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Abstract Infrequency scales are becoming a popular mode of
data screening, due to their availability and ease of implemen-
tation. Recent research has indicated that the interpretation and
functioning of infrequency itemsmay not be as straightforward
as had previously been thought (Curran & Hauser, 2015), yet
there are no empirically based guidelines for implementing
cutoffs using these items. In the present study, we compared
twomethods of detecting random respondingwith infrequency
items: a zero-tolerance threshold versus a threshold that bal-
ances classification error rates. The results showed that a tra-
ditional zero-tolerance approach, on average, screens data that
are less indicative of careless responding than those screened
by the error-balancing approach. Thus, the de facto standard of
applying a Bzero-tolerance^ approach when screening partici-
pants with infrequency scales may be too stringent, so that
meaningful responses may also be removed from analyses.
Recommendations and future directions are discussed.
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Survey studies often presume that participants are attentive
and responding conscientiously. However, there is increasing

evidence that this is not necessarily the case (Curran, 2016;
Maniaci & Rogge, 2014; Meade & Craig, 2012). Estimates of
the rate of careless or inattentive responding vary from as low
as 3%–9% (Maniaci & Rogge, 2014) to 46% (Oppenheimer,
Meyvis, & Davidenko, 2009) and may depend on the demo-
graphic (Berinsky, Margolis, & Sances, 2014). When partici-
pants are providing careless responses, data quality suffers by
the introduction of systematic or nonsystematic variance
(Maniaci & Rogge, 2014; Meade & Craig, 2012) and may
obscure the ability to detect effects or spuriously introduce
them (Credé, 2010; Huang, Liu, & Bowling, 2015). For ex-
ample, the inclusion of careless responders has been found to
cause failures to replicate established experimental findings
(Oppenheimer et al., 2009; Osborne & Blanchard, 2011), di-
minished correlations between constructs (Fervaha &
Remington, 2013) and also influence the model selection of
psychological factor models (Woods, 2006). Given the in-
creasing reliance on computerized and online surveys, which
may be at increased risk for careless responding, improving
data screening methods is critical in assuring analysis quality.

Types of careless responding

A participant may respond carelessly on a survey in several
ways. Examples include uniformly random responding
(selecting each possible response with roughly equal probabili-
ty), long-string responding (selecting the same response over a
large number of items; Johnson, 2005) or even nonrandom pat-
terned responding (e.g., repeating an ascending sequence of
numbers). The common element between these response pat-
terns is the lack of responding to the item content. This has also
been described as content nonresponsivity (e.g., Nichols,
Greene, & Schmolck, 1986) or inattentive responding (e.g.,
Johnson, 2005). It should be noted that it is not necessary that
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a participant be strictly content responsive or nonresponsive as a
whole, but may display some degree of severity between the two
extremes. For example, participants who are hurriedly
responding may only be responsive to some, but not all, of the
item’s content (e.g., Berinsky et al., 2014).

For the present study, we focus on uniformly random
responding. There are several reasons for this. First, careless
responding is of particular interest due to its propensity to man-
ifest in low/medium stakes testing, in which participants may
not necessarily be fully motivated to provide sufficient effort or
attention (Curran, 2016). This is a ubiquitous research situation
in psychological studies, especially with student samples, as
well as in large scale epidemiological samples (such as the an-
nual Monitoring the Future survey or the Youth Risk Behavior
Surveillance System; Brener et al., 2013; Johnston, O’Malley,
Miech, Bachman, & Schulenberg, 2016). Additionally, prior
research has found that uniformly inconsistent responding is
by far the most common type of careless responding and bene-
fits from the ease of detection (Meade & Craig, 2012).

It is worth clarifying the exact meaning of the term
Buniformly random responding^ for the purposes of the pres-
ent study. In a mathematical sense, the term Buniform
distribution^ refers to a situation in which all possible out-
comes of a random variable are equally probable. Rolling a
fair die or flipping an unbiased coin are common examples. In
the case of random responding however, research has shown
that human behavior tends not to mimic random variables
exactly, even when it is attempted to do so (Bakan, 1960;
Tune, 1964). Thus, we will make a distinction between uni-
formly random responding and a uniformly random variable.
We will refer to uniformly random responding (henceforth
simply as random responding) as a type of content nonrespon-
sive responding in which each response is selected with
roughly equal probability or simply selecting from a variety
of response options. In contrast, a uniform random variable
will refer to a more stringent stochastic process, in which the
probability of each response is strictly equal, and each draw is
independent and identically distributed.

