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Abstract Understanding human behavior in the context of
exploration and navigation is an important but challeng-
ing problem. Such understanding can help in the design of
safe structures and spaces that implicitly aid humans dur-
ing evacuation or other emergency situations. In particular,
the role that memory plays in this process is something that
is crucial to understand. In this paper, we develop a novel
serious game-based experimental approach to understand-
ing the non-randomness and the impact of memory on the
human exploration process. We show that a simple memory
model, with a depth of between 6 and 8 steps, is suffi-
cient to approximate a ‘human-like’ level of exploration
efficiency. We also demonstrate the advantages that a game-
based experimental methodology brings to these kinds of
experiments in the amount of data that can be collected as
compared to traditional experiments. We feel that these find-
ings have important implications for ‘safety-by-design’ in
complex infrastructural structures.
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Introduction

Traditionally, experiments on human way-finding involve
participants performing way-finding in a real environment.
In some cases, this would be followed by tasks that test
the knowledge that they developed (Siegel & White, 1975;
Ishikawa & Montello, 2006; Moeser, 1988). In experiments
aimed at studying how exploration is done, the video of
player movement would often be analyzed (Holscher et al.,
2006). The nature of the data necessary, namely spatio-
temporal tracks of many individuals, lead to virtual environ-
ments having certain advantages over real environments due
to the ease of recording movement and the reduced over-
head of conducting experiments (Difonzo et al., 1998; Davis
et al., 2009; Loomis et al., 1999; Stankiewicz et al., 20006).
There have also been studies (ONeill, 1992; Montello et
al., 2004) comparing performance in virtual worlds and
real-world experiments, showing that human behavior in
simulated environments is a good approximation of real-life
behavior.

Recent years have seen the emergence of serious games
as an approach to conducting human subject experiments
(Pengfei et al., 2011; Michael & Chen, 2005; Waller et al.,
2002). The enjoyability and ubiquity inherent in games
(Pengfei et al., 2011), tend to attract more participants than
traditional virtual environment-based experiments. Bode
and Codling (2013) developed a point-and-click game to
study exit route choice during evacuation and obtained
more than 150 participants for their experiment. In the
past this type of approach has been used for validating

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1186/10.3758/s13428-015-0604-1-x&domain=pdf
mailto:

622

Behav Res (2016) 48:621-639

crowd simulation models (Pelechano et al., 2008; Pengfei
et al.,, 2011; Viswanathan et al., 2014) and understand-
ing behavioral responses to dynamic information during
egress (Bode et al., 2014; Viswanathan & Lees, 2012). Seri-
ous games (Michael & Chen, 2005) have a long history
in training, for example, aircraft simulation (Hays et al.,
1992) and medical training (Barry Issenberg et al., 1999).
In this paper, we plan to use a game for exploring and
understanding the role of memory in way-finding in indoor
environments.

Tolman (1948) is credited with coining the term cog-
nitive map to refer to the internal representation of the
environment used by rats for exploration. Lynch (1960),
subsequently, proposed that the human cognitive map is
composed of five components: paths, edges, districts, nodes,
and landmarks. Since then, several studies have explored
the central role played by landmarks and routes between
these landmarks in the initial cognitive map and the time
taken by people to develop somewhat complete knowledge
of the layout, also known as survey knowledge (Siegel and
White, 1975; Ishikawa & Montello, 2006; Moeser, 1988).
Thorndyke and Hayes-Roth (1982) discovered that survey
knowledge can be developed very quickly (= 20 minutes)
when maps are used. However, without the use of maps
and compasses, if knowledge is gained through actual daily
movement through the environment then survey knowl-
edge may take up to 2 years to develop. This was further
demonstrated by Moeser (1988) who found that people gen-
erally formed an image of the layout of the building within
the first month while later experience just extends this in
minor ways. Thus, the exploration strategies used by new
occupants have a significant effect on the cognitive maps
eventually formed.

Way-finding in indoor environments is influenced by
several factors. Gibson’s work on information design for
public spaces discusses the different strategies to help
way-finding based on the purpose and cultural context
of buildings (Gibson, 2009). Research has also revealed
the different factors like number of choice points, visual
access, degree of architectural differentiation, etc., that
determine way-finding difficulty in an environment (Gopal
et al.,, 1989; Best, 1970; Weisman, 1981; Girling et al,,
1983; Evans & Pezdek, 1980). Holscher et al. (2006)
recorded videos of people exploring multi-floor buildings
in order to investigate way-finding strategies. They discov-
ered three major strategies of which the floor-first strat-
egy was observed to be the most efficient and the one
used by more experienced participants. As the name sug-
gests, this strategy involved the person trying to get to the
required floor first and then exploring horizontally to find
the goal.

Kuipers (1978) developed the highly influential TOUR
model of spatial knowledge processing for large-scale
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urban spaces. He proposed the route skeleton-based model
of exploration (Kuipers et al., 2003), which was also
observed by Holscher et al. (2006) in a few participants.
He chose to use desktop virtual reality experiments for val-
idation which could, in theory, analyze the spatio-temporal
patterns of participants in more detail than experiments
of the kind conducted in Holscher et al. (2006). Virtual
environments have also been used to demonstrate the impor-
tance of structural landmarks and to investigate exploration
in unknown environments through comparison against an
ideal-navigator model (Stankiewicz and Kalia, 2007). They
explored the inefficiencies in human navigation in unknown
environments by comparing against an ideal navigator, i.e.,
one that has perfect perceptual processing, perfect map
memory, and the ideal decision strategy. The agent-based
analysis discussed in the present paper uses a similar
approach.

Existing  virtual environment-based experiments
(Stankiewicz et al., 2006; Kuipers, 1978) use long-lasting
experiments that are rather difficult to administer to more
than ten participants. Generally, the enjoyability (for the
participant) of the virtual environment is not taken into con-
sideration when developing these experiments. Game-based
experiments have been shown to add value in terms of par-
ticipant engagement (Berger et al., 2000; Connolly et al.,
2012; Difonzo et al., 1998; Washburn, 2003; Hawkins et al.,
2013). In designing game-based experiments, it is also
important to realize and acknowledge some of the limita-
tions of the methodology as well (Washburn, 2003; Hawkins
et al., 2013; Donchin, 1995). For example, Hawkins et al.
(2013) argue that added enjoyability does not add or remove
significantly from the quality of the results produced. How-
ever, we believe that the added enjoyability of the game
will help obtain a larger (and more diverse) dataset that
allows for novel analyzes of the sort that has tradition-
ally not been possible even in virtual environment-based
experiments.

