
The conditional power of randomization tests for single-case effect
sizes in designs with randomized treatment order: AMonte Carlo
simulation study

Bart Michiels1 & Mieke Heyvaert1 & Patrick Onghena1

Published online: 7 April 2017
# Psychonomic Society, Inc. 2017

Abstract The conditional power (CP) of the randomization
test (RT) was investigated in a simulation study in which three
different single-case effect size (ES) measures were used as
the test statistics: the mean difference (MD), the percentage of
nonoverlapping data (PND), and the nonoverlap of all pairs
(NAP). Furthermore, we studied the effect of the experimental
design on the RT’s CP for three different single-case designs
with rapid treatment alternation: the completely randomized
design (CRD), the randomized block design (RBD), and the
restricted randomized alternation design (RRAD). As a third
goal, we evaluated the CP of the RT for three types of simu-
lated data: data generated from a standard normal distribution,
data generated from a uniform distribution, and data generated
from a first-order autoregressive Gaussian process. The results
showed that the MD and NAP perform very similarly in terms
of CP, whereas the PND performs substantially worse.
Furthermore, the RRAD yielded marginally higher power in
the RT, followed by the CRD and then the RBD. Finally, the
power of the RT was almost unaffected by the type of the
simulated data. On the basis of the results of the simulation
study, we recommend at least 20 measurement occasions for
single-case designs with a randomized treatment order that are
to be evaluated with an RT using a 5% significance level.

Furthermore, we do not recommend use of the PND, because
of its low power in the RT.
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Single-case experiments (SCEs) are designed experiments that
include repeated measurements of a single entity (usually a per-
son) for at least one dependent variable under different levels
(i.e., treatments) of one or more independent variables (Barlow,
Nock, & Hersen, 2009; Gast & Ledford, 2014; Kazdin, 2011;
Kratochwill & Levin, 1992; Onghena, 2005).

Fields such as special education, school psychology, and clin-
ical psychology are increasingly using SCEs to assess the effica-
cy of an intervention or treatment for a single subject (Alnahdi,
2015; Bowman-Perrott, Burke, deMarin, Zhang,&Davis, 2015;
Hammond & Gast, 2010; Leong, Carter, & Stephenson, 2015;
Moeller, Dattilo, & Rusch, 2015; Shadish & Sullivan, 2011;
Smith, 2012; Swaminathan & Rogers, 2007). SCEs are also
gaining in popularity in medical science (where they are often
called BN-of-1 designs^) to evaluate treatments for patients with,
for instance, chronic pain or attention deficit hyperactivity disor-
der (Gabler, Duan, Vohra, & Kravitz, 2011). The recent develop-
ment of guidelines for reporting the results of SCEs confirm the
growing interest in these types of designs in the educational,
behavioral, and health sciences (Shamseer et al., 2016; Tate,
Togher, Perdices, McDonald, & Rosenkoetter, 2012).

Despite the growing popularity of SCEs, there is no broad
consensus with respect to adequate data-analysis methods for
these types of designs. As a result, a wide variety of methods is
currently being used (often in combination with each other;
Kratochwill et al., 2010; Maggin, O’Keeffe, & Johnson, 2011;
Shadish, 2014). These methods can be broadly categorized in
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two main approaches: visual analysis and statistical analysis
(Heyvaert, Wendt, Van den Noortgate, & Onghena, 2015).
Visual analysis consists of inspecting graphed SCE data for
changes in level, overlap between phases, variability, trend, im-
mediacy of the effect, and consistency of data patterns across
similar phases (Horner, Swaminathan, Sugai, & Smolkowski,
2012). Statistical analysis methods for SCE data can be
subdivided into three groups: effect size calculation, statistical
modeling, and statistical inference. Effect size calculation refers
to determining the size of the treatment effect by calculating
formal effect size (ES) measures. Examples include mean differ-
ence measures (e.g., Busk & Serlin, 1992; Hedges, Pustejovsky,
& Shadish, 2012), measures based on data nonoverlap between
phases (e.g., Parker, Hagan-Burke, & Vannest, 2007; Parker &
Vannest, 2009; Parker, Vannest, & Brown, 2009; Parker,
Vannest, Davis, & Sauber, 2011), and regression-basedmeasures
(e.g., Allison & Gorman, 1993; Center, Skiba, & Casey, 1985–
1986; Solanas, Manolov, & Onghena, 2010; Van den Noortgate
& Onghena, 2003; White, Rusch, Kazdin, & Hartmann, 1989).
In statisticalmodeling, the goal is to devise a statisticalmodel that
provides an adequate conceptualization of the data. Examples
include multilevel modeling (Van den Noortgate & Onghena,
2003), structural equation modeling (Shadish, Rindskopf, &
Hedges, 2008), and interrupted time series analysis (Borckardt
& Nash, 2014; Gottman & Glass, 1978). Statistical inference
refers to determining the statistical significance of ES measures
through statistical hypothesis testing or to constructing confi-
dence intervals for parameter estimates (Heyvaert, Wendt, Van
denNoortgate, &Onghena, 2015;Michiels, Heyvaert,Meulders,
& Onghena, 2017).

The present article deals with the inferential approach to eval-
uating treatment effects in single-case data. Inferential procedures
can be parametric or nonparametric. However, parametric proce-
dures such as statistical tests and confidence intervals based on t
and F distributions are often not appropriate to analyze SCE data
because the assumptions underlying these procedures (e.g., ran-
dom sampling and more specific distributional assumptions) are
often violated in many areas of behavioral research and particu-
larly in single-case research (e.g., Adams & Anthony, 1996;
Dugard, 2014; Edgington & Onghena, 2007; Ferron & Levin,
2014; Levin, Ferron, & Gafurov, 2014; Micceri, 1989). In con-
trast, nonparametric procedures do not make specific distribu-
tional assumptions about the data.

One of these nonparametric procedures, the randomization
test (RT), has been proposed by some researchers as an appro-
priate statistical test to evaluate treatment effects in randomized
SCEs (i.e., SCEs that include random assignment of
measurement occasions to treatment conditions; e.g., Bulté &
Onghena, 2008; Edgington, 1967; Heyvaert & Onghena, 2014;
Levin, Ferron, & Kratochwill, 2012; Onghena, 1992; Onghena
& Edgington, 1994, 2005). The RT is based on the random
assignment model, which assumes that each experimental unit
has been randomly assigned to one of the levels of the

independent variable (similar to the way individual subjects are
randomly assigned to treatment conditions in a between-subjects
design; Kempthorne, 1955).1 Furthermore, by randomly
assigning measurement occasions to treatment conditions all
known and unknown confounding variables can be controlled
in a statistical way. Consequently, a potential statistically signif-
icant treatment effect can be attributed to the experimental ma-
nipulation. An alternative model, which is adopted by most para-
metric statistical tests, is the random sampling model. In this
model, data are assumed to have been randomly sampled from
a specific population of interest. Because the random assignment
model does not make an assumption of random sampling, any
statistical inference made under this model is conditional on the
data that are analyzed (Keller, 2012).

