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Abstract IntelliCage is an automated system for recording
the behavior of a group of mice housed together. It pro-
duces rich, detailed behavioral data calling for new methods
and software for their analysis. Here we present PyMICE,
a free and open-source library for analysis of IntelliCage
data in the Python programming language. We describe the
design and demonstrate the use of the library through a
series of examples. PyMICE provides easy and intuitive
access to IntelliCage data, and thus facilitates the possibility
of using numerous other Python scientific libraries to form
a complete data analysis workflow.
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Introduction

In recent years, a number of automated environments for
behavioral testing have been developed, based on RFID
(Dell’omo, Shore, & Lipp, 1998; Galsworthy et al., 2005;
Daan et al., 2011; Puścian et al., 2016) or video tracking of
animals (de Chaumont et al., 2012; Weissbrod et al., 2013;
Shemesh et al., 2013; Pérez-Escudero, Vicente-Page, Hinz,
Arganda, & de Polavieja, 2014). Such automated systems
have many advantages compared to the traditional behavio-
ral tests, such as the reduction of the animal stress caused
by isolation and handling (Heinrichs & Koob, 2006; Sorge
et al., 2014), the possibility of studying social interactions
in group-housed animals (Kiryk et al., 2011), the possibility
of long-term studies, and easier standardization of proto-
cols in turn leading to better reproducibility of results
between laboratories (Crabbe, Wahlsten, & Dudek, 1999;
Chesler, Wilson, Lariviere, Rodriguez-Zas, & Mogil, 2002;
Krackow et al., 2010; Codita et al., 2012; Morrison, 2014;
Vannoni et al., 2014).

The system we are particularly interested in is the Intel-
liCage system (NewBehavior A G, 2011; Kiryk et al.,
2011; Radwańska & Kaczmarek, 2012; Puścian et al., 2014;
Mijakowska et al., 2017) (see Fig. 1), which is increasingly
popular in behavioral research on rodents (TSE Systems
International Group, 2016).

The system outputs a large amount of data describing the
behavior of the mice in the conditioning corners of the cage.
A typical experiment yields 10,000–100,000 visits recorded
during several weeks or months. Such large data call for
development of data analysis methods and software. One
way to address the need of data analysis is to develop a ded-
icated application, preferably with a graphical user interface
(GUI), which would allow researchers to inspect the data
and extract relevant quantities interactively. In fact, such an
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application, called Analyzer, is provided with the IntelliCage
system. While an interactive GUI-based program for data
analysis may be useful, it does have certain limitations. In
the context of scientific research, perhaps the most severe
limitation is poor reproducibility of the analysis, unless
strict measures are taken to record every single action of the
user. Moreover, there is usually no automated way to per-
form exactly the same analysis on a different dataset, and
repeating the analysis manually is very time-consuming and
highly error-prone. Another inconvenience of ready-made
programs is that they are typically limited to a predefined
set of analysis methods, and not easily extendable.

Custom data analysis programs (e.g., scripts) fall at
the opposite end of the spectrum than GUI programs.
First, the most obvious advantage of such programs is the
essentially unlimited possibility of implementing special-
ized analysis methods and applying them much better (in
terms of calculation speed, precision and robustness) than
a human.

Second, a noninteractive program (written in any pro-
gramming language) running in batch mode is, by definition
(Hoare, 1969; Turing, 1937; Floyd, 1967; McCarthy, 1963),
an exhaustive specification of the analysis. In contrast, a
plain language description usually included in a Methods
section of a journal article may be ambiguous or not up-
to-date. The voices calling for providing the data analysis
workflows together with journal publications date at least
two decades back (Buckheit & Donoho, 1995): ‘an arti-
cle about computational science in a scientific publication
is not the scholarship itself, it is merely advertising of the
scholarship. The actual scholarship is the complete software

development environment and the complete set of instruc-
tions which generated the figures’.

Finally, one of the advantages of using an automated
behavioral setup is the possibility of high-throughput
screening by running the same protocol for a number of
mice cohorts (for example treatment and control groups
and/or different strains of mice (Puścian et al., 2014)). Man-
ual processing of each dataset separately is both tedious
and prone to errors. Batch-processing using a data analy-
sis script is an obvious remedy, as it allows for repetition of
exactly the same steps of analysis.