Virtual environment-based experiments provide a degree
of control of experiment design that is much more difficult
to realize in real-world experiments (Difonzo et al., 1998).
However, it can be argued that this comes at the cost of
considering spatial cognition as a disembodied process
(Wilson, 2002; Difonzo et al.,, 1998). However, this
is not entirely true because, in a game (especially
of the kind proposed in this paper), the players can
interact with the environment around them, thus
taking into consideration the embodied nature of
cognition.

Montello et al. (2004) suggest that the immersiveness
of the virtual environment is an important factor in its
effectiveness. Virtual reality (VR) headsets provide a way
to address the issue of embodied cognition by allow-
ing the creation of virtual environments that allow for
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experimental control without considering cognition as a dis-
embodied process. However, creating these kinds of immer-
sive VR experiments (Waller et al., 2007; Stankiewicz and
Eastman, 2008) require significantly more investment in
terms of development effort and financial cost (Dahmani
et al., 2012; Durgin & Li, 2010; Bowman & McMabhan,
2007; Washburn, 2003). Studies comparing head-mounted
VR experiments against desktop-based VR have failed to
show significant differences in results produced (Dahmani
etal., 2012).

In this paper, we adopt a desktop virtual reality-based
game to gain an understanding of how humans, with no
knowledge of an environment, explore. We do this by devel-
oping a novel way of identifying the role that memory and
non-randomness plays in human exploration. The method
involves experiments in which participants play an explo-
ration game; in the game, they are asked to explore a
multi-floor building and complete a set of tasks within a
certain time limit. All the movement and actions of the
players are logged and later analyzed for patterns. We also
develop a novel way of identifying the role that memory
and non-randomness play in human exploration from the
data extracted. Thus, the main motivations of this paper, and
therefore its main contributions, are:

1. The development of a novel and scalable game-based
methodology to study indoor way-finding behavior.

2. The demonstration of such a scalable method’s use-
fulness in determining how memory influences explo-
ration efficiency and an individual’s ability to navigate
within an environment.

3. Determine the influence of memory on exploration effi-
ciency and an individuals ability to navigate within an
environment.

Setup of the experiment

Way-finding experiments in virtual reality environments
consist generally of two parts: knowledge acquisition and
task performance based on this knowledge. Most existing
experiments try to control the knowledge acquisition part of
way-finding. A typical example is (Meilinger et al., 2008)
where the author ensured that all participants received iden-
tical stimuli in order to be able to fairly compare their task
performance based on this knowledge acquisition. Partic-
ipants were asked to watch a video rather than actively
navigate through the environment. This has been the typical
approach to date. We believe, however, that the paths taken
during exploration could reveal interesting aspects of human
exploration (Dahmani et al., 2012).

In order to test this hypothesis and understand more
about the way in which humans explore environments and

store spatial knowledge, we created a game that requires
both exploration and way-finding and analyzed how the
game was played. In creating the environment, we strived
to ensure that it had enough complexity and diversity to be
engaging and invite exploration (Kaplan & Kaplan, 1982;
Montello et al., 2004).

The game

Figure 1 shows the layout of the environment that the game
is played in. The player starts on the ground floor at the point
indicated by X. During the first phase of the game, called
the exploration phase, the player performs an unguided
exploration of the three-floor 44-room environment. The
exploration phase finishes when the player has found all the
checkpoints that are distributed over the three-floor envi-
ronment. The checkpoint locations are chosen in a way
that ensures that roughly 90 % of the environment would
have been visited by the player by the end of the explo-
ration phase (confirmed by game statistics in Table 2). The
knowledge testing phase follows the exploration phase. Dur-
ing this phase, the player has to sequentially execute three
tasks in three locations, one on each floor. The players do
not have access to maps or directional signs to help them
navigate. However, simple text-based identification signs
are placed in front of each room to identify the name, and
at staircase entrances and exits to identify the floor num-
ber. Without these, the environment would be too confusing
for players to navigate (Gibson, 2009). A more detailed
description of the game and the environment is given in
Appendix B.

Participants

Fifty young adults (14 women, 36 men, age range 18-30
years) were recruited with fliers posted on the Nanyang
Technological University campus. Participants were com-
pensated $5 for their participation in the game. It was played
by all participants on the same computer in a lab with
minimal distractions.

Participants were given 5 min to familiarize themselves
with the controls of the first-person game, which involved
using the keyboard direction keys for movement and the
mouse for altering the move and view direction. A mouse
click would allow the participant to interact with the envi-
ronment by either opening doors or freeing prisons. The
participants were given 45 min to complete the game. Of
the 50 participants, the data from only 44 participants were
used, the remaining six (one woman, five men) experienced
motion sickness from the movement in the first-person gam-
ing environment and had to quit playing before the game
could be completed. Next, we explain the way in which the
data was analyzed.
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(b) First Floor

(c) Second Floor

Fig. 1 Floor plans of the three floors. The X indicates the starting point. The blue color indicates the checkpoints that have to be reached by the
participant during exploration (this is a modified version of an existing Minecraft map [http://www.planetminecraft.com/project/royal-palace/])

Analysis

Figure 2 shows the room layout show in Fig. 1 as an undi-
rected graph. A directed movement graph is calculated for
each player, with the edges of the graph indicating the direc-
tion and time of movement from one node to the next. The
analysis presented in the following sections is performed
using these graphs.

@ Springer

Types of exploring agents

The motivation of our analysis is to determine how memory
influences exploration efficiency and an individual’s abil-
ity to navigate within an environment. In order to do this,
we use an approach similar to the ideal navigator model
of Stankiewicz et al. (2006). We compare the movement
of the players to different types of simple exploring agents
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Fig. 2 This figure shows a graphical representation of the room layout in Fig. 1

inhabiting the same environment as the player. Through this
comparison, we determine the ways in which a player is
different from, or similar to, each of these agents.

