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Abstract
The internet-based assessment of response time (RT) and error rate (ERR) has recently become a well-validated alter-
native to traditional laboratory-based assessment, because methodological research has provided evidence for negligible
setting- and setup-related differences in RT and ERR measures of central tendency. However, corresponding data on
potential differences in the variability of such performance measures are still lacking, to date. Hence, the aim of this
study was to conduct internet-based mental chronometry in both poorly standardized domestic and highly standardized
laboratory environments and to compare the variabilities of the corresponding performance measures. Using the
Millisecond Inquisit4Web software, 127 men and women completed three different RT-based cognitive paradigms
(i.e., go/no-go, two-back, and number–letter). Each participant completed all paradigms in two environments (i.e., at
home and in the laboratory), with a time lag of seven days and in a counterbalanced order. Mixed-effects modeling was
employed to estimate the between-setting variability across a comprehensive set of performance measures, including
conventional measures of central tendency (i.e., mean RT and ERR) and further measures characterizing the joint
distribution of RT/ERR. The latter measures were estimated using the diffusion model. The results suggested negligible
differences between the domestic and laboratory settings. Thus, this study provides novel evidence suggesting that the
statistical power of internet-based mental chronometry is commonly not compromised by increased environmental
variance. The within- and between-session reliabilities were in a satisfactory range—that is, comparable to performance
measures collected offline in laboratory settings. In consequence, our results support the broad applicability, robustness,
and cost efficiency of mental chronometry assessment using the internet.

Keywords Internet . Reliability . Task switching . Inhibition . Updating . Cognitive control . Executive functions . Diffusion
model

Theoretical background

The impact of the internet onmodern daily life is immense. Thus,
it is not surprising that it has also found its way into experimental

psychology, with 11%–31% of the studies published in major
cognitive science journals relying on internet-based data collec-
tion (Stewart, Chandler, & Paolacci, 2017). Over the last few
years the systematic investigation of internet-based response time
(RT) assessments has provided evidence against most of the
preconceptions that initially hindered their broad application
(Germine et al., 2012). Therefore, we know that mental chro-
nometry using the internet is almost as precise as the traditional
assessments conducted offline in laboratory settings.

To date, a considerable number of studies have investigated
absolute RTs collected online. Keller, Gunasekharan, Mayo,
and Corley (2009) evaluated the precision of internet-based
recordings of known time intervals and found it to be remark-
ably high (up to a 22-ms offset in Windows operating sys-
tems). However, data based on human RTs usually indicate a
small degree of overestimation in internet-assessed RT mea-
sures (i.e., 10–100 ms; Brand & Bradley, 2012) as compared
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to offline measures. Nonetheless, this systematic overestima-
tion of internet-assessed RT data is usually negligible (e.g.,
Chetverikov & Upravitelev, 2016; Germine et al., 2012;
Reimers & Stewart, 2007) and, therefore, hardly compromises
the replicability of most cognitive paradigms. Crump,
McDonnell, and Gureckis (2013) conducted an internet-
based replication of eight widely used cognitive paradigms
(e.g., Stroop, switching, flanker, Simon, and attentional blink).
In this study, only the masked-priming effect could not be
successfully replicated, due to a lack of precision with pre-
sentation times shorter than 65 ms. An extensive body of
evidence exists to support the successful online replication
of cognitive paradigms, such as the studies of Simcox and
Fiez (2014; replication of a flanker effect and the lexical-
decision paradigm), Barnhoorn, Haasnoot, Bocanegra, and
van Steenbergen (2015; replication of the Stroop effect,
attentional blink effect, and masked-priming effect), and
Reimers and Maylor (2005; replication of the task-
switching paradigm).

In light of these findings, internet-based mental chronom-
etry appears to have a significant advantage: Cognitive para-
digms can be presented to a wide range of participants while
collecting data in an instant, with little cost (Reips, 2002).
However, performance assessments via the internet seem to
come with the drawback of some additional, unexplained var-
iability (e.g., Neath, Earle, Hallett, & Surprenant, 2011;
Schubert, Murteira, Collins, & Lopes, 2013). Brand and
Bradley (2012) distinguished two putative main areas as
sources of this variability—that is, technical variability and
environmental variability. It is a well-known fact that the use
of different testing hardware (e.g., CPU, keyboard, screen, or
mouse) drives some variability in RT data (Neath et al., 2011;
Plant & Turner, 2009). The same applies to diverse types
of software, such as varying operating systems, driver ver-
sions (Plant & Quinlan, 2013), and web browsers (Reimers
& Stewart, 2015; Semmelmann &Weigelt, 2017). Added to
these technical aspects, the general lack of experimental
control (to avoid effect confounding by person and environ-
mental factors) and standardization (to minimize perfor-
mance variance due to different assessment environments)
probably influences internet-based mental chronometry.
Thus, the difficulty of controlling for distraction (Brand &
Bradley, 2012), as well as the missing guidance and control
provided by an experimenter (Reips, 2002), can decrease
data quality.

Research rationale

Although many studies in past years have aimed to prove the
general precision of internet-based mental chronometry, cer-
tain information about the quality of such assessments is still
missing. According to Germine et al. (2012), the quality of

performancemeasures is reflected by threemain aspects—that
is, (1) their central tendency, (2) their variance, and (3) their
reliability. These three quality indicators will help us to iden-
tify several properties of internet-based mental chronometry
that have not been investigated so far.

With regard to the first aspect, most of the above-
mentioned studies (e.g., Barnhoorn et al., 2015; Crump
et al., 2013; Simcox & Fiez, 2014) focused on differences in
the central tendencies of laboratory- versus internet-assessed
performance measures. Given that such differences in the cen-
tral tendencies were largely negligible, the respective para-
digms were considered replicable in both settings. Notably,
such replicability statements hinge on the type of performance
measure. Commonly, the mean or median RT of each individ-
ual is considered the primary performance measure for mental
chronometry. Recently, however, the joint analysis of RTs and
errors (ERR) using the diffusion model (DM; Voss, Nagler, &
Lerche, 2013) has gained popularity, because its measures
provide additional information based on higher-order mo-
ments (e.g., the skewness) of the individual RT distributions
(see alsoWagenmakers, 2009). Because the central tendencies
of such measures have not been compared between
laboratory- and internet-based assessments, the present study
went beyond the investigation of conventional performance
measures by also fitting the DM and replicating its effects in
different cognitive paradigms.