The only drawback is that the entry threshold for data
analysis using a programming language is much higher, as
significant effort is required to learn the programming lan-
guage and necessary technical details (e.g., the data format).
Our goal here is to lower this threshold by providing an easy
and intuitive way to access the IntelliCage data in the Python
programming language (van Rossum, 1995).

This paper is organized as follows: first, we briefly
describe the IntelliCage system. Next, we introduce
PyMICE through a series of examples and provide pointers
to further documentation. We conclude with a short section
on technical details and a discussion.

IntelliCage system

IntelliCage (Fig. 1) is an automated, computer-controlled
RFID system for (possibly long-term) monitoring of groups
of mice (Galsworthy et al., 2005; Krackow et al., 2010;
Puścian et al., 2014). The mice are housed in one or more
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Fig. 1 IntelliCage system. The system is composed of one or more cages (A, B). Through openings (a) mice can access bottles (b) in a learning
chamber (c; C, D). Access to the bottles is controlled by programmable door in smaller openings in the sides of the chamber (d). Credits: A, C –
Maria Nowicka, JD; B – Anna Mirgos, D – SŁ
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polycarbonate cages (of size 55 × 37.5 × 20.5 cm; Fig. 1A,
B). A cage can house a group of up to 16 mice. Each mouse
is tagged with an RFID transponder.

The key components of the system are learning cham-
bers (Fig. 1c, C, D) located in the corners of cages (for
brevity, we will refer to the chambers simply as ‘corners’).
Each corner can be accessed through a circular opening
(30 mm in diameter; Fig. 1a), with an embedded RFID
antenna. By design, only one mouse at a time can enter a
corner. Each corner contains two smaller (13 mm in diam-
eter; Fig. 1d) openings, through which a mouse can access
different drinking bottles (Fig. 1b). The access to the drink-
ing bottles is controlled using programmable doors in the
smaller openings.

A broad range of different experiment protocols can be
implemented in the IntelliCage (Knapska et al., 2006; Kiryk
et al., 2011; Endo et al., 2011; Radwańska & Kaczmarek,
2012; Knapska et al., 2013; Smutek et al., 2014; Puścian
et al., 2014; Vannoni et al., 2014). The system can be
programmed to open the doors on specific conditions, for
instance, if a specific mouse enters the corner or if a specific
nosepoke pattern is performed. Also, an air puff in the back
may be delivered to the mouse as a punishment.

The IntelliCage system records the visits of each mouse
to a particular corner and also tracks the nosepokes—which
lead to accessing the drinking bottles. When the mouse
drinks from a bottle, the number of licks taken is also
recorded. The events (visits and nosepokes) registered by
the system are stored on a computer as a series of records.
Each visit record contains, for example, the RFID transpon-
der number of a given mouse, the cage and corner, and the
time bounds of the visit. Further, nosepokes during the visit
are also stored, along with time boundaries and the number
of licks recorded, etc.

The system periodically logs the environmental condi-
tions (ambient illumination and temperature) in every cage
connected. It also logs other relevant events, such as: starts
or ends of recording, errors, warnings, and hardware events
(e.g., concerning state of the doors).

PyMICE library

The IntelliCage system enables researchers to use sophis-
ticated experimental protocols and thus explore behavioral
phenomena inaccessible in classic, non-automated behav-
ioral tests. However, in many cases, the analysis of data from
such experiments poses a serious challenge. First, in some
instances, manual analysis performed in the manufacturer’s
software (Analyzer) would simply take too much time.
For instance, analyzing data from experiments in which
one is interested in a particular time frame with respect
to a stimulus presented in the corner would be extremely

time-consuming. If, for example, the availability of a reward
is signaled by LEDs in a corner, and the diodes are only
lit up in a specific time frame, then one would be nat-
urally interested in, say, number of nosepokes performed
before, during, and after the visual stimulus. Such infor-
mation cannot be extracted from Analyzer in an automated
way, and therefore the researcher would have to inspect each
of the hundreds or thousands of visits manually. Another
case in which it is hard to obtain the relevant data directly
from Analyzer are protocols assessing impulsiveness of
individual subjects by employing progressive ratio of behav-
iors (e.g. nosepokes) needed to obtain a reward. On the
other hand, such protocols are useful for modeling symp-
toms of e.g. addiction (Radwańska & Kaczmarek, 2012;
Mijakowska et al., 2017).