We compare the movement graph of the players to three
kinds of exploring agents: unbiased random walkers, agents
with perfect m-step memory, and Markov agents. Just like
the actual players, these agents have no prior knowledge and
explore the undirected graph shown in Fig. 2. Our analysis
is done based on four sets of directed movement graphs:

specific coverage is achieved. The coverage is simply
calculated as:

number of rooms visited

coverage = x 100 @))

total number of rooms
A total of 30,000 such movement graphs are gener-
ated for each value of m for each experiment. This was
empirically found to be a good enough value to ensure
minimal variation in the radius of gyration.

o m'"-order Markov agents: These agents mimic the
movement of the average of the ensemble of players
assuming they had only an m-step memory. The action
of an m'"-order Markov agent at a particular point in
the path is a function of the actions of the actual play-
ers who had taken the same m steps. This is explained

Actual players: This is the set of 44 player movement
graphs, i.e., the movement graphs introduced at the
beginning of this section.

Unbiased random walker: The next node to which
this agent moves is chosen randomly with equal prob-
ability. Each iteration of the random walk is per-

formed until the walker covers 100 % of the envi-
ronment. A collection of random walks is obtained
until the variance in the radius of gyration of gener-
ated movement graphs stabilizes. The radius of gyra-
tion is the standard deviation of a walker’s position
to the center of mass (centroid) of movement (Cheng

in more detail in the next section. The calculations
are performed for m from 1 to 13. As with the agent
with perfect memory, the movement graphs are gen-
erated either for a specific number of hops or until
a specific amount of coverage is achieved. Also, as
before, 30,000 movement graphs are generated for each

et al., 2011). It gives a measure of the locality of the value of m.

graph.

Agent with perfect m-step memory: This is a biased ran-
dom walker with an m-step memory. It moves exactly
like the random walker except that it avoids moving
back to any of the m rooms it visited previously. If

Table 1 Summary of symbols and their meaning

there is no unvisited room, the agent checks its m-step ~ Symbol Meaning

memory for an unexplored junction. If such a junction . A particular node

exists, it goes back to that point and continues explor- p(1.D) List of all paths of length 7 taken by individuals

ing in an unvisited direction. If such a junction does not in dataset D

exist, the agent simply chooses, at random, a neighbor- .

) > g Pty > > g . q™ A particular path of length n

ing location to the current node with equal probability. pD) List of all paths in P®P) where the first m steps
qm

Depending on the calculation being performed, the path

. s . are represented b
is generated for a specific number of hops or until a P va

@ Springer



626

Behav Res (2016) 48:621-639

Simulations of movement were used to generate move-
ment graphs for each of these types of agents and the results
of this analysis are presented in the Results section. Before
this, the next section explains the working of the Markov
agents in more detail.

Markov agents

In this section, we present how the movements of the
Markov agents are calculated. The chief motivation of this
Markovian analysis was to investigate the role that mem-
ory plays in the exploration of the environment (Refer to
Table 1 for a summary of symbols used in this section and
their meaning).

We take an m'"-order Markov model to represent an
m-step memory of the explorer, where steps constitute
node visits on the undirected graph (Fig. 2). One way to
speculate on the size of the memory used by a human
during exploration is to predict a path of length n from
some Markov data of order m < n. We hypothesize that
if the movement of the actual players can be predicted
using an m'"-order Markov agent, then this implies that
humans use a working memory of size m steps during
exploration.

In a general m'"-order Markov process, the basic idea is
that the action at any point of time depends only on the pre-
vious m actions. By stating that the process of exploration is
an m'" order Markov process, we assume that the next node
that is visited by a player is only dependent on the previous
m steps. This is different from an agent with m-step mem-
ory that tries to avoid the previous m nodes. Since the next
step is dependent on the actions of players who have vis-
ited that same subsequence of m nodes, the Markov model
theoretically encapsulates other factors like layout, visibil-
ity, and so forth, and thus, unlike the former, has imperfect
recollection.

There are several methods for estimating the order of
different kinds of Markov models (Strelioff & Crutchfield,
2014; Papapetrou & Kugiumtzis, 2013; Akaike, 1998;
Schwarz, 1978) and especially for Markov-chain models
of the sort used in this paper (Papapetrou & Kugiumtzis,
2013; Akaike, 1998; Schwarz, 1978). However, these meth-
ods tend to perform much worse when the state space of the
Markov model is large (Papapetrou & Kugiumtzis, 2013)
like in the present scenario (44 rooms). Singer et al. per-
formed a similar analysis on online navigation behavior to
determine people’s browsing habits (Singer et al., 2014).
The key to being able to do this analysis was abstracting
away from specific page transitions (a very large state space)
and studying memory effects on a topical level by represent-
ing click streams as sequences of topics or categories (state
space of less than 10). In the absence of a method of effec-
tively categorizing rooms based on some reliable criteria,
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the existing methods become unreliable for order estima-
tion. Thus, we use the data available to simulate explo-
ration through an agent-based model and compare results
against the different models as explained in the previous
section.

Figure 3 explains the idea of a Markov agent by contrast-
ing its behavior with that of an agent with simple m-step
memory. In the example layout—with the rooms C, D, and
E connected to corridors A and B—we consider the situa-
tion where the exploring agent has moved from A to B to C
to B to D and back to B. Assuming a six-step memory, the
simple memory agent would definitely visit room E since
all other rooms have been visited in the last six steps. How-
ever, the 6/ — order Markov agent’s action in this situation
depends on the actions of the actual players in this situation.
Since two out of the three players visited room E and one
out of the three players visited room A, the next step of the
Markov agent can either be room E or A with 2/3 and 1/3
probability, respectively.

More generally, for an m!"-order Markov agent, given
a particular path of length m, the (m + 1) step is gener-
ated using the previous m steps, that is, the 15 to m*" step.
Let the set of all paths of length m 4+ 1 in the dataset D
be represented by P +1.2) and let ¢ be the traversed path
of m steps. First, we select the subset of P@+1.D) whose
first m steps are the same as ¢. If this is represented as
Pq(ﬂ'H’D), then the probability of the (m + 1) step being a

particular room r is the proportion of paths in P;Z’H’D)

with
the (m + 1)'" step arriving at r.

Following this, the (m + 2)* step can be predicted
by doing the same calculation using the preceding m
steps from 2 to m + 1. This process can be contin-
ued to generate a directed movement graph of n edges
using just the m'"-order Markov data. As mentioned pre-
viously, calculations are done using 30,000 paths gener-
ated like this. In the cases where P;ZHI’D) = {J, the
(m — 1)""-order probability is taken to determine the
destination.

The validity of this approach with respect to the size of
the dataset available is presented in Appendix A. Next, we
look at the results of our analysis.