With regard to the second aspect, increased variability in
internet-assessed performance measures has often been pre-
sumed (Neath et al., 2011; Reimers & Stewart, 2015).
Nonetheless, we still lack estimates of the practical extent of
the variance increase, which has important implications for the
statistical power to successfully replicate cognitive paradigms.
One attempt to provide such data was carried out by
Brand and Bradley (2012), but their estimates were in-
formed only by simulated data and considered the portion
of technical (i.e., setup) variability in performance mea-
sures. By contrast, the portion of environmental variabil-
ity was disregarded, although there has been a debate on
the latter aspect for almost as long as RTs have been
assessed online (Hecht, Oesker, Kaiser, Civelek, &
Stecker, 1999). Another attempt to estimate the additional
variance introduced by online data collection was carried
out by de Leeuw and Motz (2016). However, those au-
thors focused exclusively on software differences in
offline versus online assessments, but disregarded actual
setting variability. In consequence, in the present study we
aimed to further investigate the impact of deviations from
standardized laboratory settings on variability in internet-
assessed performance measures (including those obtained
by diffusion modeling). Detailed insights on this variabil-
ity will help us quantify the putative loss of statistical
power whenever cognitive performance is assessed in do-
mestic environments.
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In terms of the number of published studies, the reliabilities
of performance measures (i.e., the third aspect) are seldom
explicitly quantified in the field of cognitive psychology, al-
though they convey important information about the maxi-
mum effect that can be attained in a given paradigm (e.g.,
Paap & Sawi, 2016). To our knowledge, only Germine et al.
(2012) has provided reliability information about some
internet-assessed performance measures. However, this infor-
mation was restricted to the internal consistency of ERR data.
Hence, neither the consistency nor the test–retest stability of
internet-assessed RTand ERRmeasures has yet been reported.
In the present study we therefore estimated the within- and
between-session reliabilities of internet-based mental chro-
nometry in different cognitive paradigms.

Method

Sample

A total of 137 students at Technische Universität Dresden took
part in the study. However, only 127 of the participants (33
male, 94 female; between 18 and 40 years,Mage = 23.6 years,
SD = 4.1) completed both sessions and, hence, provided a
complete set of data. Informed consent was given by each
participant prior to the procedure. Each participant received
€18 in compensation or, in the case of psychology students,
the equivalent in credit points. Approval was granted by the
local ethics committee.

Apparatus and materials

Internet-based paradigm presentation was implemented in
both the lab and home sett ings by Inquisi t4Web
(Millisecond Software, Seattle, USA), a software for
Windows and OSX systems that operates client-sided.

In the lab setting (lab), participants used a Windows com-
puter (Windows XP Professional, Version 202, Service Pack
3) in combination with a 19-in. TFT display, a QWERTZ
keyboard, and an optical mouse. The online experiment was
initiated using the Firefox browser (version 39.0). For the
domestic setting (home), the only technical restriction given
was to use a desktop or laptop PC in combination with a
physical mouse and keyboard. No tablets or smartphones were
permitted. Responses via a touch-sensitive surface were not
allowed.

To allow application of our findings to a broad field of RT
research, we aimed to investigate a diverse range of cognitive
constructs. According to Miyake et al. (2000), the three inter-
related constructs Bshifting,^ Bupdating,^ and Binhibition^
cover the majority of performance variance in the RT tasks
commonly used to assess executive functioning. We chose
three RT tasks to tap into each of these constructs: a

number–letter task (Rogers & Monsell, 1995; Fig. 1A) to as-
sess Bshifting,^ a go/no-go task (Wolff et al., 2016; Fig. 1B) to
assess Binhibition,^ and a spatial two-back task (Friedman
et al., 2008; Fig. 1C) to assess Bupdating.^ In each trial of
the number–letter task, a character–digit pair was presented
below or above a black bar. The participants were asked to
classify either the character (a or b) or the number (1 or 2)
when the stimulus was presented below or above the bar,
respectively. The By^ key (in response to a and 1) and the
Bm^ key (in response to 2 and b) on the keyboard served as
response keys. Switch and repeat trials were defined by the
compatibility of the target (i.e., number or letter) to that in the
previous trial. The task consisted of 256 trials total (50%
switch trials, 50% repeat trials). The go/no-go task simply
required the classification of the alignment of two circles as
vertical (go, predominant trial type) or horizontal (no go).
Because DM analyses require two-choice data, the classical
go/no-go task was slightly modified: Both go trials (By^ key)
and no-go trials (Bm^ key) required a key response. The task
consisted of 400 trials—that is, 87.5% of these were go trials,
and 12.5% were no-go trials. Hence, the predominant re-
sponse tendencies established by the go stimuli needed to be
inhibited in the rarer no-go trials. The two-back task required
continuously determining the matching of the currently pre-
sented stimulus array and the stimulus array that had been
presented two trials before (target or nontarget), using the
same keys that were used in the other paradigms. Hence, the
task required successfully updating working memory in order
to be correctly performed. The task consisted of 160 trials
(70% nontargets, 30% targets).

Procedure

Participants were randomly assigned to the first setting—that
is, Blab^ or Bhome^. Prior to the first session, each participant
had received an email that contained all information about the
testing (i.e., the consent form, instructions for using the indi-
vidualized participation code, and assessment dates), as well
as a web link that led to the fully automatized online experi-
ment. After starting the experiment, all participants were
asked to enter their participation code and whether the current
session was being performed in the lab or at home. Next, they
were asked to report their sex and age. Thereafter, the tasks
were presented in the following order: number–letter task, go/
no-go task, and two-back task. Each task was preceded by task
instructions and practice trials. Between tasks, the possibility
for a short break was given. The whole procedure took ap-
proximately 1 h per session. The time between sessions was
instructed to be seven days.

Only in the lab was an experimenter present, who wel-
comed the participants, guided them to the computer, and
dismissed them after the procedure had been completed.
Notably, the experimenter did not interact with the participants
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during the administration of the online task battery. For the
home session, participants were told to conduct the experi-
ment in a calm and nondistracting environment.

Performance measures

RT and ERR data enable investigation of a broad range of
different performance measures. However, we focused on
those measures that are commonly used as performance indi-
cators in studies using each of the respective tasks. In the
number–letter task, we focused on the difference in mean
log(RT) and the difference in the relative error frequencies
(ERR) between switch and repeat trials. By contrast, we fo-
cused on log(RT) and ERR in the no-go trials of the go/no-go
task, as well as in the target trials of the spatial two-back task.
Besides these six conventional performance measures, which
were of primary interest to our analyses, further, secondary
measures are listed in the Appendix.