A solution to this problem is to write custom software for
automated data analysis. PyMICE is a free and open-source
library that makes it easier to access and analyze IntelliCage
data in the Python programming language.

Moreover, PyMICE is more suitable than the Analyzer
software when it comes to the analysis of more sophis-
ticated experimental designs (Endo et al., 2011; Knapska
et al., 2013). Namely, it allows for the comprehensive anal-
ysis of variables than may not be computed in Analyzer.
Publication of Knapska et al. from 2013 is an example of
how highly specified behavioral assessment—in this case
choosing between nosepoking to reward vs. to a neutral
stimulus, performed right after entering a corner—might be
implemented to identify neuronal circuits underlying spe-
cific cognitive deficits. The analysis in that paper was done
manually, which required substantial effort. PyMICE facil-
itates drawing such conclusions by enabling experimenters
with an easy access to highly specific parameters describing
subjects’ behavioral performance.

For those reasons, we argue that PyMICE is a convenient
solution to otherwise time-consuming data analysis and—
more importantly—a valuable tool for in-depth analysis of
previously inaccessible elements of murine behavior.

One of the advantages of using the Python program-
ming language is that a well-written Python program is
readable to users. In fact, readability is stressed as one of
the core Python principles (Peters, 2004), which we have
strived to follow in the design of PyMICE. Our library pro-
vides IntelliCage data as a collection of intuitively designed
data structures (Fig. 2; Table 1), mirroring records writ-
ten by the IntelliCage control software: most of the record
fields are represented by attributes of the same or cor-
responding name. Also, auxiliary properties are provided,
such as the .Door property of a Nosepoke object (see
Fig. 2) translating integer value of the .Side attribute
to 'left' and 'right' text strings. Manipulating such
structures is straightforward and natural, therefore shifting
the programmer’s focus from technical details of the file

06 04 15



Behav Res (2018) 50:8 –8 807

Fig. 2 Visualization of PyMICE data structures. To investigate visit
events recorded by the IntelliCage system, a list of Visit struc-
tures is obtained from the data object by the first command (top
right panel). To focus on a third visit, the next command selects its
item of index 2 (pale blue). To check the name of the mouse perform-
ing the visit, the third command accesses the .Animal attribute of

the visit (pale red). The attribute is an Animal structure and the
next command prints its .Name attribute (yellow). To further inves-
tigate which door was nosepoked during the visit, the .Nosepokes
attribute (a tuple) must be accessed. The fifth command selects the
first item (i.e., index 0) of the tuple, which is a Nosepoke structure
(pink). The last command prints its .Door property (pale green)

format to the data analysis itself. The data structures are
read-only objects,1 which supports the functional program-
ming paradigm.

PyMICE operates on ZIP archives saved by the Intel-
liCage software controlling the experiment. Data from
several recording sessions may be easily merged and ana-
lyzed together. All visits and nosepokes present in the raw
data are loaded and presented to the user without any
implicit filtering. Note that in some cases this leads to
different results than those obtained with the Analyzer soft-
ware bundled with the IntelliCage. One specific case we
are aware of is that Analyzer (v. 2.11.0.0) omits some of
the nosepokes present in the raw data, leading to poten-
tially significant underestimation of the measured quantities
(the worst case in the data we analyzed was 480 licks of a
single mouse missing within a 6-h-long period of a liquid
consumption study—31% of the total recorded number).

The PyMICE library also facilitates automatic valida-
tion of the loaded data. A collection of auxiliary classes
is provided for that purpose. Currently, possible RFID and
lickometer failures may be detected automatically. Such
events are reported in the IntelliCage logs, respectively,
as Presence Errors and Lickometer Warnings. The set of
detectable abnormal situations may be easily extended.

Examples

In this section, we introduce PyMICE through a series of
examples illustrating various aspects of the library.

1The two exceptions are: the Animal semi-mutable class (the .Sex
attribute might be updated if None; the .Notes attribute might be
extended) and the Group mutable class.

In Example 1 we show how to find numbers of visits of
a specific mouse in which the first nosepoke was performed
to either the left side or the right side of the corner. This can
be achieved in PyMICE in just six lines of code.