A common practical problem in designing experiments is
determining the number of observations that is required for the
statistical tests to have sufficient power. The power of a statis-
tical test is defined as the probability of rejecting a false null
hypothesis. A power of 80% is generally accepted as the min-
imal requirement for a statistical test (Cohen, 1988, 1992).
Power analysis can provide guidelines for the minimum num-
ber of observations that is required in order to detect an effect
of a certain size with a certain probability. In an SCE the
minimum number of observations refers to the minimum
number of measurement occasions for the single case.

Apart from selecting the number of measurement occa-
sions, the single-case researcher must also make other choices
when designing a randomized SCE. More specifically, one
must select a specific design, which determines the type of
random assignment that is used in the SCE. In addition, the
choice of an adequate ES measure is obviously important. All
the aforementioned choices that are made when designing a
randomized SCE have an effect on the power of the RT
(Keller, 2012). It is thus extremely important for scientific
practice to systematically investigate the effect of these factors
on the power of the RT.

Several simulation studies concerning the power of the RT
for different types of single-case designs and data patterns
have already been performed (e.g., Ferron & Onghena,
1996; Ferron & Sentovich, 2002; Ferron & Ware, 1995;
Heyvaert et al., 2017; Levin, Ferron, & Gafurov, 2014;
Levin, Ferron, & Kratochwill, 2012; Manolov, Solanas,
Bulté, & Onghena, 2010; Onghena, 1994). Although these
simulation studies provide valuable information regarding
the power of the RT in the context of analyzing SCEs, previ-
ous research has not yet systematically investigated one im-
portant determinant of the RT’s power: the ES measure that is
used as the test statistic. Furthermore, all previous simulation
studies that examined the power of RTs for single-case designs
have used a random sampling conceptualization of statistical

1 We will use the term Bassignment^ to refer to a specific randomization of the
condition labels in an SCE.
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power, the so-called Bunconditional power,^ although a ran-
dom assignment conceptualization, the so-called Bconditional
power^ is more consistent with the RT framework (Keller,
2012). With this article, we aim to fill both gaps.

With respect to the effect of the employed ES measure on the
RT’s power, we focused on nonoverlap effect size (NES) mea-
sures, which are currently receiving considerable attention from
the single-case community as measures for quantifying treatment
effects in SCEs (e.g., Heyvaert, Saenen, Campbell, Maes, &
Onghena, 2014; Lenz, 2012; Wolery, Busick, Reichow, &
Barton, 2010). NES measures are rooted either in the tradition
of visually analyzing single-case data or in the tradition of non-
parametric rank statistics, and assess the number of data points
between conditions that do not overlap. Following the approach
proposed by Heyvaert and Onghena (2014), we will use these
NES measures as test statistics in an RT. More specifically, we
included the percentage of nonoverlapping data (PND; Scruggs,
Mastropieri, & Casto, 1987) and the nonoverlap of all pairs
(NAP; Parker & Vannest, 2009) in our study.

The PND is the earliest published NES measure and the
most widely used one (Maggin et al., 2011; Schlosser, Lee, &
Wendt, 2008). The PND is calculated as the percentage of data
points from the treatment condition that exceeds the single
highest data point from the control condition (assuming that
the treatment is intended to increase the dependent variable).
To calculate the PND, one first identifies the highest data point
from the control condition. Next, for each of the treatment
condition data points, whether or not this data point exceeds
the highest control-condition data point is recorded. The PND
can take values from 0% to 100%, with 0% indicating com-
plete data overlap, and 100% indicating complete data
nonoverlap. Note that if the treatment is expected to decrease
the scores on the dependent variable, the PND is calculated by
comparing the treatment condition data points to the lowest
control condition data point. Figure 1 illustrates the calcula-
tion of the PND for a hypothetical data set.

The NAP was introduced to meet the statistical limitations
of the PND, and is calculated as the percentage of treatment
data points exceeding each control data point by looking at all
pairwise comparisons, with ties counting as a half point
(Parker & Vannest, 2009). The NAP is equivalent to the
Mann–Whitney U statistic and is defined from 0 to 1, with
.50 indicating a null effect of the treatment (Mann &Whitney,
1947; Parker & Vannest, 2009). Figure 2 illustrates the calcu-
lation of the NAP for a hypothetical data set.

The second goal of this simulation study was to evaluate the
power of the RT in a conditional power framework. In the
previously cited simulation studies a random sampling model
was used to generate the data for calculating the statistical
power of the RT. Because the RT does not make an assumption
of random sampling, evaluating the statistical power under a
random sampling model does not do justice to the RT. As was
demonstrated by Keller (2012), it is conceptually more

appropriate to evaluate the statistical power of the RT by gen-
erating data using a compatible random assignment model.
The resulting statistical power estimates are called Bconditional
power^ estimates, because the estimates are conditional on a
specific data set (see also Corcoran &Mehta, 2002; Gabriel &
Hsu, 1983; Kempthorne, 1955; Kempthorne&Doerfler, 1969;
Pesarin & De Martini, 2002; Pratt & Gibbons, 1981).2 We
elaborate this conditional power analysis approach in the
Methods section and explain how this approach is combined
with the three data generating processes that we used.

An additional goal of the present study was to investigate
the effect of specific characteristics of the data on the power of
the RT. Research has shown that data from single-case designs
can contain autocorrelation (e.g., Shadish & Sullivan, 2011;
Solomon, 2014). To account for this possibility we generated
data that were not autocorrelated (independent standard nor-
mally distributed data) as well as data that contained strong
positive autocorrelation (generated from a first-order
autoregressive Gaussian process). In addition, we generated
data from a uniform distribution (with a population standard
deviation of 1) to evaluate the power of the RT in a situation in
which classic distributional assumptions are severely violated.

The type of single-case design that is chosen to perform an
SCE has important implications for the types of research ques-
tions that can be answered and the statistical power of the RT.
For this reason we will now provide some information about
the types of single-case designs we included in this simulation
study and the types of research situations for which they are
appropriate. The single-case designs that were used in this
simulation study were all single-case alternation designs.
Alternation designs are single-case designs in which rapid
and frequent alternation of treatment conditions is possible.
RTs for alternation designs are based on the random assign-
ment of treatment conditions to measurement occasions
(Onghena & Edgington, 2005). Although phase designs are
used more often than alternation designs in practice (Shadish
& Sullivan, 2011), we focused on alternation designs in this
simulation study because they are more powerful than phase
designs for SCEs (Onghena, 1994; Onghena & Edgington,
2005). The alternation designs we included were the
completely randomized design (CRD), the randomized block
design (RBD), and a restricted randomized alternation design
(RRAD; Onghena, 1994, 2005). The CRD is the simplest
alternation design (Edgington, 1967). In this design, treatment
conditions are randomized solely with respect to the numbers
of measurement occasions for each level of the independent
variable. For example, the number of possible assignments for
a hypothetical SCE with two conditions (A and B) with three

2 This use of the term Bconditional power^ is standard in nonparametric sta-
tistics, but it should not be confused with the use of this term in the context of
sequential clinical trials (see Lachin, 2005, for an overview of this alternative
use of the term).
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measurement occasions per condition is given by 6ð 3Þ,
which equals 20 possible assignments (Onghena, 2005):