Results

From the game, the complete movement traces of 50 play-
ers were obtained. Some general statistics on the data are
presented in Table 2. The movement data obtained was ana-
lyzed by comparing against agents of different types to
determine patterns and gain a better understanding of the
movements of the players. This section presents the results
of three kinds of analysis that were performed. First, we
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present the results of a simple check of the frequency of vis-
its to each room. Following this, we compare the efficiency
of movement of the players against the different agents.
Finally, we present some empirical observations from the
movement graphs of the actual players.

(a) The Situation

(c) Player 2

(e) Agent with 6-step memory

Fig. 3 Given the situation in a, the agent with six-step memory would
move next to room E since it has the list B, D, B, C, B, A as the six
rooms visited immediately previously. However, the action of the 6"-
order Markov agent in this situation is dependent on the actions of the

Room visit frequencies

In our first experiment, we calculate the frequency of visits
for each room per player and compare this against the unbi-
ased random walker. This is a simple test to determine if the

(b) Player 1

(d) Player 3

(f) 6! order Markov Agent

players (b, ¢ & d) who happened to be in the same situation. Since one
out of the three players who were in the given situation next moved to
room A, there is a 1/3 chance that the Markov agent will visit room A
next
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Table 2 List of some general game statistics. The coverage and hop
count give an estimate of exploration efficiency

Phases Exploration Knowledge testing
Duration 25.15 £ 5.70 minutes 3.85 £ 1.03 minutes
Coverage 89+1% 45+ 8%

Hop Count 252.6 +£7.5 88 +26

Exploration coverage of roughly 90 % meets the design objectives
discussed in the section describing the game

players have a pattern or strategy in their exploration that is
different from a random walk. If there is a significant differ-
ence in the number of times a particular floor or area of the
building is visited by a player then this will be revealed by
this comparison against an unbiased random walker.

For each room r we calculate the normalized number of
visits a. For any room r, let f,(r) be the total number of
times room r is visited by the player p and let f.,(r) be
the number of times the average random walker visited the
same room. We define the normalized number of visits « as:

fx(r)
) = 2
)= @ @

This is calculated for both the player and the random walker.
Using this the visit ratio, y,(r), of the actual player is
calculated for each room as:
ap (r)

oy (1)

A random walker’s frequency of visits to a particular node is
purely a function of the topography of an environment, i.e.,
the nodes and their connectivity. Thus, unlike o, (r), y, ()
would not contain the effects of the degree of a node. This
means that if a room r; has lower value of lower y, (r) than

yp(r) = 3

Ground Floor

r2, this is not because of the room having lesser connectivity.
The average y(r) over the ensemble of player data is then
calculated. This is illustrated in Fig. 4. This figure shows the
value of y(r) of each room as a scaled version of Fig. 2. The
red color indicates those rooms that have 5 % more visits in
the human data than the random walker data and the green
color indicates those that have 5 % less visits than a random
walker; the node is colored white otherwise. The diameter
of each node in this graph is scaled by y;.

Therefore, a white color indicates that the normalized
number of visits in both the random walker dataset and in
the actual player dataset are within 5% of each other. A
value greater than 1 indicates that players visited the room
more than the random walker and a smaller value indicates
the opposite. There is a marked difference in the visits by
the players and visits by the random walker. It can also be
seen that the average number of visits on the second floor
was higher than the number of visits on the first floor, which
was more than the number of visits on the ground floor.

Despite a random walker not differentiating between
staircases and other links, a random walker might have more
visits to one floor than another purely because there are
fewer inter floor connections than other links. For exam-
ple, floor 3 has only one staircase that leads the random
walker out of the third floor. To confirm that the inter
floor differences for the actual player is not because of
this, we normalize Eq. 2 to the number of visits on the
floor rather than the total number of visits. On doing this,
if the graph is different form Fig. 4, it would imply that
unlike a random walker, a player differentiates between
a simple link between rooms or corridors and a stair-
case, which is a link between floors. Figure 5, which
is the floor normalized version of Fig. 4 does clearly
show this.

Second Floor

First Floor

Block C

== Block B

Block A

Fig. 4 Figure 2 scaled by normalized number of visits as described in Eq. 3. Red color indicates a y value of greater than 1.05 and the green color
indicates a value of less than 0.95. The diameter of each node in this graph is scaled to y, x (unscaled diameter)
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Ground Floor

Block C First Floor Second Floor

== Block B

| Block A

Fig. 5 Figure 4 normalized to floor instead of the total number of visits. The fact that this graph is different from Fig. 4 indicates that, unlike a
random walker, a player differentiates between a simple link between rooms or corridors and a staircase that links two floors

Figures 4 and 5 provide a possible validation of a vari-
ation of the floor-first strategy (Holscher et al., 2006) used
for exploration. The strategy in the original paper was for
way-finding with a particular goal, but here it seems to be
being used for exploration (which is way-finding without a
definite goal). The players seem to consider each floor as a
separate entity and are generally reluctant to take the stair-
case. This might also be because the process of separating
each floor helps in bringing some organization and structure
to the confusing room layout and the process of exploration
(that is, completely explore one level before the next).

90

There is a chance that this aversion to taking staircases is
a consequence of the structure of the game environment or
the controls in the game. This would happen if the staircases
were difficult to find or climbing staircases required differ-
ent controls from moving through doors or walking through
corridors. However, this is not the case in the designed
game. The player just has to press the forward button to
move in the environment regardless of whether it is a stair-
case or a corridor or a room. Also, the staircases are clearly
visible from the neighboring nodes with sign boards further
confirming their location.

85 4

80 4

75

70

65

60

Coverage after 253 hops

55

50

45 T T

Actual Players
- Agent with m-step memory
T Markov Agents

Unbiased Random Walker

T T 1

8 10 12

Memory (steps)

Fig. 6 Standard error plot of the average coverage after 253 hops as a
function of memory size. The low values of standard error on the agent
paths are because these calculations are calculated over several thou-

sand paths that are required for the radius of gyration to stabilize. A
value of 253 hops was taken because this was the average number of
hops taken by a player
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(b) Hops for 50% coverage

Fig. 7 Standard error plot of the minimum number of hops required
for obtaining given coverage and shows this as a function of memory
size. As with Fig. 6, the low values of standard error on the agent paths

The hypothesis of the existence of this floor-first strat-
egy is further strengthened by the low visit frequencies to
Block B on the second floor Fig. 5. There are four stair-
cases that take a player from floor 1 to floor 2: two of
these lead to Block A, one to Block C, and one to Block B.
Block A and C are directly connected by a corridor whereas
the only paths to Block B from the same floor are through
rooms DB2 and The Lounge in Block A and C, respec-
tively. This means that unlike Block A and C, Block B is
not accessible via any direct corridor from the same floor.
Since people show a clear inclination to exploring through
corridors as shown in the Empirical Analysis Section of this
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are because these calculations are calculated over several thousand
paths that are required for the radius of gyration to stabilize

paper, the only obvious way to access Block B is by going
down a floor. The fact that Block B has fewer visits seems
to suggest that people resist going down a floor, thus fur-
ther strengthening the hypothesis of a floor-first strategy in
exploration.