Example 2 is an extension of Example 1 to analysis of
actual experimental data, obtained with a protocol described
in Knapska et al. (2013). In this example, we also present a
convention for defining the timeline of the experiment.

In Example 3 we reproduce a plot from an earlier paper
(Puścian et al., 2014). The plot shows how two cohorts of
mice learn the location of the reward over time (place prefer-
ence learning). This kind of analysis can be performed using
Analyzer, the GUI application provided with IntelliCage;
however, using PyMICE we can quickly repeat the analysis
for new cohorts with minimal effort.

Example 4 illustrates how the Python programming lan-
guage can be used to extend the repertoire of data analysis
methods. In this example we show how to extract the infor-
mation about intervals between visits of different mice to the
same corner. This kind of information would be very hard
(or even impossible) to obtain using Analyzer.

To improve readability of Examples 2–4, we have omit-
ted some generic code and focused on PyMICE-specific
snippets. Full code of the examples is provided as online
supplementary material at https://github.com/Neuroinflab/
PyMICE_SM/tree/examples.

Before the examples can be run, the example data have to
be saved to the current working directory. This can be done
from within PyMICE:

>>> import pymice as pm

>>> pm.getTutorialData(quiet=True)

In addition to the examples presented here, we have
prepared several tutorials available online at the PyMICE
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Table 1 Data structures

IntelliCage data entity Data structure (Python class) Examples of attributes

Visit event Visit .Start, .Corner, .Animal, .Nosepokes

Nosepoke event Nosepoke .Start, .Side, .Visit

Sample of environmental condition EnvironmentalConditions .DateTime, .Illumination, .Temperature

Log entry LogEntry .DateTime, .Type, .Notes

Hardware event HardwareEvent .DateTime, .Type, .State

Animal Animal .Name, .Sex, .Tag

Group of animals Group .Name, .Animals

The data structures represent particular records written by the IntelliCage control software. Most fields are represented by attributes of the same
or corresponding name

website (Dzik and Łęski, 2017b). The tutorials are in the
Jupyter Notebook (Project Jupyter, 2015) format and may
be downloaded for interactive use. The examples and the
tutorials are provided as a hands-on introduction to PyMICE
and serve as a starting point for further exploration. Addi-
tionally, online documentation is provided (Dzik & Łęski,
2017a). PyMICE objects and their methods are also doc-
umented with docstrings available with Python built in
help() function.

Example 1: minimal example—extracting the side
of the first nosepokes in six lines of code

This example shows how to obtain the number of visits in
which a mouse performed the first nosepoke to the left side
or the right side of the corner.

In the first line, the library is imported. We use pm as
an abbreviated name of the library. In the second line, the
example data are loaded from a single IntelliCage file. In
the third line, a list of all visits of a mouse named ‘Jerry’
is obtained.2 Note that a list of names is passed as an
argument.

Next, the first nosepoke is selected from every visit
v (if any nosepoke was made during that visit). Note
that the condition if v.Nosepokes is met if the list
v.Nosepokes is not empty.

The side the mouse poked is obtained as nosepoke.
Door in the fifth line of the code. This returns either
'left' or 'right', thus disregarding the information
about the corner in which the nosepoke was performed.

Finally, in the last line, the number of visits with the
first nosepoke to the left and the right side is calculated and
displayed.

2The mice are referred to by names defined in the design of IntelliCage
experiment, not by the RFID tag numbers.

>>> import pymice as pm

>>> data = pm.Loader('demo.zip')

>>> visits = data.getVisits(mice=['Jerry'])

>>> firstNps = [v.Nosepokes[0]

... for v in visits if v.Nosepokes]

...

>>> sides = [nosepoke.Door

... for nosepoke in firstNps]

...

>>> print (sides.count('left'),

    sides.count('right'))

(149, 163)

Example 2: full analysis example—side discrimination
task

The previous example is a simplified version of an analysis
performed to assess place memory during the discrimina-
tion training, as described in Knapska et al. (2013). In this
example, we present the analysis in more detail, includ-
ing the estimation of how the mice performance in the
discrimination task changed over time.