AAABBB BBBAAA

AABABB BBABAA

AABBAB BBAABA

AABBBA BBAAAB

ABAABB BABBAA

ABABAB BABABA

ABABBA BABAAB

ABBAAB BAABBA

ABBABA BAABAB

ABBBAA BAAABB

This method of randomization is analogous to the random
assignment of subjects to a balanced between-subjects design
with two conditions. When certain assignments resulting from
complete randomization are deemed undesirable for an SCE
(e.g., AAAAABBBBB), other alternation designs can be derived
from the CRD randomization scheme by imposing additional
constraints on the method of randomization. For example, an
RBD is obtained by grouping measurement occasions in pairs
and randomizing the treatment order within each pair. An RBD
for the same hypothetical SCE yields 23 = 8 possible assignments
(which are a subset of the set of CRD assignments):

ABABAB BABABA

ABABBA BABAAB

ABBAAB BAABBA

ABBABA BAABAB

RBDs can be used to counter the effect of time-related con-
founding variables on the dependent variable. For example, sup-
pose a researcher wishes to conduct an SCE that evaluates the

effect of a behavioral treatment on a depressed patient’s feelings
of negative affect. If the researcher knows that the level of neg-
ative affect of the patient can fluctuate from day to day, irrespec-
tive of the treatment, an RBD can be used to control for this
confounding factor. Suppose the experiment consists of 10 days
(i.e., ten blocks) where on each day the researcher administers
both treatments (i.e., the control condition and the treatment con-
dition) and records the patient’s level of negative affect after each
treatment (i.e., two negative affect scores per day). Because the
sequence of conditions within a day (i.e., block) is determined
randomly for every day, a potential significant treatment effect
cannot be attributed to the day-to-day fluctuations in negative
affect but only to the behavioral treatment.

When one wants to prevent the temporal clustering of treat-
ments by ensuring that the randomization only allows a maxi-
mum number of successive measurement occasions to have the
same treatment, one can use an RRAD (Onghena & Edgington,
1994). The RRAD yields a larger subset of the set of CRD
assignments for a given SCE than the RBD. More specifically,
an RRAD with a maximum number of two consecutive admin-
istrations of the same condition yields the following assignments
for our hypothetical SCE:

Note that the entire set of RBD assignments is present in
the set of RRAD assignments.

Fig. 1 Example of calculating the percentage of nonoverlapping data (PND) for a hypothetical data set. The dotted line represents the data from the
control condition, and the full line represents the data from the treatment condition

AABABB BBABAA

AABBAB BBAABA

ABAABB BABBAA

ABABAB BABABA

ABABBA BABAAB

ABBAAB BAABBA

ABBABA BAABAB
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Method

The Method section contains three parts. The first part intro-
duces the RT as a method of evaluating treatment effects in
SCEs. The second part discusses how the conditional power
of the RT is calculated. Finally, the third part details the design
matrix of the simulation study.

Evaluating treatment effects in single-case experiments

Before explaining the way in which the conditional pow-
er of the RT is calculated, we will provide a worked
example of the several steps that need to be taken to
analyze a randomized SCE with an RT. Suppose we want
to perform a randomized SCE consisting of four measure-
ment occasions. Assume that the employed single-case
design is balanced and completely randomized. The first
step is made before executing the experiment and con-
sists of listing all permissible assignments for the chosen
experimental design. A permissible assignment is an as-
signment that adheres to the restrictions imposed by the
chosen single-case design. In this example, the only re-
striction is that the design is balanced. When there are
only two experimental conditions, this results in the fol-
lowing set of permissible assignments:

Second, one of the permissible assignments is ran-
domly selected as the assignment to execute the actual
experiment. Suppose the selected assignment is ABBA.

Third, one chooses an ES measure that is deemed ad-
equate to answer the research question. This ES measure
will be the test statistic of the RT. Suppose we choose the
MD between the A and the B condition as the test statistic
for this RT. Note that in order to test a two-sided alterna-
tive hypothesis, the test statistic must be sensitive to both
directions of a possible effect. In this case we will use the
absolute mean difference between the A and the B
condition.

Suppose that the observed data are 2, 5, 4, and 3.
For the selected assignment ABBA, this yields an ob-
served test statistic of 2. As a fourth step, we calculate
the test statistic for all permissible assignments:

AABB ¼> 0j j ¼ 0
ABAB ¼> –1j j ¼ 1
ABBA ¼> 2j j ¼ 2
BAAB ¼> –2j j ¼ 2
BABA ¼> 1j j ¼ 1
BBAA ¼> 0j j ¼ 0

These values make up the randomization distribution. This
collection of values is used as a reference distribution to cal-
culate the statistical significance of the observed test statistic.

As a fifth step, the two-sided p value of the RT is calculated
as the proportion of test statistics in the randomization distri-
bution that are at least as extreme as the observed test statistic.
When looking at the randomization distribution, we can see
that two of the six permissible assignments lead to the same
test statistic value as the observed test statistic, which results in
a two-sided p value of 1/3. This p value provides a probabi-
listic statement of observing the data under the null hypothesis

Fig. 2 Example of calculating the nonoverlap of all pairs (NAP) for a
hypothetical data set. The dotted line represents the data from the control
condition, and the full line represents the data from the treatment

condition. The lines from every control condition data point to each of
the treatment condition data points have only been drawn for the first
control condition data point, so as not to clutter the graph

AABB

ABAB

ABBA

BAAB

BABA

BBAA
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that the conditions are unrelated to the data, and the validity of
this statement is guaranteed by the randomization of the con-
ditions. If that null hypothesis were true, then there is a prob-
ability of 1/3 to obtain a test statistic value as extreme as the
one observed (Edgington & Onghena, 2007).

Note that this example was only chosen for didactical purposes
as it is evident that an SCEwith only four measurement occasions
can never yield a p value that is smaller than any conventional
significance level. Without performing any simulations, we can
already infer that an SCE with only four measurement occasions
has zero statistical power for all practical purposes.

The main advantages of the RT are that it makes no distri-
butional assumptions and no assumption of random sampling.
These advantages are important because it has been shown
that the assumptions underlying parametric tests (e.g., random
sampling or specific distributional assumptions) are doubtful
in many domains of behavioral research and particularly for
single-case research (e.g., Adams & Anthony, 1996; Dugard,
2014; Edgington & Onghena, 2007; Ferron & Levin, 2014;
Levin et al., 2014; Micceri, 1989). Other advantages of the RT
as compared to parametric tests are its flexibility with regard
to the choice of test statistic and the choice of experimental
design (Ferron & Sentovich, 2002; Onghena, 1992; Onghena
& Edgington, 2005).

Power analysis in the random assignment model

The RT produces so-called Bconditional inferences^—that is,
inferences that are conditional on the observed data, just like
Fisher’s exact test is conditional on the marginal totals
(Agresti, 1992; Krauth, 1988). Consequently, when investi-
gating the power of the RT, it makes most sense to use this
conditional framework too, and to calculate the so-called
Bconditional power^ (i.e., the power of the RT for a specific
data set). The advantage of this conceptualization is that the
conditional power calculations are consistent with the random
assignment model, which is also used for the validity of the
RT, and that no assumption of random sampling is required.
For the calculation of conditional power only an additional
assumption about the treatment effect is necessary, just like
one needs an assumption of the effect size parameter for the
calculation of unconditional power.