Infrequency scales

Several methods exist to screen for random responding,
which include post hoc methods (e.g., consistency, outli-
er, response time analysis) and/or specially constructed
scales inserted into the test or survey (e.g., self-report
item engagement; Berry et al., 1992). One common type
of scale is an infrequency scale, which consists of items
with highly or absolutely skewed response distributions.
This skew stems from the fact that these items are writ-
ten such that there is a distinct set of plausible or correct
responses as well as a distinct set of unlikely or incorrect
responses to complement. For example, the item BI am

answering a survey right now,^ with five response op-
tions ranging from Strongly Disagree to Strongly Agree
would have at least two clear answers (Agree or Strongly
Agree). Thus, if one assumes that a respondent has in
fact read the item stem and responded conscientiously,
any other response would be infrequently (or never) cho-
sen. By this logic, those who choose infrequent re-
sponses are presumed to be responding carelessly (at
least at that particular point of time).

The use of infrequency scales have a long history, dating
back to at least the Minnesota Multiphasic Personality
Inventory (MMPI), which utilized infrequency items measur-
ing tendencies toward responding in an overly favorable man-
ner (BL^ scale, 15 items) as well as exaggerating symptoms of
psychopathology (BF^ scale, 60 items; Hathaway &
McKinley, 1951). Although these types of scales have been
labeled differently over time, such as bogus items (Meade &
Craig, 2012), conscientious-responding scales (Marjanovic,
Struthers, Cribbie, & Greenglass, 2014), or random-
responding scales (Beach, 1989), they are all based on the
infrequency technique of data validation.

It should be noted that infrequency scales may have a dif-
ferent interaction with other invalid, yet noncareless, response
types. Specifically, infrequency scales may not capture
noncareless invalid responses (e.g., lying or faking) unless
special care is made to design the item for that purpose (e.g.,
MMPI). However, one sub-class of noncareless responses that
infrequency scales may capture are mischievous responses.
Mischievous responding occurs when respondents are inten-
tionally providing extreme and often untruthful responses out
of self-amusement (Robinson-Cimpian, 2014). In other
words, certain infrequency items that employ content that
can be construed as extreme, odd, or entertaining (e.g., BMy
main interests are coin collecting and interpretive dancing^;
Maniaci & Rogge, 2014) may also be screening mischievous
responders in addition to careless responders.

Infrequency scale implementation

In recent research, investigators who have reported using
infrequency scales tended to take a zero-tolerance ap-
proach when screening data, which excludes any respon-
dents who have one or more incorrect responses to infre-
quency items (e.g., Fervaha & Remington, 2013; Osborne
& Blanchard, 2011; Periard & Burns, 2014). Although
this approach may seem reasonable, it makes several as-
sumptions about those respondents. First, the zero-
tolerance approach assumes that any invalid response to
an infrequency item means that the respondent was al-
ways invalidly responding. Yet it is possible that careless
responding arises due to state factors in which participants
momentarily respond carelessly (e.g., environmental
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distraction), as opposed to a trait-like tendency toward
carelessness.

Second, zero tolerance assumes that the false positive de-
tection rate of random responding is zero. However, this may
depend on the nature of the infrequency items being utilized.
For example, consider an infrequency item that reads BI drink
more than ten glasses of milk a day^ with seven response
options from Strongly Disagree to Strongly Agree. Typically,
conscientious responders would not endorse this item, as
drinking ten glasses of milk a day is extremely unlikely.
However, for a small proportion of conscientious responders
this item may actually be true. Alternatively, a proportion of
conscientious responders may reply Neutral or Slightly
Disagree because they drink large amounts of milk, though
not ten glasses. Although in practice this may yield a negligi-
bly small false-negative rate for a single item, these small
probabilities will accumulate when taken across multiple
items, increasing the chances of incorrectly flagging a consci-
entious responder.

Indeed, previous research supports this notion. Curran and
Hauser (2015) interviewed respondents after administering
infrequency scales to gain insight into how these items can
be interpreted. In one example, conscientious responders gave
slight endorsement or neutral responses to the item BI am paid
biweekly by leprechauns^ because they are paid biweekly, but
not by leprechauns. In another example, Meade and Craig
(2012) found that the item BI have never spoken to anyone
who was listening^ was endorsed by a large amount of their
sample, and thus it may not have been interpreted as intended.
Therefore, methods that are more integrative will attempt to
differentiate between idiosyncratic interpretations, and stable
patterns of careless responding across multiple tests or in-
stances. Altogether, if these assumptions are not carefully con-
sidered in screening, a subset of highly conscientious re-
sponders may remain in the data as a result, which could
exaggerate effects or otherwise cause the results to be
distorted.

Error-balancing threshold Thus, to accommodate the fact
that infrequency items do not always function as intended,
we propose the usage of a technique that balances true positive
and false positive error rates. This idea is based in receiver
operating characteristic (ROC) analysis, in which true positive
rates (also called sensitivity) are balanced against false posi-
tive rates (calculated as 1 – specificity) to optimize classifica-
tion performance (Fawcett, 2006). Plotting these points in a
two-dimensional space yields a useful diagnostic plot, called a
ROC curve. We propose using the cutoff that balances these
two quantities equally, which is also known as the Youden
index (Youden, 1950) in ROC literature.