The experimental setup was the following: during the
first several days of the experiment, the mice were adapted
to the cage. In this phase, water was freely available in
all corners, at both sides of each corner, and the doors to
the bottles were open. Next, in nosepoke adaptation (NPA)
phase of the experiment, mice had to perform nosepokes to
access the water bottles. The next phase was place prefer-
ence learning (PP). In this phase, every mouse could access
bottles in one corner only. The mice were assigned to dif-
ferent corners as evenly as possible to prevent crowding and
learning interference. The final experimental phase was the
discrimination task (DISC). In this phase, the mice were pre-
sented with two bottles in the same corner to which they
were assigned during the PP phase. However, in contrast to
the PP phase, one bottle contained tap water, and the other
contained 10% sucrose solution (highly motivating reward).
As previously, during each visit the access was granted to
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both bottles. The percentage of visits in which the first
nosepoke was performed to the bottle containing reward was
calculated as a measure of memory.

We start by loading the data. Note that some techni-
cal details not crucial for understanding the example (like
importing the libraries) are hidden. The full code is avail-
able at https://github.com/Neuroinflab/PyMICE_SM/blob/
examples/example2.py.

data = pm.Loader('FVB/2016-07-20 10.11.11.zip')

Next, we need to know the start- and end-points of the
experimental phases we are interested in. We defined these
phases in an experiment timeline file. The format of this file
is a derivative of the INI format. The necessary information
required about a phase are: its name (PP dark in the follow-
ing example), boundaries (start and end properties) and
timezone of the boundaries (tzinfo property):

[PP dark]

start = 2016-07-20 12:00

end = 2016-07-21 00:00

tzinfo = Etc/GMT-1

We load the experiment timeline file into a Timeline
object, and define a list of phases of interest.

timeline = pm.Timeline(‘FVB/timeline.ini’)

PHASES = ['PP dark', 'PP light',

'DISC 1 dark', 'DISC 1 light',

'DISC 2 dark', 'DISC 2 light',

'DISC 3 dark', 'DISC 3 light',

'DISC 4 dark', 'DISC 4 light',

'DISC 5 dark', 'DISC 5 light']

To analyze the data, we define a function get
PerformanceMatrix(), which returns a matrix of per-
formance (defined as the fraction of first nosepokes in the
accessible corner, which are performed to the rewarded side)
of all mice in the system. Each row in this matrix con-
tains the performance data of one mouse, and each column
corresponds to one phase of the experiment for all mice.

def getPerformanceMatrix():

return [getPerformanceCurve(mouse)
for mouse in data.getMice()]

For every mouse, the getPerformanceCurve()
function is called to create a row corresponding to the
performance of that mouse across subsequent phases.

def getPerformanceCurve(mouse):

return [getPerformance(mouse, phase)
for phase in PHASES]

We use the getPerformance() function to create a
list of the mouse’s performance measures (fraction of first
nosepokes in the accessible corner, which are performed to
the rewarded side) in subsequent phases.

def getPerformance(mouse, phase):

start, end = timeline.getTimeBounds(phase)

visits = data.getVisits(mice=[mouse],

start=start, end=end)

accessibleCornerVisits = filter(

isToCorrectCorner,

visits)

return calculatePerformance(

accessibleCornerVisits)

def isToCorrectCorner(visit):

return visit.CornerCondition > 0

In the getPerformance() function, we obtain all
visits performed by the mouse during the phase. Visits
to the accessible corner are passed to the calculate
Performance() function for further analysis. It is easy
to filter the visits—in the IntelliCage experiment design the
accessible corner was marked as ‘correct’. Thus, visits to the
corner have positive value of the .CornerCondition
attribute of the Visit object.
def calculatePerformance(visits):

firstNps = [v.Nosepokes[0]

for v in visits if v.Nosepokes]

successes = [isToCorrectSide(nosepoke)

for nosepoke in firstNps]

return successRatio(successes)

def isToCorrectSide(nosepoke):

return nosepoke.SideCondition > 0

To calculate the performance, we check whether the first
nosepoke of every visit was to the rewarded side. The
rewarded side was marked as ‘correct’ in the experiment
design. Thus, nosepokes to the correct side have positive
value of the .SideCondition attribute of the respec-
tive Nosepoke object. The side which was rewarded in
DISC phases was marked as ‘correct’ already during the PP
phases (when both bottles in a corner contained the same
liquid), so that the relevant fraction can be easily extracted
also from the PP phases.