If one would calculate the unconditional power of the RT, one
would generate a large number of data sets (with fixed condition
labels), sampled from a known distribution, and calculate the
proportion of data sets that yield a p value smaller than or equal
to a predefined significance level α. In contrast, to calculate the
conditional power of the RT, one starts with a fixed set of scores
that would be observed if the null hypothesis of no treatment
effect is true (the Bnull scores^). Next one generates all possible

randomizations of the condition labels, and constructs all possi-
ble data sets by pairing the null scores with the condition labels;
null scores that are assigned to the treatment condition are trans-
formed into observed scores containing the treatment effect. The
conditional power is calculated as the proportion of those data
sets that yield a p value smaller than or equal to α. Importantly,
the unconditional power of the RT is defined in relation to the
repeated random sampling of data sets from a known distribution
whereas the conditional power of the RT is defined in relation to
the repeated random assignment of condition labels to a specific
set of null scores. Consequently for the calculation of conditional
power, one does not need to make an assumption of random
sampling. Note that this also implies that the resulting conditional
power only pertains to that specific set of null scores.

To calculate either the conditional or the unconditional
power of the RT one needs to make an assumption about the
nature of the treatment effect. For the conditional power it
means the specification of a specific functional relation be-
tween the null scores and the observed scores if a specific
alternative hypothesis is true. The best known and most
straightforward model in this respect is the unit-treatment ad-
ditivity model (e.g., Cox & Reid, 2000; Hinkelmann &
Kempthorne, 2008; Lehman, 1959; Welch & Gutierrez,
1988). This model describes the relation between the null
scores and the observed scores as

Xi
B ¼ Xi

A þ Δ

In this equation, Xi
B is the observed score of experimental

unit i if i is assigned to the experimental condition B, Xi
A is the

hypothetical score of i if i is assigned instead to the control
condition A (i.e., the null score), andΔ is the constant additive
effect of the treatment. If we assume that the null hypothesis is
true, the equation above is reduced to

Xi
B ¼ Xi

A

which implies that the observed score for experimental unit
i is independent from the condition to which it is assigned.
Note that the null scores are assumed to be known in order to
calculate conditional power, just as the distributional form has
to be known in order to calculate unconditional power.

The conditional power of the RT is determined by the sig-
nificance level of the test, the number of observations, the size
of the treatment effect, the employed test statistic, and the
effect function (Keller, 2012). Whereas unconditional power
is defined as the percentage of rejections of the null hypothesis
across a given number of samples drawn from a certain pop-
ulation distribution, the conditional power is defined as the
percentage of random assignments of treatment conditions to
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experimental units that result in a rejection of the null hypoth-
esis, given an assumed treatment effect (Kempthorne &
Doerfler, 1969).

To calculate the exact conditional power of the RT for a
specific data set, a few steps must be carried out. To begin, we
must choose a single-case design, a number of observations,
and a test statistic to use in the RT. Next, we generate one set
of null scores for the chosen number of observations. We then
obtain all permissible assignments of the employed randomi-
zation scheme for the chosen number of observations. If there
are k permissible assignments, we then construct k different
data sets from the null scores by adding the treatment effect to
the null scores of the measurement occasions in the treatment
condition. Next, we perform the RT for each of the k data sets
from the previous step and record whether or not the null

hypothesis is rejected at a pre-specified significance level.
The exact conditional power is then defined as the overall
proportion of rejected null hypotheses across the k RTs.

Notice that the RT is a computer-intensive method and that
the calculation of the exact conditional power is Bcomputer-
intensive squared.^ If the number of observations rises, then k
for each RT increases exponentially. For the exact conditional
power, the RT is repeated k times, resulting in a total of k2

calculations.
Table 1 illustrates the steps that are involved in calculating

the exact conditional power of the RT.
In a random assignment framework with unit-treatment

additivity, the conditional power of the RT is a function of
the constant additive effect Δ. This implies that we can con-
struct a conditional power curve for the null scores from

Table 1 Calculation of the RT’s exact conditional power

Steps Example

1) Obtain a set of n (e.g., 4) null scores. 2, 3, 5, 3

2) Generate all permissible assignments according
to the employed single-case design (e.g., a balanced CRD).

A A B B

A B A B

A B B A

B A A B

B A B A

B B A A

3) Apply the treatment effect (e.g., Δ = 1.5) to the B data
for each of the k permissible assignments resulting in k data sets.

k

1 A A B B

2 3 5 +1.5 3 +1.5

2 A B A B

2 3 +1.5 5 3 +1.5

3 A B B A

2 3 +1.5 5 +1.5 3

4 B A A B

2 +1.5 3 5 3 +1.5

5 B A B A

2 +1.5 3 5 +1.5 3

6 B B A A

2 +1.5 3 +1n5 5 3

4) Execute the RT for each of the k data sets resulting in k p values. k p value

1 .33

2 1

3 .33

4 1

5 .33

6 1

5) The exact conditional power of the RT is the proportion of the k p
values that are smaller than or equal to, the chosen α level (e.g., α = 1/3).

Half of the k p values are smaller than or equal to 1/3 so the exact
conditional power is 50%.
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Table 4 by varying the value of Δ. Figure 3 displays the
conditional power function for the set of null scores from
Table 4 and for α = 1/3.

For very small data sets such as in this example, it becomes
apparent that the conditional power curve of the RT is actually
a stepwise function. The function is stepwise because the con-
ditional power is determined by the proportion of the k RTs
that yield a p value smaller than or equal to the significance
level α. If k is a small number, then only multiples of 1/k are
possible conditional power values. For larger data sets, the
number of possible steps is quite large so that the power curve
becomes indistinguishable from a continuous function.

Design matrix of the simulation study

We manipulated five experimental factors in the present sim-
ulation study:

1. Characteristics of the data. To investigate the effect of
different types of data on the conditional power of the
RT, data were generated from a standard normal distribu-
tion and a uniform distribution (with a population stan-
dard deviation of 1). We selected the normal and uniform
distributions because of their simplicity and ubiquity.
Because both distributions were also used in the simula-
tion study of Keller (2012), we could use his results as a
benchmark. We added a first-order autoregressive model
with Gaussian errors (AR1). The autoregressive parame-
ter (AR) quantifies the autocorrelation in the data. We
hypothesized that the presence of positive autocorrelation
would have little influence in the selected single-case de-
signs because of their fast alternation of the experimental
conditions. Some pilot testing with small and medium

levels of autocorrelation supported this hypothesis. For
this reason (and in order to keep the number of experi-
mental conditions manageable) we included only one,
rather large, level of positive autocorrelation: AR = 0.6.
Because the variance of an AR1 model is

σ2
e

1−AR2

and we sampled e from a standard normal distribution (σe
2 =

1) and AR = 0.6, the variance of the AR1 model is 1.5625. We
only used three types of data (standard normal, uniform and
AR1) to keep the simulation study feasible in terms of design
and duration, and because we did not expect that the distribu-
tional shape would have a large impact on the power.