In practice, the actual true positive rates and false positive
rates of random responding are not known. Therefore, to adapt
ROC classification to infrequency scales, we use practical

approximations for these quantities. For true-positive rates,
we propose that the cutoffs are mapped such that they reflect
the probability of a uniform random variable to approximately
model random responding. A uniform random variable should
approximate the inconsistent nature of careless responding
and serve as a practical metric of evaluation consistent with
prior research (e.g., Marjanovic et al., 2014). The mathemat-
ical considerations needed to calculate these cutoffs are de-
scribed with probability functions below. To serve as a proxy
for false positive rates, we propose the usage of the proportion
of data screened, due to the monotonic relationship between
the two. That is, as the amount of screened data increases, the
possibility of a false positive can only increase as well.
Furthermore, the proportion of the data removed at each cutoff
point serves as a practical diagnostic regarding the nature of
the sample as well.

Probability functionsWe utilize probability functions to cal-
culate the true positive detection rate of the infrequency scale.
Using a uniform random variable to model random responses,
the probability of choosing an incorrect response on any in-
frequency item will be distributed as a Bernoulli random var-
iable with parameter pi , where pi is the proportion of re-
sponses considered incorrect with respect to the total number
of responses within an item. If we further suppose that all
infrequency items are identically distributed (where all pi =
p), then the sum of incorrect responses is distributed as a
binomial random variable. If we let X represent the number
of questions answered incorrectly, then the probability of each
outcome of X is well known to be given by

p X ¼ kð Þ ¼ n
k

� �
pk 1−pð Þn−k :

This formulation is convenient for cases in which all ques-
tions have identical response sets and number of correct/
incorrect responses. However, it may not necessarily be the
case that all questions will have identical response sets. For
example, a researcher may want to use multiple scales and
camouflage infrequency items by matching response sets be-
tween the infrequency item and the items of the surrounding
scale. When using non-identical response sets, having infre-
quency items with differing Bernoulli distributions will be
likely. In such a case, the binomial distribution will be an
improper and inaccurate probability model. Instead, the sum
of nonidentically distributed Bernoulli random variables is
modeled by the Poisson binomial distribution. A succinct
formulation is provided by Wang (1993) as follows:

p X ¼ kð Þ ¼ ∑
A∈Fk

∏
iϵA

pi ∏
jϵAc

1−pj

� �
;

where Ac is the complement of A, and Fk is the subset of all
integer combinations that can be selected from the set {1, 2, 3,
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. . . , n}. Thus, if n = 4, thenF3 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4},
{2, 3, 4}}. Although the derivation of this expression is be-
yond the scope of this study, interested readers are encouraged
to see Wang (1993) for a rigorous treatment of the subject. We
wrote a software implementation of this function in the R
language (R Development Core Team, 2015) and included it
in the Online Appendix.

The main advantage of the Poisson binomial distribution is
that it takes into account all permutations of differing
Bernoulli parameters. This gives the researcher the flexibility
to use different response sets between their infrequency items
or to create response sets with different response criteria. For
example, one infrequency item can have a .75 probability of
flagging a uniform random variable, in which another ques-
tion can have a .80 probability. In these cases, the Poisson
binomial distribution models the number of flagged responses
accurately. Note once again that when all Bernoulli parameters
are identical, the Poisson binomial distribution reduces to the
classic binomial distribution.

Point of error balance1 Once the proper probability distribu-
tion is constructed, the threshold of error balance can be cal-
culated. The objective is to choose a cutoff point such that the
probability of a uniform random variable surviving the flag-
ging process and the proportion of data being eliminated are
balanced equally. This can be represented mathematically
with the following expression:

argmax
x

P xð Þ þ F xð Þ−1f g;

where x is the number of incorrectly answered infrequency
items, F(x) is the proportion of data that would be retained if
the cutoff point x or greater is used and P(x) is the probability
of a uniform random variable realizing the outcome of x or
greater. Once again, this is analogous to ROC analysis in
which P(x) represents the sensitivity, F(x) represents the spec-
ificity, and the point of error balance represents the aforemen-
tioned Youden index. Equivalently, the point of error balance
is the cutoff point with the minimum Euclidean distance be-
tween itself and the point (0, 1) on a ROC curve (Schisterman,
Perkins, Liu, & Bondell, 2005).

Study aims

Although infrequency scales as a whole benefit from their
ease of administration (Meade & Craig, 2012), there is
little empirical research on exactly what thresholds should
be implemented or what effects different thresholds can
have on data quality. If data screening is not employed at

all, careless responders might be adding extraneous vari-
ance that reduces statistical power. On the other extreme,
using an overly stringent threshold (such as zero tolerance,
which we found the majority of studies utilize) may ulti-
mately result in the removal of meaningful responses as
well. Thus, the goal of the present investigation was to
empirically test the widely used zero-tolerance threshold
against the proposed error-balancing threshold, and to ex-
amine the indication of random responding associated with
each. This is achieved through two studies. First, we con-
ducted a simulation study to validate and demonstrate the
error-balancing threshold under several hypothetical sce-
narios (Study 1). Second, we applied the error-balancing
and zero-tolerance thresholds to two independent datasets
and evaluated their performance (Study 2).