Based on the counts of first nosepokes performed to each
of the sides, we calculate the success ratio (code omitted
here).

With all the functions defined, we obtain the performance
matrix and plot it averaged across mice in Fig. 3 (plotting
code omitted here).

Example 3: reproducibility—batch analysis of data

In this example, we analyze results of a place preference
experiment described in detail in Puścian et al. (2014).
Similarly as in Example 2, the experiment comprised sev-
eral adaptation and learning phases, in which the mice could
access either all or just selected drinking bottles. In the
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Fig. 3 Reward-motivated discrimination learning in FVB mice
(n = 11). The chart depicts efficient learning of reward position, as
measured by the percentage of first nosepokes made to the bottle con-
taining reward right after entering the corner. Error bars are standard
error of the mean

nosepoke adaptation phase (NPA), all the mice had access
to tap water in all corners. In order to obtain water, the mice
were required to open the door by performing a nosepoke.
Next, in the place preference learning phase (Place Pref ),
the access to the drinking bottles was (as in the previous
example) restricted to just one corner for each mouse. Tap
water was replaced with 10% sucrose solution to increase
the motivation of the mice to seek access to the drinking
bottles. We are interested in how the percentage of visits to
the rewarded corner changed over time.

The data used here are a subset of data presented in
Puścian et al. (2014), and in the final figure obtained in this
example (Fig. 4) we show two learning curves from Fig. 3A
in Puścian et al. (2014) (cohorts A and B). Each curve rep-
resents an average performance (defined as a fraction of
visits to the rewarded corner) of a cohort of mice in eight
subsequent, 12-h-long phases of the experiment.

As the code here is quite similar to the code of the
previous example, we will focus on the major differences
between the examples. We start by loading the data,
timeline and PHASES objects from the relevant dataset
(different than in Example 2; code omitted here, the
full code is available at https://github.com/Neuroinflab/
PyMICE_SM/blob/examples/example3.py).

As in the previous example, we define a function return-
ing a performance matrix (defined here as the fraction of
visits to the rewarded corner): performanceMatrix().

def performanceMatrix(groupName):

group = data.getGroup(groupName)

return [getPerformanceCurve(mouse)

for mouse in group.Animals]

Fig. 4 Place preference learning of two cohorts of C57BL6 mice in
an IntelliCage experiment. The plot presents the cohort-averaged per-
centage of visits to a rewarded corner during consecutive phases, each
lasting 12 h. During the place preference phases (Place Pref), each
mouse is provided access to sweetened water in one selected corner
of the IntelliCage. The fraction of visits to that corner is close to
the chance level (25%) during the NPA (nosepoke adaptation) phases
when mice are provided access to plain water in all corners, and
increases over time after the reward (sweetened water) is introduced.
Error bars are standard error of the mean

Unlike in the previous example, the matrix here is limited
to only one group of mice. The group is defined in the Intel-
liCage experiment design. Information about its members is
contained in a Group object, which we request in the first
line of the function.

ThegetPerformance() and calculatePerformance()
functions are simpler than in the previous example, as
neither filtering of visits nor extracting of nosepokes is
necessary.

def getPerformance(mouse, phase):

start, end = timeline.getTimeBounds(phase)

visits = data.getVisits(mice=[mouse],

start=start, end=end)

return calculatePerformance(visits)

def calculatePerformance(visits):

successes = [isToCorrectCorner(v)

for v in visits]

return successRatio(successes)

To calculate the performance of a mouse during a
phase, we check—for each visit—whether the visit was
to the rewarded corner. In the IntelliCage experiment
design, the rewarded corner was marked as ‘correct’. Vis-
its to the ‘correct’ corner have positive value of the
.CornerCondition attribute of the Visit object.
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With all the functions defined, we obtain a performance
matrix and plot it averaged across mice (Fig. 4) for each
cohort (groups C57A and C57B) separately. Note that ana-
lyzing several cohorts reduces to a loop over the cohorts
included in the analysis.

>>> with DecoratedAxes() as ax:

... for group in ['C57 A', 'C57 B']:

... performance = performanceMatrix(group)

... ax.plotGroupAverages(performance,

...