Expected coverage given number of hops

The average coverage after a given number of hops gives
an estimate of the efficiency and effectiveness of explo-
ration. On average, each player took 252.6 + 7.5 hops
during their exploration phase. The coverage achieved
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by the other types of agents after 253 hops was calcu-
lated by generating the required set of movement graphs
as explained earlier. Figure 6 shows the results of this
calculation.

The figure seems to indicate that even a second-order
Markov agent, that is one whose next position is only depen-
dent on its current and previous position, performs much
better than an unbiased random walker performs. It also
seems to indicate that after 253 hops the performance of the
actual players is much better than both the Markov agent
and an agent with an m-step memory. This is not surprising,
since it is likely that when nearing 253 hops, the long-term
memory of the player also has a major influence. As dis-
cussed earlier, in the longer term, the player would probably
have formed a route or some sort of survey knowledge; this
may include the structure of the building, routes, and short
cuts and, in general, means there is likely more structure to
the mental map. We also observe that the Markov agent per-
forms worse than the agent with perfect memory, regardless
of the value of m. This is because the Markov agent has the
same errors as the collective human memory, whereas the
m-step agent has perfect memory.

Expected hops given coverage

We calculate the minimum number of hops required to
obtain a given coverage. Unlike coverage, a hop count
captures the dynamics of room revisits. The average final
coverage for a player after the exploration phase of the
game is (89 £ 1)% as shown in Fig. 6. We first calcu-
late the minimum number of hops required by the different
agents to obtain this coverage; this is shown in Fig. 7a. The
graph shows the same pattern as in Fig. 6. The only dif-
ference is that the number of hops required by the Markov
agents increases again for large memory steps. This is prob-
ably because rather than going to new nodes, the Markov
agent revisits old nodes; this results in the coverage not
increasing.

As mentioned previously, the reason for the patterns
observed might be the effect of long-term memory. In order
to test this, the same expected number of hops for 50 %
coverage is also determined and Fig. 7b is obtained. The
magnitude of the difference between hops required for 50 %
and 88 % shows a non linear increase, indicating that explo-
ration becomes progressively more difficult. The figure also
shows that agents with a memory of five or more steps seem
to perform at the same level or better than humans. It is
interesting to note that the performance of Markov agents
is worse than agents with a simple m-step memory. Again,
this is probably due to the imperfect nature of the short-term
human memory on which it is based. The gap in perfor-
mance between the Markov agent dataset and the actual
player dataset is quite narrow, at m = 7 to 9. This indicates
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Fig. 8 Chart summarizing the behavior of different kinds of agents
at corridors of different types. Less than 10 % of the players make a
conscious decision (i.e., change their direction) on a simple straight
corridor (with no doors), a staircase, or even a simple corner. More
interestingly, a little less than 25 % go back instead of opening a
clearly visible door in front of them. However, when this next door is
not clearly visible when they enter, 40 % of the players just go back
through their entrance. This indicates that there are definite decision
points during exploration. More interestingly, the 7" order Markov
agent exactly replicates this behavior while the other two agents’
behaviors significantly diverge

that the room visited at any point can be reasonably pre-
dicted from the previous 6—8 rooms during this early phase
of exploration.

Empirical analysis

In this section, we conduct an empirical and qualitative
analysis of the actual player dataset, i.e., the actions of
the players at different locations. This analysis is intended
to reveal the existence of patterns in exploration like def-
inite decision points, the capability of the Markov agent
to replicate these patterns, and the possible importance of

D1 D2

Dorm Corridor

Block A
Main
Corridor

Fig. 9 The layout of the area under consideration for analyzing
location recognition and memory
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Fig. 10 Movement of the players at the junction of Block A main corridor and the dorm corridor. As can be clearly seen, players keep revisiting
the corridor despite having visited it before. The same pattern is seen in Markov agents too showing that only short-term memory is used

cues in recognition and long-term memory, which were not  that have no rooms on the side (that is, they are simply con-
discernible from the movement graphs discussed previously. ~ nections between two areas), staircases and simple corners,

the only decision that a player can make is whether to move
Existence of decision points forward or turn back. Turning back would require a con-

scious decision by the player. A pure random walker would
Figure 8 illustrates the decisions of people at different types ~ have an equal chance of going back or forward. As shown in
of rooms and corridors, where it is possible for them to make  Fig. 8, the data reveals that players generally do not change
a decision. At certain locations, such as simple corridors their mind.
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Fig. 11 The behavior of the players after entering the dorm corridor The fact that this is not seen in the Markov agents suggest that this is
during the knowledge testing phase. At this point, most players remem- probably due to longer-term memory
ber the corridor and head back to the main corridor without exploring.
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What is more interesting is the behavior of people at
rooms that have just two doors. The data seems to reveal that
if the opposite door is clearly visible from one door, then
the room is used by the player almost exactly like a simple
corridor, though there is a slightly higher chance of turn-
ing back. However, if the opposite door is not clearly visible
when the person enters, i.e., it is at some angle to the view
when the player enters or there is some furniture partially
blocking the view to that door, then there is a more than 40
% chance of the person simply going back.

There is an argument to be made that this reluctance to
move towards a slightly less visible door is a result of the
input controls (keyboard and mouse) of the game. However,
we believe this is not the case because the data that was
used was observed from players who did not find it difficult
to turn. Moreover, only the data of players who managed
to complete the game within the time limit was included.
As doing this required exploring a complicated three-floor
environment with 44 rooms and plenty of turns, the players
had to be able to use the movement and turning controls in
a reliable and natural manner.