Lately, the DM has become increasingly popular for joint
analyses of RTand ERR data from cognitive two-choice tasks.
To account for this development, we also performed DM

analyses. The measures of the DM allow for a finer, theory-
driven interpretation of the underlying cognitive processes, as
compared to conventional performance measures based on
aggregate data, such as mean RTs (Voss et al., 2013; Voss,
Rothermund, & Voss, 2004). The predominantly estimated
measures are upper threshold boundary separation (a), relative
starting point (zr), drift rate (v), and response time constant
(t0). The most prominent measure is v (typical range: – 5 < v <
5), which describes the mean speed of the information accu-
mulation process toward the correct response option. The
higher the boundary separation a is (0.5 < a < 2), the more
cautious is the response style of the individual. A preference
toward one of the two response options is expressed by zr (.3 <
zr < .7), whereas zr = .5 indicates no preference. All residual
processes (i.e., sensory encoding and motor execution of the
response) are expressed by t0 (.1 < t0 < .5). For all trials of the
respective task, we estimated the common a, zr, and t0 mea-
sures, whereas vwas estimated separately for each trial type of
the go/no-go task and the two-back task. In the case of the
number–letter task, all DMmeasures were estimated separate-
ly for switch and repeat trials, before performance measures

Fig. 1 Illustration of the task battery employed, which consisted of three executive-functioning tasks: (A) number–letter, (B) go/no-go, and (C) spatial
two-back
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were calculated from their differences between the two condi-
tions. An overview of all analyzed performance measures and
their labels is presented in Table 1.

Statistical analyses

All two-stage analyses reported in this article were performed
using the R 3.3.1 statistical software (R Core Team, 2017).
The raw data and the R script of our analyses can be
downloaded from https://osf.io/64q2z/.

To obtain performance measures at the first analysis stage,
thorough outlier removal is a common practice in internet-
based mental chronometry, to control for unwanted environ-
mental variability, such as transient distractions (Brand &
Bradley, 2012; Keller et al., 2009). Because we were specifi-
cally interested in these effects, only little outlier control was
applied to our data. Prior to the analyses, all timed-out re-
sponses were excluded (0.5% of all trials). Furthermore, trials
with log(RT) lower or higher than 2.5 standard deviations
(SD) from the conditional mean RT of each session, task,
and trial type were excluded (1.9% of all trials). Moreover,
three participants were excluded from the analyses of the two-

back task due to technical problems during this paradigm in
the home session.

For each task, the above-mentioned performance measures
were calculated and then submitted to the second analysis
stage. DM measures were estimated by minimizing the
Kolmogorov–Smirnov statistic between the observed and
the model-implied distribution of correct and error RTs using
fast-dm (Voss & Voss, 2007).

At the second analysis stage, hierarchical regression anal-
yses of each measure were conducted using generalized least
squares estimation. The conditional mean of the respective
performance measure (y) was modeled by the intercept (β0),
the setting (β1; home = 0, lab = 1), the number of the session
(β2; 1st session = 0, 2nd session = 1), and the setting of the
initial session (β3; home = 0, lab = 1). Accordingly, the struc-
tural part of the regression model can be expressed by
Formula 1:

y ¼ β0 þ β1 þ β2 þ β3: ð1Þ

Formal hypothesis testing for setting differences (β1) in the
18 primary performance measures was performed on the basis
of a tail-area false discovery rate of FDR = 5% (Benjamini &
Hochberg, 1995).

The employed regression models also accounted for the
difference between the residual standard deviation (SD) of y
in the lab (σ) as compared to home (ω*σ). The resulting dif-
ference in the variability of performance measures between
lab and home was therefore expressed as an SD ratio (ω),
whereas the SD in the lab (σ) was set as the reference.
Hence, the following formula (Eq. 2) applied:

ω ¼ SDHome=SDLab ¼ SDHome=σ: ð2Þ

Each regression model further provided estimates of the
correlation between the two sessions (rTR). Given the design
of the present study, the correlation coefficient rwas interpret-
able as an estimate of the test–retest stability (time lag: 1
week) of the respective performance measures. To provide
references for these stability estimates, the internal reliability
of each performance measure was also quantified by splitting
between odd- and even-numbered trials and correcting these
estimates for attenuation by using the Spearman–Brown
formula.

To obtain confidence intervals (CIs) for the estimated SD
ratios (ω), test–retest stabilities (rTR), and internal reliabilities
(rLab and rHome), a nonparametric bootstrap with n = 50,000
replicates was performed for each model.

Results

To provide a general description of the investigated perfor-
mance measures, Table 2 lists their means and standard

Table 1 Overview of the analyzed performance measures

Label Paradigm Measure (y)

Conventional measures

C-NLRT Number–Letter M[log(RTSwitch)] – M[log(RTRepeat)]

C-NLERR Number–Letter ERRSwitch – ERRRepeat

C-GNRT Go/No-Go M[log(RTNo-go)]

C-GNERR Go/No-Go ERRNogo

C-2BRT Two-Back M[log(RTTarget)]

C-2BERR Two-Back ERRTarget

Measures from diffusion modeling

DM-NLa Number–Letter aSwitch – aRepeat
DM-NLzr Number–Letter zrSwitch – zrRepeat
DM-NLt0 Number–Letter t0Switch – t0Repeat
DM-NLv Number–Letter vSwitch – vRepeat
DM-GNa Go/No-Go aGo + No-go

DM-GNzr Go/No-Go zrGo + No-go

DM-GNt0 Go/No-Go t0Go + No-go

DM-GNv Go/No-Go vGo – vNo-go
DM-2Ba Two-Back aTarget + Nontarget

DM-2Bzr Two-Back zrTarget + Nontarget

DM-2Bt0 Two-Back t0Target + Nontarget

DM-2Bv Two-Back vTarget – vNontarget

Subscripts in the measure (y) column denote the respective trial type of
the cognitive paradigm. RT = response time; ERR = relative error fre-
quency; a = boundary separation (response caution); zr = relative starting
point (response bias); t0 = response time constant (nondecision time); v =
drift rate (speed of evidence accumulation)
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deviations in both settings (i.e., lab vs. home). The inferential
analyses are based on multiple hierarchical regression model-
ing to compare the performance measures between the differ-
ent settings. A comprehensive list of all estimates is provided
in Table 3. On the basis of the Benjamini–Hochberg procedure
(FDR = 5%), p ≤ .02 was considered the significance thresh-
old for formal hypothesis testing.