2. Test statistics used in the RT. Three different ES mea-
sures were used as the test statistic in the RT: the
PND, the NAP, and the MD. The main reason for
including the PND in this simulation study is that it
is the most widely used NES (Maggin et al., 2011;
Schlosser et al., 2008). As such, we believe it is of
great importance to investigate PND’s usability in sta-
tistical inferences. NAP was included because it was
introduced to meet the statistical limitations of the
PND (Parker & Vannest, 2009). To compare the per-
formance of the selected NESs to a more generally
accepted test statistic, we also included the mean dif-
ference (MD) in our simulation study. All tests statis-
tics were formulated in a nondirectional way, so we
only consider two-sided p values in this simulation
study.

3. Designs. Three different single-case alternation designs
were investigated: the CRD, the RBD, and the RRAD
(see above for details). In this study, we limited our inves-
tigation to designs with two conditions (a control condi-
tion and a treatment condition). The CRD entails full ran-
dom assignment of the condition labels with the only
restriction that each condition must contain the same num-
ber of measurement occasions for each assignment. The
RBD uses a form of randomization that groups measure-
ment occasions into blocks of a certain size (we will use a
block size of two observations) and then randomizes the
measurement occasions within blocks. The RRAD uses
full random assignment with the restriction that the max-
imal number of adjacent measurement occasions from the
same condition is limited to a pre-specified value
(Onghena & Edgington, 1994). In alignment with the
What Works Clearinghouse (WWC) standards’ recom-
mendation to have at least three measurement occasions
in a Bphase^ (Kratochwill et al., 2010), there could never
be more than two adjacent measurement occasions from
the same condition in the RRAD randomization scheme.

Fig. 3 Conditional power curve of the two-sided randomization test (RT)
for α = 1/3, in a completely randomized design using (2, 3, 5, 3) as the set
of null scores
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Note that all the designs were balanced designs (i.e., they
contain the same number of measurement occasions in
each condition).

4. Size of the treatment effect. Our choice of treatment ESs
was guided by reported ESs in various domains of single-
case research. ESs in single-case research are generally
larger than in between-subjects research and are some-
times extremely high (Busk& Serlin, 1992). For example,
Fabiano et al. (2009) performed meta-analyses of behav-
ioral treatments for attention-deficit/hyperactivity disor-
der for various study designs and found average ESs of
0.83 and 3.78 for between-subjects studies and single-
case studies, respectively. In a similar vein, two single-
case meta-analyses concerning interventions for reducing
challenging behavior in persons with intellectual disabil-
ities resulted in average ESs of approximately 3
(Heyvaert, Maes, Van den Noortgate, Kuppens, &
Onghena, 2012; Heyvaert, Saenen, Maes, & Onghena,
2014). With these results in mind, we included six levels
of the treatment effect: 0, 0.5, 1, 1.5, 2, and 2.5. On the
basis of pilot simulation testing, we set 2.5 as the maxi-
mum ES in our simulation study, because the conditional
power for this ES was already 100% in almost all condi-
tions. The size of the treatment effect in empirical single-
case research can vary greatly depending on the specific
domain and with the current selection of ESs we are able
to cover the entire range of frequently found empirical
ESs.

5. Number of measurement occasions. The selected num-
bers of measurement occasions to generate a complete
data set were 12, 20, 30, and 40 measurement occasions
and were chosen to cover the range of common series
lengths in empirical research. For example, Ferron,
Farmer, and Owens (2010) performed a survey that found
average series lengths that ranged from 7 to 58 with a
median of 24. A survey by Shadish and Sullivan (2011)
found an average of 20 measurement occasions per indi-
vidual time series. Note that the smallest amount of mea-
surement occasions was selected to be 12 rather than 10
because of the fact that an RT using an RBD is unable to
reach a 5% significance level for a data set with only 10
measurement occasions (25 = 32 possible assignments,
and because we are considering two-sided tests, 1/16 is
always larger than 1/20).

Crossing the levels of these five factors resulted in a total of 3
× 3 × 3 × 4 × 6 = 648 conditions. For each condition, 100 null
data sets were generated and the conditional power was averaged
across these 100 replications. For each replication, the condition-
al power was calculated using Kempthorne and Doerfler’s
(1969) method. The significance level was set at 5%.

Despite rapid advancements in computing speed and exact
algorithms, it is usually not feasible to calculate the exact

conditional power of the RT due to the exponential increase
of the computational demand when the number of observations
grows larger (Keller, 2012). An alternative to exact computa-
tion is analytical approximation. For example, Gabriel and Hsu
(1983) showed that their analytical approximation of the RT’s
exact conditional power only slightly overestimates the true
power. However, their approximation shows larger biases for
small numbers of observations or skewed treatment effects. In
situations in which the number of observations is too large for
exact computation but too small for precise analytic approxi-
mation, Monte Carlo approximation is a good alternative
(Senchaudhuri, Mehta, & Patel, 1995). In this approach, only
a random sample of all permissible assignments is used to cal-
culate the conditional power of the RT. For a single RT it has
been shown that the Monte Carlo RT produces valid p values
(Edgington & Onghena, 2007). Furthermore, the accuracy of
the random sampling can be increased to the desired level sim-
ply by increasing the number of random assignments that are
drawn from the set of all permissible assignments
(Senchaudhuri et al., 1995). Edgington (1969) pointed out that
an efficient Monte Carlo RT can already be carried out with
1,000 random assignments. To keep the simulation study com-
putationally manageable and without having to resort to analyt-
ical approximations, we used Monte Carlo sampling for the
average conditional power calculation. More specifically, we
selected 1,000 random assignments for each null sample, which
resulted in 1,000 data sets for the conditional power calculation
of each null sample. The conditional power for each null sample
was calculated by performing the RT on each of these 1,000
data sets using 1,000 random assignments of the condition la-
bels and by determining the proportion of p values that were
equal to or smaller than .05. The average conditional power for
each condition in the simulation study was obtained by averag-
ing the conditional powers of the 100 null samples.

Results

To evaluate the effect of each experimental factor on the RTs
conditional power, we plotted the main effect of each individ-
ual experimental factor while averaging the power across all
other experimental factors. Figures 4 to 7 represent the main
effects of ES measure, design, characteristics of the data, and
number of measurement occasions on the average conditional
power (averaged over 100 replications) with the size of the
treatment effect plotted on the x-axis. Complete numerical
results of the simulation study are displayed in Tables 2 to 4
in the Appendix.

Figure 4 shows that the MD and the NAP perform very
similarly (an average difference of 1.74% in favor of the MD),
whereas use of the PND as the test statistic in the RT yields
substantially lower power. More specifically, the average
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power difference between the MD and the PND is 16.36%
across the range of treatment ESs.

Figure 5 shows that the RRAD is the single-case design
that on average yields the highest conditional power in the RT.
More specifically, the average power advantage is 3.36% as
compared to the CRD, and 6.39% as compared to the RBD.