Study 1

Method

We designed a simulation to emulate a realistic data collection
scenario. Simulated responses for ten infrequency items and ten
substantive variables were generated. There was a total of n =
1,000 responses, allocating 900 (90%) of these to be simulated
conscientious responses and the remaining 100 (10%) to be
simulated random responses. For conscientious responses, the
substantive variableswere simulated using amultivariate normal
distribution, with means and variance set to 1 and with covari-
ances set to .3. Once these variables were generated, they were
rounded to the nearest integer with a floor and ceiling set to 1
and 5, respectively. The purpose of the rounding step was to
create skewed ordinal data typically found in behavioral survey
measures. For the random responses to the substantive variables,
a discrete uniform distribution ranging from 1 to 5 was used.

To generate responses to infrequency items, we used a sim-
ple Bernoulli distribution. The probability of a random response
being flagged by an infrequency item was set to .8. This emu-
lates a scenario in which the infrequency items have one pos-
sible correct answer out of a total of five response options. The
probability of conscientious responses being flagged by infre-
quency items (a confusion rate) was varied between .00, .05,
and .20, to emulate scenarios in which conscientious responders
confuse, incorrectly interpret, or idiosyncratically interpret in-
frequency items 0%, 5%, and 20% of the time.

Measures

For each cutoff threshold, we calculated several quantities of
interest. We calculated the correlation between two substan-
tive variables, the average Mahalanobis distances of the ob-
servations removed by each technique, and the classification
frequencies of each technique.

1 A supplementary R package to calculate this quantity can be found at https://
github.com/uwkinglab/detectpme.
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Correlations Since the correlation between all variables are the
same in the data generating parameters, we computed the corre-
lations between the first two variables without the loss of gener-
ality. The correlations are calculated in three ways: (1) using the
original sample of conscientious responses only (denoted origi-
nal), (2) using the combined sample of conscientious and random
responses (denoted contaminated), and (3) using the cleaned
sample of responses after the treatment of each cleaning tech-
nique (denoted cleaned). Additionally, the percentage of correla-
tion recovered is calculated as the difference between the cleaned
and contaminated correlations divided by the difference between
the conscientious and contaminated correlations. This represents
the degree to which the original correlation’s magnitude is
returned to its original value after cleaning the data.

Mahalanobis distance To quantify the degree of random-
ness of the data screened by each threshold, we used the
average Mahalanobis distance (Mahalanobis, 1936). The
Mahalanobis distance is a multivariate distance metric,
which measures the closeness of an observation’s data
pattern to the average pattern after accounting for variance
and covariance. For example, conscientious responders on
average may respond to scales with a Btighter^ pattern or
consistency. That is, their responses to any given scale
will tend to correlate to the degree that the items reflect
the same latent construct. Careless responders are pre-
sumed to be answering irrespective of item content, thus
conversely, their responses are expected to deviate from
the scale’s measurement structure. In this regard, random
responders are assumed to respond more Bloosely^ (or
randomly), which increases their Mahalanobis distances.
In terms of indicating random responding, previous re-
search has shown that Mahalanobis distances strongly
loads onto an inconsistent-type of random responding in
factor analysis studies (Maniaci & Rogge, 2014; Meade &
Craig, 2012). In the present analysis, we calculate the
average Mahalanobis distances, along with their standard
deviations and effect sizes, for the observations screened
by each threshold technique.

Classification frequency By simulation design, it is known if
an observation was generated by the careless or conscientious
data generating process. Thus, to measure the classification
performance of each threshold technique, we calculated the
numbers of observations that were correctly and incorrectly
screened by each threshold, to yield confusion matrices. As
such, we observe the number of true and false positives as well
as the number of true and false negatives.

Results

The results of this simulation are displayed in Table 1. Using
the error-balancing threshold, the cutoffs of one, three, and

five infrequency items are calculated as the leniency needed
to accommodate the confusion rates of conscientious re-
sponses of 0%, 5%, and 20%, respectively.