Systematic setting differences

Regression modeling yielded no evidence of significant dif-
ferences between the settings (i.e., lab and home), for both the
conventional performance measures (– 0.01 ≤ β1 ≤ 0.01, .24 ≤
p ≤ .61) and the DM-basedmeasures (– 0.04 ≤ β1 ≤ 0.20, .05 ≤
p ≤ .81).

The change in performance measures from the first to the
second session was estimated by β2 (see Table 3). Some
models—that is, C-GNRT, C-GNERR, C-2BRT, C-2BERR,
DM-NLt0, DM-GNt0, DM-GNv, DM-2Ba, and DM-2Bt0—
suggested improvements in task performance (p ≤ .01). This
probably reflects the well-known practice effects that occur in
repeatedly conducted cognitive paradigms (e.g., Davidson,
Zacks, & Williams, 2003; Enge et al., 2014). All remaining

estimates of β2 provided no considerable evidence of perfor-
mance improvements (.08 ≤ p ≤ .87).

To control for potential asymmetries in the initial condition,
β3 estimated differences in performance measures due to the
initial setting. Models DM-NLzr, DM-NLt0, DM-NLv, and
DM-2Bt0 revealed borderline associations (.01 ≤ p ≤ .04),
whereas all other models suggested that differences due to
initial setting were negligible (.21 ≤ p ≤ .99).

Variability in the two settings

Each regression model quantified the differences in residual
variability of the 18 performance measures between the two
settings. The estimated SD ratio ω quantified the relative
change of SD in the home condition as compared to the lab
condition (σ). The majority of models revealed a ω > 1 (1.01 ≤
ω ≤ 1.24), indicating higher variability of the performance
measures at home (see Fig. 2). However, seven out of the 18
models—that is, C-NLERR, C-2BRT, DM-NLa, DM-NLt0,
DM-GNa, DM-2Ba, and DM-2Bt0—showed a ω < 1 (0.86 ≤
ω ≤ 0.98). In some cases the variability of performance mea-
sures might therefore have been smaller in the domestic set-
ting than in the standardized lab setting.

Bootstrapping was used to estimate the sampling variabil-
ity (i.e., the 95% confidence intervals [CIs]) of all the estimat-
ed ω values. According to these analyses, only two models
showed an ω that differed considerably from 1. Model C-
GNERR, representing the ERR of no-go trials in the no/no-go
task, yielded ω = 1.19 [1.02, 1.39]. Model DM-GNzr, estimat-
ing zr in the go/no-go task, yielded ω = 1.20 [1.05, 1.36]. Both
models provided evidence that the variability of some perfor-
mance measures may have increased in the less standardized
setting.

To increase the precision of the estimated ωs, we finally
pooled the performance measures of each task through
Bayesian meta-analyses (while accounting for the between-
measure variability of ω using the Berger–Bernardo reference
prior; see Bodnar, Link, Arendacká, Possolo, & Elster, 2017).
In the go/no-go task, the mean SD ratio increased by 14.9% in
the domestic setting (ω = 1.15, CI95% = 0.96–1.37). By con-
trast, the number–letter and two-back tasks yielded no consid-
erable evidence for such an increase, with ω = 1.00 (CI95% =
0.83–1.20) and ω = 1.01 (CI95% = 0.84–1.23), respectively.
Note that ω did not differ systematically between the conven-
tional and DM-based performance measures. A precise record
of all estimatedωs and their CIs is given in Table 3. Additional
calculations using further performance measures confirmed
these findings and are provided in the Appendix.

Reliability in both settings

The test–retest stability rTR (time lag: seven days) between the
two sessions was also estimated by the regression models. For

Table 2 Mean performance measures and their mean standard
deviations across participants

Performance Measure Lab Home

M SD M SD

Conventional measures

C-NLRT 0.268 0.099 0.261 0.111

C-NLERR 0.031 0.039 0.027 0.039

C-GNRT 6.000 0.142 6.000 0.162

C-GNERR 0.192 0.134 0.208 0.159

C-2BRT 6.573 0.244 6.526 0.220

C-2BERR 0.134 0.117 0.126 0.130

Measures from diffusion model

DM-NLa – 0.192 0.417 – 0.154 0.384

DM-NLzr – 0.128 0.145 – 0.135 0.151

DM-NLt0 0.194 0.114 0.170 0.103

DM-NLv 0.010 0.521 0.026 0.543

DM-GNa 1.457 0.426 1.414 0.370

DM-GNzr 0.526 0.095 0.523 0.113

DM-GNt0 0.204 0.037 0.207 0.045

DM-GNv 2.499 1.887 2.462 2.104

DM-2Ba 1.737 0.356 1.711 0.338

DM-2Bzr 0.363 0.089 0.381 0.097

DM-2Bt0 0.400 0.107 0.384 0.094

DM-2Bv 1.161 0.980 0.980 1.080

M = mean across participants; SD = mean standard deviation across
participants. The labeling of performance measures according to Table 1
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the conventional measures the test–retest stabilities fell within
the range .33 ≤ rTR ≤ .73. The DM-based measures generally
showed lower test–retest stabilities—that is, .04 ≤ rTR ≤ .56
(see Fig. 3). All test–retest stabilities and their CIs are listed in
Table 3.

To provide benchmarks for rTR, the internal reliabilities
(i.e., rLab and rHome) were subsequently estimated for each
performance measure (see Table 3). Regarding the conven-
tional measures, internal reliability had the ranges .33 ≤ rLab
≤ .96 in the lab and .35 ≤ rHome ≤ .94 at home. The internal
reliabilities for DM measures fell within the ranges .01 ≤ rLab
≤ .91 in the lab and .38 ≤ rHome ≤ .95 at home, with the

reliabilities for the number–letter task seeming to be generally
lower than those for the other two tasks (see Fig. 3).