In order to demonstrate the ability of the Markov model
to encapsulate factors other than memory that influence
movement, we also plot the same behavior for a 7'h _order
Markov agent, a simple agent with seven-step memory and
an unbiased random walker. As expected, the Markov agents
reflect the same patterns as the actual player while the
behavior of the other agents is completely different: the ran-
dom walker makes no difference between going forward or
back and the agent with memory never goes back.

Location recognition and memory

In the game environment, there exists a corridor that seems
to reveal an interesting aspect of memory and exploration.
The layout of this corridor is shown in Fig. 9. The corridor
labeled dorm corridor is interesting because it is connected
to the main Block A corridor only at one end'. The two
rooms on this corridor (D1 and D2) do not have a check-
point, a staircase, or any connections that make it at all
relevant to the player. However, it lies on a commonly used
corridor (marked Block A main corridor) and is used by
most players at least once. In an ideal scenario, players
would remember this fact and never visit the dorm corridor
after the first visit to the junction of Block A main corri-
dor and dorm corridor. The actual movement of the players
at this junction is shown in Fig. 10. Surprisingly, the figure
shows that during the course of the game, regardless of the
number of times the junction is visited, players turn into the
dorm corridor more often than not.

'With reference to the previous discussion on decision points, it is

important to remember that this is not a simple corridor because it has
doors on the side and is thus a decision point.

At first, this leads to the conclusion that the players never
learn and have no memory. However, a similar analysis of
movement after entering the dorm corridor indicates that
this is not the case. As shown in Fig. 11, about 80 % of
the players head right back to the junction after entering
this corridor. In order to understand why this happens, we
can compare the player behavior against the Markov agent.
We see that at the junction, the actual player movement
is similar to the Markov agent movement, suggesting that
the movement is primarily governed by short-term memory.
However, in the dorm corridor, the actual players’ behavior
is completely different from the Markov agent after the first
visit, suggesting that long-term memory is being triggered
by some factors at this point. This probably indicates that
the context given by the location of signs and doors in the
corridor helps the player remember the corridor, its location,
and its use.

This could theoretically be verified through the continu-
ous measurements of mouse movement trajectories of play-
ers at these points as in Spivey et al. (2005) and Freeman
and Ambady (2010). However, this constant sampling and
recording may have consequences on the frame-rate and
playability of the game. Also, analyzing such information
is complicated by the difficulty of matching mouse loca-
tion with what exactly is seen on the screen as the player is
constantly moving around a virtual world. However, this is
definitely an avenue for future analysis.

Conclusion and implications

In this paper, we presented a novel game-based method-
ology that allows for experimental investigation of human
navigation and exploration. Although similar methodolo-
gies have been used to understand more general crowd
behavior, we believe this is the first case in which quanti-
tative analysis of a game has been used to understand the
role memory plays in exploration. The novel Markovian
analysis of the player’s movement in the game revealed a
number of significant findings. Firstly, we showed that a
simple memory model, with a depth of between 6 and 8,
is sufficient to approximate a ‘human level’ of exploration
efficiency. This was consistent in two measures of explo-
ration efficiency: total coverage from a fixed number of
hops and the number of hops required to obtain a fixed
coverage. The memory depth of 6-8 seems to be consis-
tent with well-known studies of human memory capacity
(Miller, 1956). The experiments also highlighted the impor-
tance of junctions in the exploration process, in particular,
decisions (that is, changing course) seem to almost exclu-
sively occur at junctions. Explorers also try to reduce the
number of decisions they have to make by proceeding to
the next clearly visible room or corridor (assuming only one
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such room is visible). This pattern was also reflected in the
Markov agents. Furthermore, the results showed that people
seem to explore environments using a floor-first strategy,
where they are reluctant to move to a different floor until
they have finished exploring the current one. Finally, pre-
liminary empirical analysis seems to suggest that easily
recognizable locations probably help individuals improve
exploration efficiency by enabling individuals to effectively
remove sub-graphs of the room network from their cognitive
map. However, verifying this final claim will require further
testing either with mouse trajectory tracking or some other
method of verifying the heading of the player.

Several of these observations could be made only through
the analysis of the movement graphs and the Markovian
analysis on the data. It would have been difficult to obtain
this amount of data through the traditional experimental
methodologies without significant cost in terms of time and
effort. Thus, a game-based analysis is not only useful in
making significant observations about human behavior but
it also helps to open up new possibilities of research.

The simple agent-based memory model developed in this
paper is shown to approximate human-like efficiency in
its exploration strategy. We think this type of model is an
excellent starting point for developing agent-based models
that can be used to evaluate safety-by-design architecture
in complex structures. We also see the experiments and
methods presented here as a starting point for further inves-
tigations into the role of exploration and memory in human
egress. Similar experiments could be conducted to evaluate
the role of long-term memory in exploration, and perhaps
validate the three-stage map building of Siegel and White
(1975).
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Appendix A: Validity check for Markov analysis

Effect of dataset size

In order to check whether the peak in the hop and coverage
data is a function of the dataset size, we hypothesized that if

@ Springer

the peak does not change on doubling the dataset size, then
the pattern that is seen is not an artefact of the dataset size.
We plotted the same graph for N = 22 (i.e., taking only 22
participants at random) and N = 44 and checked if there is
a shift in the peak to a higher value. As shown in Fig. 12,
there is clearly no shift. The peak value still remains at 7-8
and starts dropping at 9.

Decision base size at decision points

The Markov data calculation is based on aggregating the
actions of the players at each decision point. The quality of
the Markov data probability distribution calculated is thus
based on the amount of data available to make predictions.
In order to calculate an m'"-order probability of the next
step, the calculations are done using the number of times
the preceding sequence of m steps occurred and the choices
made at that point by players in the dataset. Thus, as the
frequency of said path decreases, there is lesser data for the
probability calculation. The m!"-order Markov calculation
becomes progressively less reliable and less different from
random noise as m increases due to the limited size of the
dataset.

To estimate the maximum value of m for which m*" order
calculations can be done reliably, we calculate the decision
base size of the calculations. To calculate the decision base
size for order m, we do the following: First, 30,000 paths
of 300 hops are generated for an m'”-order Markov agent
based on the dataset of size N. For each node in each path
generated, the number of players that have actually made a
decision at that point is counted. We divide this value by
the number of decisions that are possible at that point. So a
single decimal value is obtained for each node of each path
generated. The average of this over all nodes a path gives
the path-specific decision base. The average of these path-
specific decision bases gives the decision base for the order
m and dataset of size N. The result of this calculation is
shown in Fig. 13.