...
group)

Example 4: implementing new behavioral
measures—intervals between visits

In this example, we illustrate the possibility of program-
ming new data analysis methods in Python. We are going to
investigate durations of intervals between subsequent visits
of mice to a corner. The assumption here is that the distribu-
tion of such intervals is a measure of interactions between
the mice. In this example we will just calculate the measure
without discussing it much, but we believe that such mea-
sure, or a variant of it, would be useful in studying social
behaviors or social structure of the group. In particular, one
could study which mice follow which, and therefore look
into potential modulation of learning or cognitive abilities
by such behaviors as following or imitation.

We want to plot histograms of interval durations for each
corner separately, and we restrict the analysis to just one
phase: Place Pref 3 dark. Such analysis would be very
hard or impossible to perform using Analyzer, and requires
the use of some kind of programming language, which
is the main reason we include it in the paper. Below we
show that the analysis in Python using PyMICE is quite
straightforward.

We begin by selecting all visits performed during the
phase. The order parameter of the .getVisits()
method makes the returned sequence ordered with respect
to the .Start attribute.

start, end = timeline.getTimeBounds(

'Place Pref 3 dark')

visits = data.getVisits(start=start, end=end,

order='Start')

This list contains visits performed to all corners of the
cage. Next we need to extract subsequences of visits per-
formed to the same corner in the same cage.

def getSubsequence(visits, cage, corner):

return [v for v in visits if v.Cage == cage

and v.Corner == corner]

Since the order of the subsequence is preserved, it is then
easy to determine intervisit intervals.
def getIntervisitIntervals(visits):

return [(b.Start - a.End)

for (a, b) in zip(visits[:-1],

visits[1:])]

The histograms are shown in Fig. 5. As in the previ-
ous examples, the details of plot generation are hidden.
The full code is available at https://github.com/Neuroinflab/
PyMICE_SM/blob/examples/example4.py.

Technical details

We recommend to use the PyMICE library with the Ana-
conda Python distribution (Continuum Analytics, 2015).

The library requires NumPy (van der Walt, Colbert,
& Varoquaux, 2011; Oliphant, 2007), matplotlib (Hunter,
2007), dateutil (Niemeyer, Pieviläinen, & de Leeuw, 2016)
and pytz (Bishop, 2016) Python packages to be installed in
the system.

The library itself is available as a package from the
Python Package Index (PyPI) (Jones, 2002; Python Soft-
ware Foundation, 2016) for Python version 3.3, 3.4, 3.5 and
3.6, as well as 2.7. It can be installed with either pip (Python
Packaging Authority, 2016):

$ pip install PyMICE

or easy_install (Python Packaging Authority, 2017):

$ easy_install PyMICE

A bleeding edge version of the library might be also
downloaded from https://github.com/Neuroinflab/PyMICE
GitHub repository.

Terms of use

PyMICE library is open-source and is available for free
under GPL3 license (Free Software Foundation, 2007); we
ask that this article is cited and resource identifier (Ozyurt
et al., 2016) for the library (RRID:nlx_158570) is provided
in any published research making use of PyMICE.

Discussion

In this paper we have introduced PyMICE, a software
library which allows to access and analyze data from Intel-
liCage experiments. The library has been developed to facil-
itate automated, reproducible, and customizable analysis
of large data generated by the IntelliCage system. Ana-
lyzer, the software bundled with the IntelliCage, does not
meet these requirements, as it was designed with a different
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Fig. 5 Frequencies of intervisit intervals in the analyzed phase. Histograms are plotted for each corner of each cage separately. The bins are
equally spaced in a logarithmic scale. The dotted vertical lines represents intervals of one second, minute and hour (from left to right, respectively)

purpose in mind (NewBehavior A G, 2011): ‘The “Analyzer”
is intended to give an overview of the results [...] The function
of “Analyzer” is to provide the user with data merging,
extraction, and filtering tools in order to generate data sets
appropriate for in-depth graphical and statistical analyses.’