Replicability of cognitive effects

Multiple one-tailed Welch tests were conducted to assess the
presence of the respective effects of the cognitive tasks. For
each combination of task and setting, the mean RTs and mean
ERRs were compared between trial types (see Fig. 4). All
comparisons yielded ps ≤ .001 for the task-switching effect,
the response inhibition effect, and working memory load, and
thus exceeded the significance threshold. The effect sizes were

Table 3 Regression estimates with variance estimation according to settings and the reliabilities of the respective performance measures

Outcome β0 ± SE
(p)

β1 ± SE
(p)

β2 ± SE
(p)

β3 ± SE
(p)

σ ω
[95% CIω]

rTR
[95% CIr]

rLab
[95% CIr]

rHome

[95% CIr]

C-NLRT 0.25 ± 0.02
(<.001)

0.01 ± 0.01
(.31)

0.00 ± 0.01
(.87)

0.02 ± 0.02
(.37)

0.10 1.12
[0.97, 1.29]

.69
[.58, .77]

.85
[.79, .89]

.91
[.88, .93]

C-NLERR 0.02 ± 0.01
(<.001)

0.00 ± 0.00
(.24)

0.00 ± 0.00
(.27)

0.01 ± 0.01
(.24)

0.04 0.98
[0.83, 1.19]

.33
[.13, .52]

.33
[– .02, .55]

.35
[.09, .54]

C-GNRT 6.04 ± 0.02
(<.001)

– 0.01 ± 0.01
(.26)

– 0.05 ± 0.01
(<.001)

– 0.02 ± 0.03
(.41)

0.14 1.12
[0.98, 1.28]

.73
[.64, .79]

.92
[.88, .95]

.92
[.88, .95]

C-GNERR 0.19 ± 0.02
(<.001)

– 0.01 ± 0.01
(.42)

0.03 ± 0.01
(<.01)

– 0.01 ± 0.02
(.81)

0.13 1.19
[1.02, 1.39]

.61
[.49, .71]

.85
[.78, .90]

.80
[.70, .87]

C-2BRT 6.62 ± 0.03
(<.001)

0.01 ± 0.02
(.54)

– 0.19 ± 0.02
(<.001)

0.03 ± 0.04
(.32)

0.22 0.95
[0.84, 1.09]

.67
[.54, .77]

.96
[.94, .97]

.94
[.92, .96]

C-2BERR 0.14 ± 0.02
(<.001)

0.00 ± 0.01
(.61)

– 0.03 ± 0.01
(<.001)

0.00 ± 0.02
(.90)

0.12 1.12
[0.87, 1.44]

.63
[.48, .76]

.84
[.73, .90]

.87
[.78, .92]

DM-NLa – 0.17 ± 0.05
(<.01)

– 0.03 ± 0.05
(.51)

0.02 ± 0.05
(.65)

0.01 ± 0.05
(.89)

0.42 0.92
[0.78, 1.08]

.04
[– .19, .26]

.01
[– .39, .31]

.38
[.16, .55]

DM-NLzr – 0.18 ± 0.02
(<.001)

0.01 ± 0.02
(.53)

0.02 ± 0.02
(.20)

0.05 ± 0.02
(<.01)

0.14 1.01
[0.85, 1.20]

.25
[.09, .39]

.36
[.05, .57]

.47
[.24, .63]

DM-NLt0 0.17 ± 0.01
(<.001)

0.02 ± 0.01
(.12)

– 0.03 ± 0.01
(.01)

0.03 ± 0.02
(.04)

0.11 0.93
[0.76, 1.14]

.30
[.13, .45]

.48
[.25, .65]

.61
[.43, .74]

DM-NLv 0.20 ± 0.07
(<.01)

– 0.04 ± 0.06
(.54)

– 0.11 ± 0.06
(.08)

– 0.19 ± 0.07
(.01)

0.52 1.01
[0.85, 1.20]

.18
[.03, .34]

.34
[.05, .54]

.47
[.25, .62]

DM-GNa 1.47 ± 0.05
(<.001)

0.03 ± 0.04
(.51)

– 0.07 ± 0.04
(.12)

– 0.02 ± 0.06
(.67)

0.43 0.86
[0.62, 1.21]

.23
[.08, .43]

.57
[.38, .73]

.63
[.47, .82]

DM-GNzr 0.52 ± 0.02
(<.001)

0.00 ± 0.01
(.81)

0.00 ± 0.01
(.62)

0.00 ± 0.02
(.88)

0.09 1.20
[1.05, 1.36]

.54
[.40, .67]

.77
[.68, .84]

.77
[.66, .85]

DM-GNt0 0.21 ± 0.01
(<.001)

– 0.01 ± 0.00
(.15)

– 0.01 ± 0.00
(<.01)

0.00 ± 0.01
(.91)

0.04 1.24
[0.98, 1.51]

.51
[.37, .63]

.91
[.87, .95]

.95
[.91, .97]

DM-GNv 2.19 ± 0.29
(<.001)

0.14 ± 0.18
(.43)

0.54 ± 0.18
(<.01)

– 0.09 ± 0.31
(.76)

1.87 1.12
[0.96, 1.32]

.50
[.33, .64]

.85
[.79, .89]

.82
[.74, .88]

DM-2Ba 1.82 ± 0.05
(<.001)

– 0.01 ± 0.03
(.61)

– 0.21 ± 0.03
(<.001)

0.02 ± 0.05
(.73)

0.34 0.96
[0.83, 1.11]

.56
[.43, .67]

.83
[.75, .88]

.79
[.71, .87]

DM-2Bzr 0.37 ± 0.01
(<.001)

– 0.01 ± 0.01
(.13)

0.01 ± 0.01
(.15)

0.00 ± 0.01
(.88)

0.09 1.10
[0.93, 1.29]

.35
[.19, .51]

.62
[.47, .73]

.68
[.54, .78]

DM-2Bt0 0.39 ± 0.01
(<.001)

0.01 ± 0.01
(.37)

– 0.04 ± 0.01
(<.001)

0.03 ± 0.01
(.04)

0.10 0.93
[0.73, 1.16]

.39
[.22, .54]

.87
[.81, .91]

.87
[.76, .93]

DM-2Bv 0.90 ± 0.15
(<.001)

0.20 ± 0.10
(.05)

0.09 ± 0.10
(.35)

0.03 ± 0.16
(.84)

0.98 1.10
[0.88, 1.37]

.43
[.28, .58]

.53
[.24, .72]

.71
[.57, .81]

CI = confidence interval; p = p value; rHome = internal reliability at home; rLab = internal reliability in the lab; rTR = test–retest stability (lag: seven days),
β0 = intercept; β1 = setting (home = 0, lab = 1); β2 = number of session (1st session = 0, 2nd session = 1); β3 = initial setting (home = 0, lab = 1); σ =
standard deviation (SD) in the lab; ω = SD ratio with σ as reference; SE = standard error; labeling of performance measures according to Table 1
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scattered in the range 0.70 ≤ d ≤ 2.72 (see Fig. 4). These
findings indicate that the prominent cognitive effects from
the conventional measures were successfully replicable in
both the laboratory and domestic settings.