The figure, firstly and most importantly, shows the use-
fulness of having a larger dataset in the Markov data calcu-
lation. Also, beyond the 9'" order, a decision base of size
less than 2 is available, indicating that there are less than
twice as many actions as there are choices on average at
each decision point. This indicates that beyond the 9/ order
the calculations are unreliable.

Appendix B: Detailed description of the game

The premise of the game is that the player has been tele-
ported into an abandoned palace where 11 people have been
imprisoned in different locations spread across the three-
floor environment. The objective of the game is for the
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Fig. 12 Hop and coverage graphs of different size of datasets seem to indicate that the peak is not dependent on data size

player to free the 11 prisoners and subsequently follow
instructions to open the main gate to the palace and escape.
The palace is a three-floor building with 44 rooms. The lay-
out of each floor of the palace is shown in Fig. 1. A player
starts at the location indicated on the map with an X.
During the first few minutes of the game, the player
is presented with the story line and interactively told how
to use the controls and play the game through a set of
signboards. They also follow a tutorial, which helps them
free the first prisoner. Subsequently, the player is tasked

to find and free the remaining ten prisoners. The locations
of the prisons, as shown by the shaded areas in the map,
are spread randomly around the building. This is the first
knowledge-acquisition phase of the game and we call this
the exploration phase. This phase requires the player to
move around and explore the building. This phase can be
reasonably equated to what a new visitor to a building (for
example, a shopping mall) experiences.

The next phase, which we call knowledge testing phase,
starts when the eleventh prisoner has been freed. During
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this phase, the cognitive map formed by the player is tested
through a series of three tasks, which involve operating
switches that were hidden during the exploration phase. By
not revealing the nature of the second phase to the player at
the beginning of the game and also by hiding the location of
the knowledge testing tasks, we ensure that the player does
not make a special effort in remembering locations which
could artificially alter the cognitive map formed.

When the eleventh prisoner is freed and the exploration
phase ends, the player is given instructions to proceed to
the gallery room (shown in Fig. 14). This room would have
been examined by the player during exploration. It is the
only room in the palace whose walls are covered with paint-
ings and this makes it reasonably likely that the player will
remember this location because of its perceptual salience
(Davis et al., 2009).

Once the player locates and presses the switch that is
revealed in this room, the player is given instructions to
move to the second-floor library. There are two impor-
tant factors for choosing this particular location. Firstly,
the library has four entrances and is very likely that the
player would have entered this room multiple times dur-
ing the exploration phase. Secondly, being on the sec-
ond floor, there are multiple paths to this location from
the gallery.

Once this location is found, the player is given the final
instruction to proceed to their starting location to find the
final switch that will open the main gate to the palace.
Again, there are multiple routes to this location, some of
which are significantly shorter than others. Also, being a
starting location and in a somewhat central location, it is
likely that it has been frequently visited and should have
some cognitive salience (Davis et al., 2009).

We built the experiment inside the popular game
Minecraft (Persson & Bergensten, 2009) in order to reduce
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the development effort and to allow for flexibility in envi-
ronment creation.

The Minecraft gaming environment

Minecraft> is a Java-based multi-platform sandbox con-
struction game. The game involves players creating and
destroying various types of blocks in a first-person three-
dimensional environment. In the original game, the player
controls an avatar that can destroy or create blocks,
forming buildings, structures, artwork, and even entire
cities on multi-player servers or single-player worlds
across multiple game modes. Players can break any block
and build any block, provided he/she has the resources.
Figure 14 gives a better idea of the look and feel of the
game.

In the development of the game described in the pre-
vious section, we use an existing plug-in® that constrains
players so that they can only move around in the environ-
ment and interact with doors and switches, that is, elements
that are essential for the experiment. A second modifica-
tion is used* to keep a log of the movements and actions
of the players and store them in a MySql server for anal-
ysis. The player locations at different times, the time at
which each prison was opened and the time taken to com-
plete each task in the testing phase, are all recorded for this
purpose.

Using Minecraft provided several advantages. Being a
popular game with standard controls and a first-person view,

Zhttps://minecraft.net/
3http://dev.bukkit.org/bukkit-plugins/permbukkit/
“https://github.com/vaisaghvt/GameAnalyserMinecraftPlugin
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Fig. 14 Picture gallery

enjoyability and playability are much easier to achieve.
The first-person view and existing 3D models for avatars,
doors, etc., ensures a degree of immersiveness that is gener-
ally more difficult to achieve. Another useful consequence
of the popularity of Minecraft is the large community of
developers and the number of Java-based plug-ins that are
available for modifying the default Minecraft environment.
This made it easier to develop the game and make the nec-
essary modifications to make the experiment as required.
However, the biggest advantage of using Minecraft is the
ubiquity it offers, with over 35 million copies sold. If hosted
on a publicly accessible server, it would theoretically not
be difficult to get several hundred, if not a thousand, par-
ticipants. Efforts that have been made towards this are
presented later. In the context of immersion, it is also inter-
esting to note the ongoing efforts to develop a version of
Minecraft for Oculus Rift>, the upcoming commercial VR
headset. This would open up exciting new possibilities for
extension of the research presented here. In the present
paper, we present the initial results of the game being played
by participants on a local server.

This paper analyzed the result of 50 students playing
the game on a local server. One of the limitations of the
analysis discussed was the amount of data that was avail-
able for analysis, especially for the Markov analysis. The

Shttp://minecraft-vr.com/

limited number of participants available also meant that it
was difficult to test hypotheses on the task completion phase
by creating and comparing the players’ movement in an
alternate environment.

As discussed earlier, one of the big advantages of using
a popular game like Minecraft is the ubiquity of the game.
To make use of this ubiquity, we have hosted the game
on a Linux server provided by Amazon Web Services and
plan to collect data from this server over the next year.
First, a simple web page® was created where interested
players can submit a request to play by using a regis-
tered Minecraft account. This request is sent to the Ama-
zon Server. Python’s event-driven network engine Twisted
(McKellar & Fettiq, 2013) was used to create a simple appli-
cation that listens to these requests at a specified port and
starts a white-listed Minecraft server to which only this par-
ticular user can connect. Once a request is successful, the
player receives the IP address of the machine, which he pro-
ceeds to use to connect to the server and play the game.
The Minecraft server is shut down once the player exits the
game.