The classification frequencies show the degree of ac-
curacy conferred by each method. When the confusion
rate of conscientious responses to infrequency items is
zero, the point of minimum error yields a cutoff of 1,
the same as zero tolerance. Since the cutoff of 1 separates
conscientious from random responders with extremely
high accuracy, there is no need for a more lenient cutoff.
Both the minimum error and zero tolerance provide per-
fect classification in this sample. However, when the con-
fusion rate increases to .05, we see that the point of min-
imum error allows for some leniency, providing a cutoff
of 3. Comparing this to the zero-tolerance cutoff of 1, we
see that the point of minimum error maintains perfect
classification, whereas the zero-tolerance technique erro-
neously removes 88 of the 900 (9.8%) conscientious re-
sponses in the sample. This impact is reflected in the
correlation, since 89% of the original correlation is recov-
ered using zero tolerance, whereas 100% of the correla-
tion is recovered with the point of minimum error.

Finally, we studied the extreme case, in which conscien-
tious responses had a 20% confusion probability. In this con-
dition, the minimum error threshold erroneously removed 25
of the 900 (2.8%) conscientious responders and erroneously
left only 1 of the 100 (1%) random responders. The zero-
tolerance method correctly removed all of the random re-
sponders, but also erroneously removed 804 of the 900
(89.3%) conscientious responders, leaving only a total of 96
of 1,000 (9.6%) observations remaining in the dataset.

In summary, this simulation study compared the classifica-
tion behavior of a minimum error threshold and zero tolerance
under several circumstances. When the confusion rate is zero,
the minimum error threshold will tend to yield the same cutoff
as zero tolerance, and both techniques will enjoy very good
classification rates. However, as the confusion rate increases,
the point of minimum error maintains good classification by
adjusting the cutoff, and zero tolerance will increasingly mis-
classify, depending on how large the confusion rate is. At large
confusion rates, the minimum error technique maintains rea-
sonable classification, whereas zero tolerance instead yields
unreasonable flagging rates.

Study 2

Method

Participants

We conducted secondary analyses across two independent
datasets (Studies 2a and 2b) of college-enrolled young
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adults. Participants in both studies were undergraduate
students from a university in the Pacific Northwest region
of the United States between the ages of 18 and 20. A
total of 403 participants from Study 2a (30.8% male) and
727 from Study 2b (48.8% male) were included for anal-
ysis. In Study 2a, 51.8% identified as White, 33.6% iden-
tified as Asian, and 14.6% reported other or mixed eth-
nicity. For Study 2b we exclusively recruited Caucasian
and Asian participants; 41.3% identified as White, 57.8%
identified as Asian or Asian-American, and 1% did not
report ethnicity. The participants for each study were re-
cruited via postings on an online subject pool program
through the university, and data were collected during
single-session Web-based surveys that took approximately
1 h to complete. Students received optional course credit
as compensation for their participation. Both studies were
approved by the university’s institutional review board.

Measures

Infrequency scale We used the Bbogus items^ developed
by Meade and Craig (2012) as our infrequency scale for
both of these studies. The items were spread uniformly
throughout each of the surveys. In Study 2a, nine bogus
items were implemented with a response set consisting of
seven levels of endorsement, from Strongly Disagree to
Strongly Agree (see Table 2). In Study 2b, all ten bogus
items were used, with the response set varying to match
the response set of the surrounding scales (see Table 3).
To code correct and incorrect responses, we maintained

the coding scheme of Meade and Craig (2012), in which
only answering with Strongly Agree or Agree (or their
negated and/or most close numerical counterparts) is con-
sidered to be correct.

Ancillary scales Since the usage of infrequency scales
pertains primarily to low-stakes testing, we tested the
study hypotheses using three scales typically used in
low-stakes testing scenarios, measuring constructs of al-
cohol problems, parenting, and personality. Two of the
scales—the Alcohol Use Disorders Identification Test
(AUDIT; Saunders, Aasland, Babor, de la Fuente, &
Grant, 1993) and the Parental Bonding Instrument (PBI;
Parker, Tupling, & Brown, 1979)—were available in both
datasets. The third measure—the UPPS Impulsive
Behavior Scale (Whiteside & Lynam, 2001)—was avail-
able only in Study 2a. We had no research questions re-
lated to these scales or their content.

Random-responding indicator To quantify random
responding, we used the Mahalanobis distance (Mahalanobis,
1936), as validated by Study 1 of the present article and pre-
vious research (Maniaci & Rogge, 2014; Meade & Craig,
2012). However, in Study 2, since the computational complex-
ity of the Mahalanobis distance increases exponentially with
the number of variables, we calculated the Mahalanobis dis-
tance separately for each scale and then took the average, as in
Meade and Craig (2012).