To replicate previously published DM analyses of task
switching, Welch tests were also used to investigate the dif-
ferences between switch and repeat trials with regard to a, t0,
and v in both settings. Neither the boundary separations a nor
the drift rates v differed significantly between the two trial
types in the lab (ps ≥ .07) or at home (ps ≥ .03). By contrast,
the nondecision time t0 increased notably in switch trials
across both settings (p < .001).

Discussion

The aim of this study was to get a better understanding of data
quality when mental chronometry is performed in domestic en-
vironments via the internet. To answer this question, we focused
on three aspects: setting-related differences in the central tenden-
cy of different performance measures (including conventional
and DM-based measures), their variability, and their reliability.

Systematic differences in performance measures

With regard to conventional performance measures—that is,
aggregated RTand ERR—our results are consistent with those
from other studies replicating the cognitive effects of different
internet-based cognitive tasks (e.g., Crump et al., 2013). For
all three presented paradigms we were able to replicate the
known effects in both investigated settings, in the lab and at
home.

Regarding the DM measures, it is difficult to compare
the reported results with previously published findings. To
the best of our knowledge, no DM analyses of the spatial
two-back task have been published so far. Conversely,
Gomez, Ratcliff, and Perea (2007) have extensively
discussed how to fit the go/no-go task using the diffusion
model. However, their findings of a bias z toward the go
response are (in our experience) not universally accepted,
because the go/no-go task is commonly regarded as a one-
choice task (see R. Miller, Scherbaum, Heck, Goschke, &
Enge, 2017). For the task-switching paradigm, Schmitz
and Voss (2012) reported a decrease of the drift rate v
and an increase of the nondecision time t0 in switch trials.
The boundary separation a, however, was insensitive to

Fig. 2 SD ratios ω (home/lab) of the respective performance measures.
Error bars indicate the 95% confidence intervals based on bootstrapping
(n = 50,000). SD ratios ω > 1 indicate more residual variance at home,
whereas ω < 1 indicate more residual variance in the lab. CP =

conventional measures; DM = measures from the diffusion model; RT
= response time; ERR = error rate; a = boundary separation; zr = relative
starting point; t0 = nondecision time; v = drift rate

Fig. 3 Test–retest stabilities (interval: seven days) and internal reliabilities of the respective performance measures in both settings. Confidence intervals
below 0 are truncated
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the trial type. Our analyses replicated these differences for
t0 (but not after multiplicity adjustment for v) in both
settings. Similarly, the boundary separation a did not dif-
fer between the trial types.

Notably, we did not find a meaningful setting difference in
the conventional performance measures. This is especially of
interest with respect to ERR, because online response logging
is supposedly less sensitive to technical variance. Hence, in-
creased ERR can be regarded as an indicator of environmental
influences, such as distraction (Semmelmann & Weigelt,
2017). The loss of standardization and experimental control
in domestic assessments often goes hand in hand with the
preconception that distraction is increased and diligence is
decreased (e.g., Chetverikov & Upravitelev, 2016; Gosling,
Vazire, Srivastava, & John, 2004; Hilbig, 2016). Yet task com-
pletion in the domestic setting had no considerable influence
on ERR. These results are consistent with the previous find-
ings of Semmelmann and Weigelt (2017). However, apart
from investigating these conventional performance measures,
we performed diffusion modeling of the internet-assessed da-
ta. Overall, the DM measures showed a pattern similar to that
of the conventional measures when lab and home performance
was compared. Considering the large size of the investigated
per-protocol analysis set (N = 127), we can therefore conclude
that small effects due to setting differences are unlikely to
occur (with a statistical power of 90% for any d > 0.32).

In sum, the general comparison of lab and home environ-
ments suggested that the relative loss of standardization and
environmental control in the domestic setting did not

systematically or substantially influence measures of cogni-
tive performance.

Variability of the performance measures

One major aim of this study was to estimate changes in the
variability of performance measures that might be caused by
domestic data assessment. In general, we observed a slight
increase in variability for most of the performance measures
at home (5% larger variance, which was primarily attributable
to the go/no-go task). However, several aspects need to be
pointed out.

Although it seems obvious to expect a smaller variability in
the laboratory settings, some of our investigatedmeasures also
suggested numerically lower variance in the less standardized
and controlled domestic setting. This pattern was found in
seven out of 18 reported measures across all three paradigms,
and pertained to both the conventional measures (i.e., aggre-
gated RT/ERR data) and the DMmeasures. The fact that in all
of these cases the CIs of the reported SD ratios included ω = 1
suggests that the lower SDs at home did not reach a practically
considerable extent and, therefore, most likely only occurred
due to chance. Nevertheless, these results highlight that the
variability differences due to a loss of standardization and
experimental control might be smaller than is usually expect-
ed. Similar patterns of decreased performance variability in
the domestic setting were also found in the analyses of addi-
tional performance measures (see the Appendix).

Fig. 4 Mean RTs (upper panels) and mean ERR (lower panels) according to setting (i.e., lab and home) for all tested tasks. Error bars indicate SDs. d =
standardized mean change. *p < .001
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Only two out of 18 measures displayed a likely increased
setting-related variability. This was the case for ERR and zr in
the go/no-go task. However, in both cases the lower limit of
the 95% CI was very close to ω = 1. Furthermore, both mea-
sures only displayed (to our mind) relatively negligible differ-
ences (d ≤ .13).

Brand and Bradley’s (2012) simulation study illustrates
that the increased variability in unstandardized settings can
be compensated for by larger sample sizes. This idea directly
results from the logic underlying the estimation of statistical
power, which requires the smallest detectable effect of interest
to be scaled on the basis of its variability within the investi-
gated sample. Thus, larger sample sizes are needed to achieve
the same power level whenever variability increases. For ex-
ample, a 5% increase in variance would increase the total
sample size by 20.5% in order to detect the same performance
difference between two participant groups of equal size with
the same probability. Thus, informed researchers should care-
fully evaluate whether their study would actually benefit from
the convenience of recruiting large samples online.

Data reliability

First and foremost, no major differences in internal reli-
ability were observed between the two settings. This sug-
gests that the setting was not influential on internal reli-
ability. In general, the internal reliabilities of performance
measures for the go/no-go and two-back tasks were in a
satisfactory range (i.e., moderate to good). By contrast,
the number–letter task seemed to display generally lower
(i.e., poor) reliabilities for most of the investigated mea-
sures. These findings align well with the internal reliabil-
ities of performance measures that have been derived
from similar tasks using laboratory assessment. Wolff
et al. (2016), for example, reported internal reliabilities
of inverse efficiency scores around r = .80 (go/no-go
task), r = .89 (two-back task), and r = .59 (number–letter
task). Interestingly, the internal reliabilities also did not
seem to differ much between the conventional and DM
measures.