Figure 6 reveals that there is only a very minimal, yet consis-
tent, effect of the characteristics of the data on the conditional
power of the RT. More specifically, the average difference be-
tween the conditions using the uniform distribution and the con-
ditions using the standard normal distribution is 1.59%.
Similarly, the average difference between the conditions using
the standard normal distribution and the conditions using the
AR1 model is 0.74%. These results show that the power of the

RT is only slightly affected by extreme variations in the distribu-
tional characteristics of the data (cf. the data from a standard
normal distribution vs. the data from a uniform distribution).
Furthermore, the very minimal power difference between the
conditions using the AR1 model and the conditions using the
standard normal distribution indicates that the RT is almost not
affected by strong positive autocorrelation in the data when
single-case alternation designs are used.

Finally, Fig. 7 shows the effect of the number of observa-
tions on the conditional power of the RT. Note the sharply
decelerating increases in conditional power when the number
of observations is increased from 12 to 20 (an average increase
of 15.65%), from 20 to 30 (an average increase of 8.69%), and
from 30 to 40 (an average increase of 2.45%).

Fig. 4 Main effects of different effect size (ES) measures on the conditional power of the RT

Fig. 5 Main effects of different designs on the conditional power of the RT
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Apart from visually analyzing the results of the simulation
study, we also evaluated the results by looking at the variation
between conditions using a multiway analysis of variance
(ANOVA). More specifically we looked at the main effects
of all experimental factors and two-way interactions effects
that were deemed theoretically meaningful (an interaction ef-
fect between design and ES measure, between characteristics
of the data and ES measure, and between characteristics of the
data and design). We did not include higher-level interactions
because they are difficult to interpret. For each evaluated ef-
fect, we calculated the proportion of explained variance in
order to distinguish between the most important patterns in
the results. All included effects of the ANOVA were signifi-
cant at a significance level of .001. However, there are large
discrepancies in the proportions of explained variance of the

various effects. The size of the treatment effect by far has the
largest proportion of explained variance (69.02%). This
comes as no surprise because we used a wide range of values
for this simulation factor (employing treatment ESs from 0 to
2.5). The number of measurement occasions has the second
largest proportion of explained variance (6.9%). Furthermore,
the choice of ES measure explains 3.34% of the variance,
which is still considerable given the wide range of levels of
the previously discussed factors. The other effects included in
the ANOVA all explained less than 1% of the variance on their
own. Nevertheless, they were all significant at the .001 level
indicating that they have a significant effect on the conditional
power of the RT. Furthermore, whereas the treatment effect is
in practice not controlled by the researcher, and the number of
measurement occasions is sometimes constrained by logistic

Fig. 6 Main effects of different characteristics of the data on the conditional power of the RT

Fig. 7 Main effects of different numbers of observations on the conditional power of the RT
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or financial considerations, the ESmeasure and the design can
be chosen by the researcher. Hence it is reassuring to see that
power can still be optimized by deliberate smart choices in the
design phase of the study, given the constraints of the research
context.

The main results from the simulation study can be summa-
rized as follows:

& TheMD and the NAP ESmeasures perform very similarly
in terms of conditional power whereas the PND performs
substantially worse.

& The RRAD is the single-case design that on average yields
the highest conditional power.

& The conditional power of the RT is only minimally influ-
enced by the characteristics of the null scores.

Discussion

In this article we investigated the conditional power of the RT
using three different single-case ES measures (the MD, the
NAP, and the PND) and three different randomized single-
case designs with rapid treatment alternation (the CRD, the
RRAD, and the RBD) for three types of simulated data (data
from a standard normal distribution, data from a uniform dis-
tribution, and data from an autoregressive process with
Gaussian errors) using a significance level of 5%.

The results were evaluated by visual analysis of power
graphs and by decomposing the variance in the simulation
results using ANOVA. The most important patterns in the
results were identified by looking at the proportion of ex-
plained variance of each of the simulation factors.

With respect to the effect of the ES measure on the power
of the RT, the results showed that the MD and the NAP per-
form very similarly whereas the PND performs substantially
worse. This large discrepancy with the other two ES measures
indicates that the PND has undesirable characteristics when it
comes to evaluating intervention effects in SCEs. In fact,
many authors have pointed out that the PND has two impor-
tant limitations (e.g., Parker & Vannest, 2009; Shadish et al.,
2008; Wolery et al., 2010). First, because only one control
condition data point is used as a reference point to compare
to the treatment data points, the PND is highly influenced by
outliers. Second, the PND has a poor ability to discriminate
between different magnitudes of a treatment effect. For exam-
ple, when all treatment data points exceed the single highest
control condition data point, it does not matter how large the
nonoverlap is; the PND will always be 100%. Because of
these limitations, authors have called for the abandonment of
the PND in favor of other NES measures (e.g., Kratochwill
et al., 2010; Parker & Vannest, 2009). In a similar vein,
Campbell (2013, p. 24) stated, BI believe the PND

methodology constitutes a first wave of SCD meta-analysis
that is being followed by efforts to improve on inherent statis-
tical limitations of PND.^ The results of our simulation study
add to these criticisms, in the sense that the PND yields sub-
stantially less power in the RT than the NAP and the MD
despite the absence of outliers in the simulated data and re-
gardless of the size of the treatment effect. As such, we agree
with the critics of PND that this measure should be abandoned
in favor of more recent NES measures (such as the NAP).

With respect to the effect of the design on the conditional
power of the RT, the results showed that the RRAD was the
most powerful design, followed by the CRD and then the
RBD. We argue that RRAD yields the highest power because
it is a design that prevents the temporal clustering of measure-
ment occasions but at the same time allows for a large number
of assignments. In contrast, the CRD allows more temporal
clustering than the RRAD whereas the RBD is more restric-
tive in terms of number of possible assignments than the
RRAD. Although the choice of design also depends on feasi-
bility and the concrete phenomenon that is studied, single-case
researchers can take these findings with respect to the influ-
ence of the single-case experimental design on statistical pow-
er into consideration whenever they are designing an SCE that
is to be evaluated using an RT.

The results of the simulation study also showed that the
power of the RT is only minimally affected by the distribu-
tional characteristics of the null scores or the presence of
strong positive autocorrelation. This is an important finding
because it has been shown that single-case data often contain
autocorrelation and violate classic distributional assumptions
(e.g., Adams & Anthony, 1996; Dugard, 2014; Edgington &
Onghena, 2007; Ferron & Levin, 2014; Levin et al., 2014;
Micceri, 1989). However, we should note that the effect of
autocorrelation on the power of the RT depends on the type
of single-case design that is being used. For example, Ferron
and Onghena (1996) evaluated the effect of autocorrelation on
the power of the RT using a design that randomly assigns
treatments to more extended phases. In this type of design,
the researcher specifies a number of equally long phases and
then randomly assigns a treatment condition to each of the
phases. The results showed that positive autocorrelation in-
creased the power of the RT for this type of single-case design.
In contrast, Ferron and Ware (1995) showed that positive au-
tocorrelation decreases the power of the RT for single-case
phase designs that use random assignment of intervention
points.

Apart from the size of the treatment effect, the number of
measurement occasions is the second most important determi-
nant of the conditional power of the RT. However, our results
showed a sharply decelerating increase in conditional power
when the number of measurement occasions was increased. In
other words, the larger the number of measurement occasions
becomes, the smaller the subsequent increase in power. This
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information can be useful to researchers interested in SCEs for
which the experiment is preferably as short as possible (e.g., if
there are negative side effects of the experiment for the par-
ticipant), in order to determine an optimal SCE length that
balances between having sufficient statistical power and min-
imizing any discomforts for the participants.

