecification of the effect size
function can severely diminish the power of the underlying
RT. With regard to the use of the unit-treatment additivity
model in the current implementation of CICES we want to
emphasize that this model is also implicitly used in standard

parametric tests such as t tests and F tests, which are basically
significance tests for detecting mean level shifts between ex-
perimental groups.

That being said we can state that the use of CICES with the
unit-treatment additivity model is most appropriate for situa-
tions in which the data is not expected to contain large trends
and/or changes in variability or other types of effects that
might indicate the presence of unit-treatment interactions.
When effects such as trends and changes in variability are
expected an alternative effect sizemodel can be used that takes
these effects into account. In this sense the a priori choice of an
appropriate effect size model for CICES is as important as
other choices that have to be made for any valid statistical
analysis, such as the choice of the research design, the number
of observations, and the test statistic. It goes without saying
that optimal choices for these design parameters depend on the
research question, the predicted effects, and the statistical
power of the test.

Future research

In light of the discussion about the tenability of the unit-
treatment additivity model for single-case meta-analysis, one
avenue for future research could be to investigate the influence
of effect size model misspecification on the Type I error and
power of CICES. This could be done bymeans of a simulation
study in which data for a group of SCEs is first generated
using a specific effect size model (e.g., unit-treatment additiv-
ity with a linear trend component) and then evaluated using
CICES but with a different effect size model (e.g., unit-
treatment additivity model).

In addition, future research could expand the CICES tech-
nique to other single-case ES measures. For example, CICES
might be expanded to include ES measures based on data
overlap (see Parker et al., 2011, for an overview) or ES mea-
sures that are sensitive to effects other than mean level shifts
(e.g., trends, changes in variability, etc.). The CICES tech-
nique is very flexible in this regard but one consideration to
keep in mind is that the underlying effect model of CICES
must be compatible with the ES measure that is being used in
the RT. More specifically, the type of treatment effect (e.g.,
mean level difference effect, trend change, or variability
change) that the selected ES is designed to measure must also
be used to construct the Bobserved scores^ from the Bnull
scores.^ This means that effect models other than the unit-
treatment additivity model are probably more appropriate to
model these alternative types of effects.

Another avenue for further research would be the use of the
CICES technique to synthesize results from randomized
between-subjects designs with results from randomized
single-case designs. Most between-subjects designs incorpo-
rate the random assignment of experimental units to treatment
conditions, just like randomized SCEs. The difference
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between between-subjects designs and SCEs in this respect is
that the experimental units in between-subjects designs pertain
to individual persons whereas the experimental units in SCEs
pertain to repeated measurements within a single person.
However, this would bring along a series of conceptual con-
siderations. One challenge in this approach would be how to
adequately weigh the raw data in the calculation of the com-
bined ES because between-subjects designs contain only one
data point per participant whereas all data points in a single
SCE originate from a single participant. Another conceptual
issue would be if the resulting combined ES estimate and
confidence interval can be interpreted meaningfully when it
pertains to a mix of single-case designs and between-subjects
designs.

Software availability

We have developed an R function for the CICES technique
that is freely available from https://ppw.kuleuven.be/home/
english/research/mesrg/appletsandsoftware. A page on this
website is dedicated to CICES, containing a .zip file with the
R code and the datasets we used in this article, as well as user
instructions. We strongly recommend to use the R function in
the R studio graphical user interface for the R programming
language. Although the R function automatically performs all
the CICES calculations, some basic knowledge of R is
required to properly set up and use the code. The function in
its current form employs the unit-treatment additivity model
as described in this article. Although other effect size func-
tions can also be used some additional adjustments to the R
code would be necessary to implement them.

Conclusion

In this article we have introduced the CICES technique to
calculate nonparametric confidence intervals for the combined
ES of multiple randomized SCEs. CICES is based on the
inversion of an RT and offers tremendous flexibility with re-
spect to the types of ES measures and single-case experimen-
tal designs it can handle. Furthermore, the technique requires
no distributional assumptions and no assumption of random
sampling. Importantly, the validity of CICES is dependent on
the assumption that the included SCEs have randomized de-
signs. Furthermore, the suitability of CICES for specific data
patterns that are present in the included datasets is dependent
on the specific effect size model that is used. In the current
implementation of CICES we used the unit-treatment additiv-
ity model, which assumes a constant additive treatment effect
between the null scores and the observed scores across all
included studies. Consequently the unit-treatment additivity
model is best used for data that do not contain trends or chang-
es in variability throughout the SCE and for groups of SCEs

that are not characterized by large treatment effect size hetero-
geneity. Future research should focus on the use of more com-
plex effect size models in CICES for analyzing data sets with
various unit-treatment interaction effects. Because CICES is a
novel technique, future research is needed to further validate
this technique and investigate its practical feasibility for
single-case researchers as well as its applicability to various
real-world data-analytical situations. We hope that the CICES
technique can be of value to single-case researchers for meta-
analyzing single-case experiments.
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