Second, and less surprising, the test–retest stabilities
(time lag: seven days) were considerably lower than the
internal reliabilities. Moreover, we observed a small ten-
dency among the conventional performance measures to
reach slightly higher test–retest stabilities than the DM
measures (cf. Lerche & Voss, 2017). The large variability
of the test–retest stabilities we reported conforms to re-
sults from Willoughby and Blair (2011), who compiled
similar findings for different executive-functioning tasks.
They stated that conventional measures (from laboratory
assessments) display reliabilities in the range .4 ≤ r ≤ .7.
In the present study, only the ERR in the number–letter
task showed a slightly lower reliability. Lerche and Voss

found the test–retest stabilities for different DM parame-
ters to be roughly .0 < r < .8 (based on optimization of the
Kolmogorov–Smirnov statistic), which covers the range
of the herein-reported DM measures. Similar to the inter-
nal reliabilities, the test–retest stabilities were lower in the
number–letter task than in the other two tasks, which can
probably be attributed to the way the performance mea-
sures from the number–letter task were calculated as com-
pared to those from the other tasks: It has been repeatedly
shown and discussed that difference scores are prone to
lower reliabilities in many cases (J. Miller & Ulrich,
2013; Paap & Sawi, 2016).

Limitations

When generalizing our findings, two aspects need to be
pointed out. First, data collection was achieved by using
the Millisecond Inquisit4Web. This Java-based software
prioritizes task presentation and thereby minimizes any
distraction by background applications. Thus, the reported
findings will not necessarily generalize to less invasive
presentation software, such as Adobe Flash or JavaScript
(e.g., de Leeuw & Motz, 2016; Reimers & Stewart, 2015).
Second, our study only assessed undergraduate student
participants. Hence, the modulatory impact of a broader
education and age range will need to be clarified through
further investigations.

Conclusion

The findings of this study provide new insights into the
data quality of internet-based mental chronometry in dif-
ferent settings. We were able to show that conventional
performance measures as well as DM-based measures are
little influenced by unobserved setting variables.
Similarly, our findings show that setting-related differ-
ences in the variability of performance measures are prob-
ably of small size. Although there is an overall increase of
variance of approximately 5% in self-chosen experimental
environments, internet-based assessments can neverthe-
less be used without a corresponding loss of statistical
power because they facilitate the recruitment of larger
sample sizes. Finally, our data indicate that the internal
as well as the test–retest stability of internet-assessed cog-
nitive performance is in a satisfactory range and is com-
parable to reliabilities in the laboratory. This supports the
utility and precision of internet-based assessment of cog-
nitive performance in domestic settings.

Author note This work was supported by the German
Research Foundation (DFG, Grant No. SFB 940/2).
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Table 4 Additional performance measures

Label Paradigm Measure (y)

Conventional measures

C-1_A Number–Letter M[log(RTRepeat)]

C-2_A Number–Letter M[log(RTSwitch)]

C-3_A Number–Letter ERRRepeat

C-4_A Number–Letter ERRSwitch

C-5_A Go/No-Go M[log(RTGo)]

C-6_A Go/No-Go M[log(RTNo-go)] – M[log(RTGo)]

C-7_A Go/No-Go ERRGo

C-8_A Go/No-Go ERRNo-go – ERRGo

C-9_A Two-Back M[log(RTNontarget)]

C-10_A Two-Back M[log(RTTarget)] – M[log(RTNontarget)]

C-11_A Two-Back ERRNontarget

C-12_A Two-Back ERRTarget – ERRNontarget

Measures from diffusion model

DM-1_A Number–Letter aRepeat
DM-2_A Number–Letter zrRepeat
DM-3_A Number–Letter t0Repeat
DM-4_A Number–Letter vRepeat
DM-5_A Number–Letter aSwitch
DM-6_A Number–Letter zrSwitch
DM-7_A Number–Letter t0Switch
DM-8_A Number–Letter vSwitch
DM-9_A Go/No-Go vGo
DM-10_A Go/No-Go VNo-go
DM-11_A Two-Back vNontarget
DM-12_A Two-Back vTarget

y = independent variable in regression model; RT = response time; ERR = error rate; a = boundary separation; zr = relative starting point; t0 = response
time constant; v = drift rate

Appendix
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Table 5 Additional regression estimates with variance estimation according to setting and reliabilities of the respective performance measures

Outcome β0 ± SE
(p)

β1 ± SE
(p)

β2 ± SE
(p)

β3 ± SE
(p)

σ ω
[95% CIω]

rTR
[95% CIr]

rLab
[95% CIr]

rHome

[95% CIr]

Conventional measures

C-1_A 6.65 ± 0.02
(<.001)

– 0.01 ± 0.01
(.43)

– 0.15 ± 0.01
(<.001)

– 0.02 ± 0.03
(.44)

0.18 0.96
[0.87, 1.06]

.81
[.74, .87]

.98
[.97, .99]

.98
[.98, .99]

C-2_A 6.90 ± 0.02
(<.001)

0.00 ± 0.01
(.99)

– 0.15 ± 0.01
(<.001)

– 0.01 ± 0.03
(.76)

0.15 1.01
[0.92, 1.1]

.73
[.62, .82]

.98
[.97, .99]

.98
[.97, .99]

C-3_A 0.07 ± 0.01
(<.001)

– 0.01 ± 0.01
(.14)

– 0.01 ± 0.01
(.05)

– 0.01 ± 0.01
(.14)

0.06 1.19
[0.7, 2.37]

.37
[.11, .72]

.91
[.62, .96]

.92
[.80, .96]

C-4_A 0.09 ± 0.01
(<.001)

0.00 ± 0.01
(.48)

– 0.01 ± 0.01
(.24)

– 0.01 ± 0.01
(.53)

0.07 1.13
[0.84, 1.55]

.47
[.24, .70]

.85
[.72, .91]

.93
[.88, .96]

C-5_A 5.82 ± 0.02
(<.001)

– 0.02 ± 0.01
(.03)

– 0.07 ± 0.01
(<.001)

– 0.01 ± 0.02
(.66)

0.13 1.07
[0.91, 1.24]

.66
[.56, .74]

1.00
[.99, 1.00]

1.00
[1.00, 1.00]