We will now address some limitations to this simulation
study. First of all, an obvious limitation is that the generaliz-
ability of our results is limited to the simulation conditions that
were included. More in particular, we only considered null
scores generated from continuous distributions. For some ap-
plications, other continuous or discrete distributions might be
more relevant. We would expect that highly discrete distribu-
tions might compromise power because they give rise to many
ties in both the data themselves and in the reference distribu-
tion. The power values in the present simulation study can
therefore be considered as upper bounds. On the bright side,
however, it should be noted that RTs always treat data in a
discrete way and remain valid even if highly discrete (e.g.,
skewed dichotomous distributions) are used.

A second limitation is that the unit-treatment additivity
model that we used to model the treatment effect in this sim-
ulation study conceptualizes the treatment effect as a differ-
ence in level and assumes no other effects. As a consequence,
we only evaluated ES measures that are sensitive to differ-
ences in level. Nevertheless, we should mention that the
unit-treatment additivity model is a generally accepted model
in nonparametric statistics and a standard for classical evalu-
ations of nonparametric methods (e.g., Cox & Reid, 2000;
Hinkelmann & Kempthorne, 2008; Lehman, 1959; Welch &
Gutierrez, 1988).

A third limitation of the present simulation study is that we
used a Monte Carlo approach to approximate the exact condi-
tional power. Although the Monte Carlo approach is compu-
tationally far more efficient, it introduces a random sampling
(of assignments) error in the exact conditional power esti-
mates. However, the magnitude of this error is a function of
the number of random assignments that is used and can be
determined analytically (see Edgington, 1969). More specifi-
cally, one can determine a confidence interval for the exact
conditional power when it is approximated via Monte Carlo
sampling. The bounds of a 99% confidence interval can be
constructed using the following formula:

lower bound ¼ k−1ð Þp−2:58 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k−1ð Þpqð Þp þ 1

k

upper bound ¼ k−1ð Þp þ 2:58
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k−1ð Þpqð Þp þ 1

k

with k being the number of random assignments, p being the
exact conditional power, q being 1–p, and 2.58 being the
99.5th percentile of a standard normal distribution. For exam-
ple, if the exact conditional power of a specific simulation

condition is 80%, the 99% confidence interval of the Monte
Carlo approximation with k = 1,000 is [77%; 83%]. Note that
the Monte Carlo approach also causes the Type I error rates
(i.e., the power when the treatment effect is zero) to slightly
deviate from the specified significance level. When an exact
RT is used (which uses all possible randomizations of the
condition labels) the Type I error rate is always exactly equal
to the specified significance level (Keller, 2012).

A generally accepted standard for sufficient statistical
power is 80% (Cohen, 1988). When the power of a test is
80%, the probability of a Type II error (=1 – power) is
20%. If the conventional significance level of 5% is used,
the ratio between the probability of a Type II error and a
Type I error will then be four to one (20% to 5%). A power
smaller than 80% would result in a too high a probability of
a Type II error, whereas a power materially larger than 80%
is likely to require data sets containing numbers of mea-
surement occasions that could be unfeasible to collect
(Cohen, 1992). To make a practical recommendation re-
garding the number of measurement occasions that yields
a power of at least 80% in the RT using a significance level
of 5% we must make an assumption about plausible ESs in
single-case research. We previously mentioned that very
high ESs of 3 or more are not uncommon in SCEs. In this
case, the results of the simulation study with normally or
uniformly distributed data show that an SCE with at least
20 measurement occasions is needed to obtain sufficient
statistical power in the RT when used with randomized
alternation designs and with a significance level of 5%.
With other designs and highly discrete and skewed expect-
ed data sets even a larger number of measurements might
be needed.

Finally, it is important to notice that the conditional power
framework that we used in this simulation study contains an
apparent paradox. On the one hand, the conditional power of a
specific null data set only holds for that specific data set (i.e., it
is conditional on the null scores). On the other hand, an a priori
power analysis always requires knowledge, or an assumption,
about the expected data in order to guide recommendations for
the number of observations to be included in the experiment.
Invoking distributional assumptions for the power analysis
would go against the conceptual framework of conditional
power as the latter makes no assumption of random sampling.

Similar to the approach taken by Keller (2012) we have
tried to reconcile these two seemingly opposing requirements
by calculating the conditional powers for a large number of
null data sets (sampled from the probability distributions de-
scribed in the methods section) and then by averaging these
conditional powers. As such, the individual conditional pow-
ers are free of distributional assumptions, although the average
conditional power for all the conditions reported in Tables 2,
3, and 4 of this article are dependent on the specific distribu-
tions from which the null data sets were generated.
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In practice, a guesstimate of conditional power can be ob-
tained by performing a small pilot study and using the pilot
data to plan a subsequent larger data collection. The null
scores in the unit-treatment additivity model can be recon-

structed by calculating Δ̂ as the difference between the con-
ditionmeans and subtracting this difference from all the scores
observed in the treatment condition:

Xi
A ¼ Xi

B−Δ̂

Once we have null scores, we can calculate the exact con-
ditional power for varying levels ofΔ. Alternatively, different
effect models can be explored, each leading to other null
scores.

Collings and Hamilton (1988) and Hamilton and Collings
(1991) also used this idea of a pilot study to determine the ap-
propriate sample size on the basis of the distribution-free power
of nonparametric tests for location shift. More specifically, the
authors proposed to bootstrap the pilot data (i.e., draw random
samples with replacement from the pilot data) to form a large
number of bootstrap data sets. The proportion of data sets that
yield a p value smaller than or equal to the significance levelα is
defined as the power estimate for the test. The authors showed
empirically that their proposed method yields reliable results for
estimating the power of the Wilcoxon two-sample test by means
of a simulation study. Their method is appealing because the
bootstrap technique allows for bootstrap data sets of any numbers
of observations (smaller or larger than the number of observa-
tions in the pilot data set) and because no distributional assump-
tions are needed. In a similar vein we could use this bootstrap
technique to generate a number of data sets from the pilot data.
Next, we can calculate the conditional power for each of these
data sets separately and obtain the average conditional power for
all data sets together without additional distributional assump-
tions. The only additional assumption is that the distributional
shape of the pilot data is indicative of the distributional shape of
the finally collected data.

Suggestions for further research

To keep the computational burden of the simulation study
manageable we had to limit the present study to the factors
that were most relevant to answer our research questions.
However, other interesting factors remain to be investigated
in future research. These include: the use of various other ES
measures as test statistics in the RT, the inclusion of other
statistical distributions for generating data such as skewed,
exponential or bimodal distributions, the inclusion of addi-
tional AR values for data generated with the AR1 model,
and the inclusion of other time-series structures (e.g., moving
average models). Because count data are used regularly as
single-case outcomemeasures, future simulation studies could

focus on the comparison between the power of the RT for data
generated from discrete probability distributions and the pow-
er of the RT for data generated from continuous probability
distributions. In addition future research could focus on inves-
tigating the power of the RT in unbalanced alternation designs
as the single-case designs in this simulation study were all
balanced designs.