Table 1 Study 1 correlations and classification frequencies

Confusion 0.00 0.05 0.20

Cutoff EB (1) ZT (1) EB (3) ZT (1) EB (5) ZT (1)

Correlations

Original 0.25 0.25 0.24 0.24 0.23 0.23

Contaminated 0.47 0.47 0.42 0.42 0.39 0.39

Cleaned 0.25 0.25 0.24 0.26 0.25 0.28

% Recovered 1.00 1.00 1.00 0.89 0.90 0.70

Distances

Mean 43.23 43.23 42.52 26.65 41.66 11.80

SD 10.99 10.99 8.98 19.17 14.81 14.90

Effect size 3.03 3.03 3.62 0.87 2.14 0.12

Frequencies Rem Left Rem Left Rem Left Rem Left Rem Left Rem Left

Careless 100 0 100 0 100 0 100 0 99 1 100 0

Conscientious 0 900 0 900 0 900 88 812 25 875 804 96

The cutoff row denotes the cutoff technique used, error balancing (EB) or zero tolerance (ZT), and the number of infrequency items corresponding to that
threshold. For correlations, original refers to the sample of conscientious responses only, contaminated refers to the combined sample of conscientious
and random responses, cleaned refers to the sample of data treated by each cleaning technique and% recovered is the difference between the cleaned and
contaminated correlation divided by the difference between the original and contaminated correlation. For the classification frequencies, Brem^ refers to
the number of observations removed, and Bleft^ refers to the number of observations remaining in the dataset
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Table 3 Study 2b infrequency scale frequencies

Item Responses

Strongly
Agree

Agree Neutral Disagree Strongly
Disagree

1. I am using a computer currently 609 62 16 2 9

Strongly
Agree

Agree Slightly
Agree

Neither Agree
or Disagree

Slightly
Disagree

Disagree Strongly
Disagree

2. I am enrolled in a Psychology
course currently

616 47 19 15 5 1 3

Disagree a Lot Disagree Neutral Agree Agree a Lot

3. I have been to every country in
the world

504 83 40 25 8

1 Never or
Definitely
No

2 3 4 5 6 7 8 9 Always or
Definitely
Yes

4. I have never spoken to anyone
who was listening

507 37 22 19 27 16 13 7 3

5. I sleep less than one hour per
night

616 43 13 9 12 4 8 8 3

6. I do not understand a word of
English

634 18 8 5 15 11 6 6 2

Strongly
Disagree

Disagree Slightly
Disagree

Neither Agree
nor Disagree

Slightly
Agree

Agree Strongly
Agree

7. I have never brushed my teeth 351 8 5 12 10 3 5

8. I am paid biweekly by
leprechauns

454 14 9 39 11 20 17

Rarely or none of the
time (less than 1 day)

Some or a little of the
time (1–2 days)

Occasionally or a
moderate amount of
the time (3–4 days)

Most or all of the
time (5–7 days)

9. All my friends are aliens 545 44 20 17

Strongly Disagree Disagree Agree Strongly Agree

10. All my friends say I would
make a great poodle

394 90 48 32

*Boldface indicates a correct response

Table 2 Study 2a infrequency scale frequencies

Item Responses

Strongly
Agree

Agree Slightly
Agree

Neither Agree
or Disagree

Slightly
Disagree

Disagree Strongly
Disagree

1. I am using a computer currently 309 29 6 8 8 6 33

2. I am enrolled in a Psychology course
currently

315 44 7 4 6 7 12

Strongly
Disagree

Disagree Slightly
Disagree

Neither Agree
or Disagree

Slightly
Agree

Agree Strongly
Agree

3. I sleep less than one hour per night 326 34 13 10 7 4 2

4. I do not understand a word of English 365 16 3 6 5 1 3

5. I have never brushed my teeth 358 21 7 7 3 2 2

6. I am paid biweekly by leprechauns 331 22 5 17 5 1 14

7. All my friends are aliens 312 36 14 13 5 5 11

8. I have been to every country in the
world

253 95 24 12 11 1 7

9. All my friends say I would make a
great poodle

131 57 15 159 11 12 10

*Boldface indicates a correct response
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Statistical analysis

We analyzed the response patterns among participants whose
data were removed by each screening condition.2 As we previ-
ously mentioned, the outcome variable of the study was the
average Mahalanobis distances of each screening condition.
We used a randomization test to formally test our hypothesis.
A randomization test derives an empirical sampling distribution
by calculating a test statistic of interest for all (or a large amount)
of the permutations of the data under which the null hypothesis
is true (Rodgers, 1999). This is a nonparametric technique that
obviates distributional assumptions (e.g., normality), thereby
increasing statistical power (Edgington, 1964). This was ideal
for the present study, because the distribution of the
Mahalanobis distances was skewed, and some of the screening
conditions yielded low sample sizes (as low as n = 32).

Results

Threshold calculations

Subsets of randomly responding individuals were identified
using the error-balancing threshold and the zero-tolerance
threshold. The ROC-like curves for determining the error-
balancing threshold are depicted in Figs. 1 and 2. For both
studies, the error-balancing optimization procedure
established a threshold of four infrequency items answered
incorrectly as the cutoff. In Study 2a, n = 32 respondents
(8.0%) were identified using this cutoff, and n = 52 respon-
dents (7.2%) in Study 2b. Using the zero-tolerance threshold,
in Study 2a, n = 272 respondents (67.5%) were identified, and
in Study 2b, n = 265 (36.4%) were identified.