C-6_A 0.21 ± 0.01
(<.001)

0.01 ± 0.01
(.15)

0.02 ± 0.01
(<.01)

– 0.01 ± 0.01
(.38)

0.07 1.16
[0.97, 1.38]

.47
[.29, .62]

.69
[.54, .79]

.70
[.55, .81]

C-7_A 0.00 ± 0.00
(<.001)

0.00 ± 0.00
(.19)

0.00 ± 0.00
(1.00)

0.00 ± 0.00
(.50)

0.00 1.35
[1.07, 1.67]

.45
[.23, .62]

.57
[.31, .74]

.58
[.36, .73]

C-8_A 0.19 ± 0.02
(<.001)

– 0.01 ± 0.01
(.44)

0.03 ± 0.01
(<.01)

– 0.01 ± 0.02
(.79)

0.13 1.18
[1.01, 1.38]

.61
[.49, .71]

.85
[.78, .90]

.79
[.69, .87]

C-9_A 6.74 ± 0.03
(<.001)

0.01 ± 0.02
(.34)

– 0.21 ± 0.02
(<.001)

0.02 ± 0.04
(.52)

0.21 1.01
[0.87, 1.2]

.70
[.59, .80]

.99
[.98, .99]

.98
[.97, .99]

C-10_A – 0.12 ± 0.02
(<.001)

0.00 ± 0.01
(.65)

0.02 ± 0.01
(.14)

0.01 ± 0.02
(.59)

0.13 0.93
[0.79, 1.1]

.57
[.43, .71]

.80
[.72, .86]

.72
[.58, .81]

C-11_A 0.07 ± 0.01
(<.001)

0.00 ± 0.00
(.79)

– 0.02 ± 0.00
(<.001)

– 0.01 ± 0.01
(.21)

0.00 1.11
[0.86, 1.45]

.67
[.47, .82]

.87
[.77, .92]

.93
[.87, .96]

C-12_A 0.07 ± 0.01
(<.001)

0.01 ± 0.01
(.52)

– 0.01 ± 0.01
(.23)

0.02 ± 0.02
(.33)

0.10 1.02
[0.82, 1.3]

.45
[.18, .67]

.72
[.49, .84]

.76
[.58, .85]

Measures from diffusion modeling

DM-1_A 2.02 ± 0.06
(<.001)

0.01 ± 0.04
(.73)

– 0.22 ± 0.04
(<.001)

– 0.04 ± 0.07
(.60)

0.04 0.97
[0.83, 1.14]

.53
[.41, .64]

.72
[.59, .81]

.74
[.64, .81]

DM-2_A 0.51 ± 0.02
(<.001)

– 0.01 ± 0.02
(.64)

– 0.01 ± 0.02
(.61)

– 0.02 ± 0.02
(.29)

0.02 1.04
[0.9, 1.19]

.19
[.02, .36]

.60
[.44, .72]

.55
[.34, .69]

DM-3_A 0.36 ± 0.01
(<.001)

– 0.01 ± 0.01
(.20)

– 0.02 ± 0.01
(.01)

– 0.01 ± 0.01
(.50)

0.01 0.98
[0.81, 1.19]

.37
[.20, .53]

.49
[.29, .63]

.46
[.22, .63]

DM-4_A 1.72 ± 0.10
(<.001)

0.09 ± 0.07
(.17)

0.36 ± 0.07
(<.001)

0.18 ± 0.12
(.12)

0.07 0.96
[0.82, 1.13]

.48
[.34, .60]

.79
[.66, .87]

.79
[.70, .86]

DM-5_A 1.99 ± 0.06
(<.001)

– 0.04 ± 0.05
(.38)

– 0.23 ± 0.05
(<.001)

0.04 ± 0.07
(.61)

0.05 0.98
[0.74, 1.35]

.40
[.27, .53]

.65
[.53, .75]

.79
[.70, .86]

DM-6_A 0.34 ± 0.02
(<.001)

– 0.01 ± 0.01
(.61)

0.02 ± 0.01
(.06)

0.03 ± 0.02
(.05)

0.01 1.03
[0.88, 1.22]

.21
[– .01, .41]

.47
[.20, .64]

.52
[.31, .67]

DM-7_A 0.51 ± 0.01
(<.001)

0.01 ± 0.01
(.48)

– 0.03 ± 0.01
(.02)

0.01 ± 0.02
(.46)

0.01 0.76
[0.62, 0.93]

.43
[.25, .58]

.66
[.52, .77]

.80
[.71, .87]

DM-8_A 1.98 ± 0.11
(<.001)

0.03 ± 0.07
(.66)

0.24 ± 0.07
(<.001)

0.08 ± 0.11
(.45)

0.07 1.08
[0.86, 1.36]

.39
[.24, .55]

.80
[.72, .87]

.84
[.76, .90]

DM-09_A 5.04 ± 0.14
(<.001)

0.23 ± 0.09
(.02)

0.28 ± 0.09
(<.01)

– 0.01 ± 0.18
(.98)

1.20 0.86
[0.74, 1.01]

.60
[.49, .68]

.88
[.83, .92]

.89
[.84, .93]

DM-10_A – 2.85 ± 0.25
(<.001)

– 0.08 ± 0.17
(.63)

0.27 ± 0.17
(.12)

– 0.09 ± 0.27
(.74)

1.74 1.02
[0.84, 1.25]

.43
[.26, .60]

.76
[.68, .82]

.80
[.73, .87]

DM-11_A – 1.11 ± 0.15
(<.001)

0.18 ± 0.08
(.02)

– 0.47 ± 0.08
(<.001)

– 0.08 ± 0.16
(.61)

0.87 1.23
[1.04, 1.43]

.66
[.51, .78]

.77
[.68, .85]

.85
[.78, .90]

DM-12_A 2.01 ± 0.12
(<.001)

0.02 ± 0.07
(.78)

0.57 ± 0.07
(<.001)

0.12 ± 0.13
(.39)

0.80 1.07
[0.88, 1.27]

.57
[.43, .68]

.83
[.77, .88]

.90
[.84, .94]

CI = confidence interval; p = p-value; rHome = internal reliability at home; rLab = internal reliability in the lab; rTR = test–retest stability (lag: seven days),
β0 = intercept; β1 = setting (home = 0, lab = 1); β2 = number of session (1st session = 0, 2nd session = 1); β3 = initial setting (home = 0, lab = 1); σ =
standard deviation (SD) in the lab; ω = SD ratio with σ as reference; SE = standard error; labeling according to Table 4
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