One of the features of the IntelliCage system is that
very different experiments are possible, depending on the
subject of the research. Some protocols focus on assess-
ment of subjects’ ability of reward location (Knapska et al.,
2013) and behavioral sequence (Endo et al., 2011) learn-
ing. Other protocols are dedicated to measure addiction-
related behavior like subject impulsiveness (Radwańska
and Kaczmarek, 2012; Mijakowska et al., 2017). Quite
often a new experiment requires a completely new approach
to data analysis. Rather than trying to predict the specific
needs of the prospective users, we decided to provide sim-
ple, intuitive and user-friendly interface for accessing the
data. Such interface allows a scientific programmer to tailor
dedicated software focusing on the essence of the anal-
ysis instead of the technical details. To our knowledge,
PyMICE is the only freely available solution for analysis of
IntelliCage data in a scripting language.

PyMICE is written in the Python programming lan-
guage. Our choice of Python was directed by the same
factors which made it a popular choice for scientific com-
puting in general. Python is free, open-source, relatively
easy to learn, and is supported by a number of scientific

tools and libraries, such as: NumPy and SciPy (Oliphant,
2007), IPython (Perez & Granger, 2007), matplotlib,
Pandas (McKinney, 2010), etc. We believe that PyMICE
will be a useful addition to that collection.

The number of IntelliCage-based publications is increas-
ing in recent years (TSE Systems International Group,
2016), but the system is still relatively little known. We
believe that one of the factors handicapping the popular-
ity of IntelliCage, or similar automated setups, is the lack
of a proper software ecosystem. We hope that the avail-
ability of PyMICE will have a stimulating effect on the
adoption of automated behavioral systems. While the cur-
rent (at the time of the publication) version of the library
only supports the IntelliCage, the library may be gener-
alized to other behavioral systems. Data from any system
capturing point events (such as visits to specific locations—
as opposed to e.g. continuous trajectories of the animals)
could be presented to the user in a similar way as the Intel-
liCage data. Specifically, representing each behavioral event
as a Python object with relevant attributes would allow for
intuitive manipulation of data and for easy extraction of
the quantities which are analyzed. The PyMICE library is
open source (Free Software Foundation, 2007) and publicly
available at GitHub, the largest open source software plat-
form (Gousios, Vasilescu, Serebrenik, & Zaidman, 2014),
therefore the extensions to other behavioral systems can be
contributed by the community.
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A crucial feature of PyMICE is the possibility of creat-
ing automated data analysis workflows. Such workflows are
useful, for example, when the same protocol is applied to
multiple groups of animals—this is a very common case, as
most experiments will have at least one experimental and
one control group. A workflow defined in a Python script
may be used to perform exactly the same analysis on every
available dataset, which both saves effort and greatly redu-
ces possibility of mistakes as compared to analyzing each
dataset manually.

We also believe that popularization of such workflows
would lead to better research reproducibility. Current efforts
for reproducible research are mostly focused on improving
the experimental procedures, statistical analysis, and the pub-
lishing policy (Begley & Ellis, 2012; Begley, 2013; Halsey,
Curran-Everett, Vowler, & Drummond, 2015). However,
unclear or ambiguous description of data analysis is also
given as a factor contributing to poor reproducibility of sci-
entific research (Ince, Hatton, & Graham-Cumming, 2012).
A (non-interactive) computer program is a precise, formal
and unambiguous description of the analysis performed. We
hope that PyMICE could become a common platform for
implementing and sharing workflows for analysis of data
from the IntelliCage (or similar) system, and make data
analysis using scripts more accessible and more popular.

The paper itself is a proof of the concept of the ‘really
reproducible’ research (Buckheit & Donoho, 1995)—
writing it we followed the literate programming paradigm
(Knuth, 1984). Every of the presented results of analysis
was generated by a Python + PyMICE workflow embedded
in the LATEX (Lamport, 1986) source code of the document
(see the Statement of reproducibility below for details).

Statement of reproducibility (Peng, 2011)

The source code of the paper is available at https://github.
com/Neuroinflab/PyMICE_SM/. Paper compiled from the
source code may differ from the journal version because
of manual formatting. All presented results may be repro-
duced with the Pweave tool (Pastell, 2015) v. 0.24, (Pastell
& Kowalski, 2016) an interpreter of Python programming
language v. 2.7.3, PyMICE v. 1.1.0, (Dzik, Łęski & Puścian,
2016) NumPy v. 1.6.1, matplitlib v. 1.1.1rc, dateutil v. 1.5
and pytz v. 2012c. (Wilson et al., 2014).
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