Mahalanobis distance analysis

The descriptive and inferential statistics of the average
Mahalanobis distances in the present study are described in
Table 4. In Study 2a, the error-balancing threshold identified
respondents with significantly higher average Mahalanobis
distances than the null distribution (d = 1.215), whereas the
zero-tolerance threshold did not (d = 0.076). In Study 2b, the
Mahalanobis distances were significantly different for both
the error-balancing and zero-tolerance thresholds. However,
the error-balancing threshold had a much higher effect size
than the zero-tolerance condition, consistent with Study 2a
(ds = 0.875 and 0.257, respectively).

2 Prior to the analyses, the data were examined for long-string response pat-
terns, because of their ability to artificially deflate Mahalanobis distances. The
maximum long string for each participant was calculated, and the distributions
of the flagged and nonflagged categories were compared. The two distribu-
tions were nearly identical to each other, and thus no cleaning actions were
deemed necessary.
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Fig. 1 Study 2a sum score receiver operating characteristic (ROC) curve.
Each point represents a minimum number of infrequency items answered
incorrectly, ranging from 9 to 0, from bottom left to upper right. The point
at which the proportion of data eliminated is balanced as being equal to
the probability of a random responder being eliminated is 4 or greater.
This point is indicated by the surrounding circle

Fig. 2 Study 2b sum score ROC curve. Each point represents a minimum
number of infrequency items answered incorrectly, ranging from 10 to 0,
from bottom left to upper right. The point at which the proportion of data
eliminated is balanced as being equal to the probability of a random
responder being eliminated is 4 or greater. This point is indicated by the
surrounding circle



Discussion

The present study provides a unique empirical investi-
gation into the usage of infrequency scale thresholds in
screening random responders. Our findings indicate that
the zero-tolerance cutoff approach was largely
outperformed by the error-balancing threshold in both
simulated and real data settings. The results from
Study 1 showed that the zero-tolerance approach is ad-
versely affected by item confusion rates: At low confu-
sion rates it begins to perform poorly (9.8% false pos-
itives), and at high confusion rates it is largely nonfunc-
tional (89.3% false positives). At a confusion rate of
zero, however, the thresholds performed identically. We
note that this situation may arise in applied settings.
Unlike the bogus items currently studied, other infre-
quency scales may contain items with much more clear
answers (e.g., BPlease select ‘agree’ for this question^).
For such items, it may be the case that the confusion
rate is indeed close to zero, and in fact the zero-
tolerance threshold may be the appropriate cutoff meth-
od. In the conditions of Study 1, we show that the
error-balancing threshold correctly reduced to the zero-
tolerance threshold. As such, the error-balancing thresh-
old generalizes well to such cases.

In the real data setting of Study 2, the zero-tolerance
cutoff identified far more respondents (36%–67% of the
samples) than the error-balancing threshold (7%–8%),
and generally failed to identify respondents whose scale
responses were substantially more random than the av-
erage. The large number of samples flagged by the
zero-tolerance approach shows a potentially large reduc-
tion in power when using this method. These effects are
likely driven by the assumptions of zero tolerance,
which assumes that infrequency items function perfectly
and that answering one infrequency item incorrectly im-
plies all the respondent’s survey responses were
careless.

It may be the case that invalid responding is more
state-like, and can change throughout the course of a sur-
vey. For example, it is well known that survey length can
detrimentally affect response quality (Galesic & Bosnjak,
2009) and scale validity in real data (Burisch, 1984,
1997). Thus, using responses to an infrequency scale as
a binary measure may be unreliable in indicating overall
response quality for the entire survey. Indeed, the respon-
dents in the present study who only met the zero-tolerance
threshold had low average Mahalanobis distances (mean-
ing their responses were relatively tightly clustered), sug-
gesting that a majority of their responses were actually
nonrandom.

The error-balancing threshold performed much better
in screening deviant response patterns by relaxing the
discard threshold to four items or more. If an infrequen-
cy item is causing a threshold to screen a disproportion-
ately large amount of data, then the error-balancing op-
timization will counter this by allowing more infrequen-
cy items to be answered incorrectly. This automatic ad-
justment is a particular advantage of the error-balancing
threshold, in addition to being agnostic to the quality of
the infrequency items.