In this study, we only modeled treatment effects that were
defined as differences in level between experimental condi-
tions. However, several single-case ES measures that look at
trends exist (e.g., Tau-U, Parker et al., 2011; regression-based
ES measures, Van den Noortgate & Onghena, 2003).
Consequently, future research could focus on power analysis
of the RT for ES measures that are sensitive to trend using
simulated data that contain different types of trend effects. We
previously mentioned that single-case phase designs are more
frequently used in practice than single-case alternation de-
signs. For this reason, future research could also investigate
the conditional power of the RT for a variety of single-case
phase designs.

Finally, another avenue for future research is to examine
the theoretical relation between unconditional power and av-
erage conditional power as well as the possibility of obtaining
distribution-free average conditional power using the boot-
strap technique proposed by Collings and Hamilton (1988)
and Hamilton and Collings (1991). For the latter it would be
interesting to develop user-friendly statistical simulation soft-
ware that assists in exploring the conditional power for a va-
riety of distributional shapes and effect functions.

Conclusion

On the basis of the results of this simulation study, we would
not recommend the use of the PND as an ES measure for the
purpose of statistical inference using an RT in single-case
alternation designs, because of its low statistical power. In
contrast, the NAP yields power levels that are very similar to
those of the MD, and as such provides a good alternative for
researchers who want to use a nonoverlap measure to quantify
the treatment effect in SCEs. With regard to the number of
measurement occasions that are needed to ensure adequate
statistical power in the RT, we recommend including at least
20 measurement occasions when working with alternation
designs in the domain of single-case research and using a
5% significance level.
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Appendix: Results of the simulation study

Table 2 Conditional power, averaged over 100 replications for data sets generated from a standard normal distribution

Data: Standard normal distribution

Design CRD RBD RRAD

N TE Effect Size

MD NAP PND MD NAP PND MD NAP PND

12 0 4.82 3.97 1.08 3.26 3.22 0.18 5.65 4.86 2.04

0.5 12.07 10.26 4.75 7.81 7.80 0.89 12.01 11.71 8.16

1 32.74 31.45 15.63 21.57 23.39 4.75 33.96 31.90 20.47

1.5 66.32 57.37 33.42 41.17 42.30 15.93 58.80 56.78 38.13

2 89.11 84.60 60.09 64.81 59.70 29.88 85.62 80.41 64.00

2.5 96.32 94.43 76.75 85.48 76.66 51.92 94.76 93.81 79.81

20 0 4.95 4.64 1.61 4.88 4.43 0.56 5.59 5.11 2.43

0.5 17.66 17.28 8.93 16.75 13.70 4.45 18.69 16.54 11.61

1 55.23 49.24 28.86 51.15 44.62 19.98 57.71 55.48 31.24

1.5 90.54 86.64 55.71 83.77 81.41 42.15 88.64 85.61 58.29

2 98.86 97.94 81.21 96.14 96.40 73.25 98.70 97.56 82.58

2.5 99.98 99.98 94.21 99.91 99.62 89.43 99.94 99.76 92.65

30 0 4.94 4.90 1.80 4.97 4.78 0.96 7.01 7.77 17.55

0.5 26.28 24.70 11.88 24.62 24.54 8.18 31.60 28.78 35.19

1 74.67 71.97 34.06 69.40 67.12 31.44 72.73 74.60 56.14

1.5 97.72 97.89 66.51 97.60 96.27 60.50 96.29 97.26 78.37

2 99.97 99.93 88.20 99.82 99.79 82.21 99.89 99.81 91.79

2.5 100 100 96.11 100 100 96.31 100 100 98.00

40 0 4.98 4.79 1.78 5.02 4.80 1.03 5.10 5.10 2.54

0.5 33.74 31.63 11.93 31.51 29.36 9.66 31.99 31.99 15.09

1 86.85 84.76 38.36 84.36 86.16 31.64 85.95 84.77 42.19

1.5 99.60 99.32 75.35 99.51 99.32 65.10 99.36 99.44 76.13

2 100 99.99 91.49 100 99.98 89.09 100 100 91.83

2.5 100 100 98.40 100 100 96.10 100 100 97.77

N: number of measurement occasions; TE: Treatment Effect; CRD: Completely Randomized Design; RBD: Randomized Block Design; RRAD:
Restricted Randomized Alternation Design; MD: Mean Difference; NAP: Nonoverlap of All Pairs; PND: Percentage of Nonoverlapping Data.
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Table 3 Conditional power, averaged over 100 replications for data sets generated from a uniform distribution

Data: Uniform distribution

Design CRD RBD RRAD

N TE Effect Size

MD NAP PND MD NAP PND MD NAP PND

12 0 4.95 3.97 1.04 3.23 3.27 0.14 6.19 4.75 1.82

0.5 10.97 9.23 3.62 5.98 6.99 0.70 10.62 11.07 6.81

1 31.71 24.66 10.70 16.38 16.73 2.94 32.47 28.73 19.80

1.5 60.72 51.32 28.94 38.39 39.36 9.09 61.84 50.89 38.18

2 87.26 80.75 50.29 59.44 54.82 21.42 84.90 80.21 58.10

2.5 98.57 95.47 77.37 79.68 81.21 46.91 97.09 93.73 85.56

20 0 5.00 4.51 1.60 4.86 4.47 0.59 6.01 5.04 2.23

0.5 17.26 15.60 8.49 15.48 14.52 4.05 17.40 15.25 12.02

1 55.29 47.56 34.55 50.40 42.87 20.32 53.48 47.47 35.32

1.5 88.51 81.38 65.31 85.89 77.38 46.08 88.28 81.44 67.37

2 99.33 97.47 89.67 97.50 94.65 78.46 99.38 98.07 90.92

2.5 100 99.91 98.49 99.95 99.29 96.85 100 99.90 98.82

30 0 5.13 4.87 1.88 4.99 4.62 0.89 7.59 7.44 16.23

0.5 25.17 22.81 17.29 23.33 21.88 11.66 27.35 29.52 48.37

1 73.54 67.53 60.74 72.39 64.36 49.13 77.24 68.14 75.43

1.5 97.87 94.77 89.42 97.26 94.08 79.99 97.67 94.16 92.31

2 99.99 99.83 98.39 99.99 99.64 97.54 99.97 99.60 98.14

2.5 100.0 100 99.98 100 100 99.87 100 100 99.89

40 0 5.03 4.96 1.79 5.00 4.77 1.05 5.44 4.87 2.40

0.5 31.80 30.50 28.84 30.98 29.12 18.16 32.96 30.61 32.99

1 86.25 81.28 81.04 84.59 78.46 70.28 86.90 78.87 83.09

1.5 99.76 98.57 98.50 99.57 98.59 97.53 99.76 98.37 98.31

2 100 99.99 99.96 100 99.94 99.87 100 100 99.96

2.5 100 100 100 100 100 100 100 100 100

N: number of measurement occasions; TE: Treatment Effect; CRD: Completely Randomized Design; RBD: Randomized Block Design; RRAD:
Restricted Randomized Alternation Design; MD: Mean Difference; NAP: Nonoverlap of All Pairs; PND: Percentage of Nonoverlapping Data.
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