Recommendations

First and foremost, we recommend against using the
zero-tolerance cutoff without justification. Considering
the design and logic of infrequency scales, it may seem
sensible to use a zero-tolerance threshold, which has
become the de facto standard (e.g., Fervaha &
Remington, 2013; Osborne & Blanchard, 2011; Periard
& Burns, 2014). Our findings suggest that this approach
screens too many conscientious respondents, however,
relative to methods with more relaxed cutoff points.
As infrequency scales gain popularity in the future, we
suggest the use of more lenient thresholds in screening
for carelessness, and we propose that the error-balancing

Table 4 Analysis of average Mahalanobis distances

Screening n % Observed
Mean

Difference
From Null
Mean

Standard
Error

Standardized
Difference

Effect Size
(Cohen’s d)

Study
2a

Error
balancing

32 8.0 38.016 13.050 1.909 6.838* 1.215

Zero
tolerance

272 67.5 25.795 0.819 0.603 1.357 0.076

Study
2b

Error
balancing

52 7.2 20.415 6.764 1.057 6.397* 0.875

Zero
tolerance

265 36.4 15.645 1.985 0.456 4.357* 0.257

*p ≤ .001
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threshold provides a good theory-based starting point to
determine cutoffs.

Limitations

Assumptions The error-balancing cutoff technique calculates
an optimal cutoff under several assumptions. First, it uses the
probability of eliminating a uniformly random variable and
the proportion of screened data as its performance criteria.
Second, it optimizes the cutoff by weighting these to criteria
equally. These assumptions were employed using ROC anal-
ysis theory, and we believe them to be reasonable approxima-
tions. However, as research progresses on the nature of care-
less responding as a whole, alternate probability models and
different weighting schemes should be studied. These can be
readily adapted to the error-balancing threshold, or another
technique may supersede it altogether. All in all, there has
been very little research on optimal thresholds and criteria as
a whole, leaving many opportunities for further empirical
work.

Sample generalizability As with most studies, the utiliza-
tion of student samples may limit the generalizability of
the findings. However, we presume that the present find-
ings should generally apply to low-stakes testing situa-
tions, in which responses generally have little external
motivation. Although the rates of careless responding
may vary from sample to sample (Berinsky et al., 2014),
we believe it is reasonable that careless responding
indicators should be comparable, regardless of the sample
they were generated from (e.g., a careless responding pro-
file from a student will look similar to one generated by a
working adult).

Study design As with all observational studies, we note
that the results of Study 2 are purely correlational, since it
was not known if a participant was in truth conscientious
or careless. We further note that only one outcome was
studied to indicate careless responding. However, we tem-
per these facts by noting that the results of Study 2 are
validated by the simulation results of Study 1, and are
consistent with prior literature (Maniaci & Rogge, 2014;
Meade & Craig, 2012). Furthermore, we replicated our
effects across two independent datasets with differing de-
mographic characteristics.

Future directions

Several major avenues of research still need to be examined in
the usage of infrequency scales. As we previously mentioned,
the item functioning characteristics of infrequency items de-
serves empirical research. An implication of the present study
is that infrequency items do not necessarily function as they
were intended. As such, using measurement models (e.g.,

structural equation modeling or item response theory) may
help relate item functioning to random responding or careless-
ness as a latent construct.

In terms of careless responding detection methods, only
infrequency scales were examined in the present study. The
study of optimal screening can easily be generalized toward
alternative methods of careless responding detection. For ex-
ample, instructional manipulation checks (Oppenheimer et al.,
2009), psychometric synonyms/antonyms (Maniaci & Rogge,
2014; Meade & Craig, 2012), or even response time analysis
(Curran, 2016) may require more thoughtful balancing of clas-
sification errors. There has been very little research into how
to classify participants on the basis of their responses to these
detection methods. As we found in the present study, simply
applying a zero-tolerance cutoff method may not be the opti-
mal choice.

Broadly speaking, careless responding screening proce-
dures generally eliminate all data from respondents who are
classified to be careless. This approach presumes that all a
flagged participant’s data are unreliable, implying that the par-
ticipant was always responding carelessly. However, it is pos-
sible that careless responding may operate more as a transient,
state-like factor than as a permanent trait. As such, researchers
need to understand carelessness as a momentary process or a
phenomenon that occurs over the course of the survey (e.g., in
response to participant fatigue). The development of more
sensitive methods to detect such a model of carelessness is
another opportunity for further research.

Finally, in a nascent area of study, the effect of careless
responding on statistical estimates is being investigated direct-
ly. For example, even at low base rates, careless responding
has been found to decrease or spuriously increase both corre-
lations (Credé, 2010; Huang et al., 2015) and confound model
selection indices (Woods, 2006). Indeed, the impact of care-
less responding on the statistical estimation procedure may
have unexpected and varied effects, and this is not yet widely
understood. One of the goals of detecting careless responding
is to improve the quality of statistical estimates, so discovering
precise effects in different contexts is an opportunity for future
study.

Conclusion

Infrequency scales are tools that are both convenient and use-
ful for improving data quality. Their utilization, however, is
not as straightforward as employing a zero-tolerance thresh-
old. Choosing a proper threshold may seem a trivial issue on
the surface; however, the present study has shown that actual
indications of random responding may differ greatly.
Researchers who wish to utilize infrequency scales should
be aware of such issues and the consequences associated with
using various thresholds.
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