We hope to gather a much greater sample that may reveal
more fundamental and interesting aspects of human explo-
ration behavior than was possible to analyze with the limited
dataset currently available.

6vaisaghvt.com/minecraft-experiment/

@ Springer


http://minecraft-vr.com/
vaisaghvt.com/minecraft-experiment/

638

Behav Res (2016) 48:621-639

References

Akaike, H. (1998). Information theory and an extension of the maxi-
mum likelihood principle. In E. Parzen, K. Tanabe & G. Kitagawa
(Eds.), Selected papers of Hirotugu Akaike (pp. 199-213). New
York: Springer.

Barry Issenberg, S., McGaghie, W. C., Hart, I. R., Mayer, J. W.,
Felner, J. M., Petrusa, E. R., & et al. (1999). Simulation technol-
ogy for health care professional skills training and assessment. The
Journal of the American Medical Association, 282(9), 861-866.
doi:10.1001/jama.282.9.861

Berger, A., Jones, L., Rothbart, M., & Posner, M. (2000). Comput-
erized games to study the development of attention in childhood.
Behavior Research Methods, Instruments & Computers, 32(2),
297-303. doi:10.3758/BF03207798

Best, G. (1970). Direction-finding in large buildings. Architectural
Psychology, 72-91.

Bode, N. W., & Codling, E. A. (2013). Human exit route choice in vir-
tual crowd evacuations. Animal Behaviour, 86(2), 347-358. http://
www.sciencedirect.com/science/article/pii/S0003347213002443

Bode, N. W. F,, Kemloh Wagoum, A. U., & Codling, E. A. (2014).
Human responses to multiple sources of directional information
in virtual crowd evacuations. Journal of the Royal Society Inter-
face, 11(91). http://rsif.royalsocietypublishing.org/content/11/91/
20130904.abstract

Bowman, D., & McMahan, R. (2007). Virtual reality: How much
immersion is enough? Computer. http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=4287241

Cheng, Z., Caverlee, J., Lee, K., & Sui, D. Z. (2011). Exploring mil-
lions of footprints in location sharing services. In Proceedings of
the 5th International Conference on Weblogs and Social Media.
Menlo Park: AAAIL http://www.aaai.org/ocs/index.php/ICWSM/
ICWSMI1 I/paper/view/2783

Connolly, T. M., Boyle, E. A., MacArthur, E., Hainey, T., & Boyle,
J. M. (2012). A systematic literature review of empirical evidence
on computer games and serious games. Computers & Education,
59(2), 661-686. http://www.sciencedirect.com/science/article/pii/
S0360131512000619

Dahmani, L., Ledoux, A. A., Boyer, P., & Bohbot, V. D. (2012).
Wayfinding: the effects of large displays and 3-D perception.
Behavior Research Methods, 44(2), 447-54. http://www.ncbi.nlm.
nih.gov/pubmed/22045563

Davis, R. L., Therrien, B. A., & West, B. T. (2009). Working memory,
cues, and wayfinding in older women. Journal of Applied Geron-
tology, 28(6), 743-767. http://jag.sagepub.com/content/28/6/743.
abstract

Difonzo, N., Hantula, D., & Bordia, P. (1998). Microworlds for exper-
imental research: Having your (control and collection) cake, and
realism too. Behavior Research Methods, Instruments & Comput-
ers, 30(2), 278-286. doi:10.3758/BF03200656

Donchin, E. (1995). Video games as research tools: The Space Fortress
game. Behavior Research Methods, Instruments, & Computers,
27(2), 217-223. doi:10.3758/BF03204735

Durgin, F. H., & Li, Z. (2010). Controlled interaction: Strategies
for using virtual reality to study perception. Behavior Research
Methods, 42(2), 414-420. http://www.ncbi.nlm.nih.gov/pubmed/
20479172

Evans, G. W., & Pezdek, K. (1980). Cognitive mapping: Knowl-
edge of real-world distance and location information. Journal
of Experimental Psychology: Human Learning and Memory, 6
(1), 13.

Freeman, J. B., & Ambady, N. (2010). MouseTracker: Software for
studying real-time mental processing using a computer mouse-
tracking method. Behavior Research Methods, 42(1), 226-41.
http://www.ncbi.nlm.nih.gov/pubmed/20160302

@ Springer

Girling, T., Lindberg, E., & Mintyld, T. (1983). Orientation in build-
ings: Effects of familiarity, visual access, and orientation aids.
Journal of Applied Psychology, 68(1), 177.

Gibson, D. (2009). The Wayfinding handbook: Information design for
public places. Princeton Architectural Press. http://books.google.
com.sg/books?id=XatRrLaZ-AcC

Gopal, S., Klatzky, R. L., & Smith, T. R. (1989). Navigator: A psycho-
logically based model of environmental learning through naviga-
tion. Journal of Environmental Psychology, 9(4), 309-331. http://
www.sciencedirect.com/science/article/pii/S027249448980012X

Hawkins, G., Rae, B., Nesbitt, K., & Brown, S. (2013). Gamelike fea-
tures might not improve data. Behavior Research Methods, 45(2),
301-318. doi: 10.3758/s13428-012-0264-3

Hays, R. T., Jacobs, J. W., Prince, C., & Salas, E. (1992). Flight simu-
lator training effectiveness: A meta-analysis. Military Psychology,
4(2), 63-74.

Hélscher, C., Biichner, S. J., Meilinger, T., & Strube, G. (2006). Map
use and Wayfinding strategies in a multi-building ensemble. In
Spatial Cognition (Vol. 4387, pp. 365-380). Springer.

Ishikawa, T., & Montello, D. R. (2006). Spatial knowledge acqui-
sition from direct experience in the environment: Individual
differences in the development of metric knowledge and the
integration of separately learned places. Cognitive Psychology,
52(2), 93-129. http://www.sciencedirect.com/science/article/pii/
S0010028505000733

Kaplan, S., & Kaplan, R. (1982). Cognition and environment: Func-
tioning of an uncertain world. Ulrich’s Bookstore.

Kuipers, B. (1978). Modelling spatial knowledge. Cognitive Science,
2(2), 129-153.

Kuipers, B., Tecuci, D. G., & Stankiewicz, B. J. (2003). The skeleton
in the cognitive map: A computational and empirical exploration.
Environment and Behavior, 35(1), 81-106. http://eab.sagepub.
com/content/35/1/81.abstract

Loomis, J. M., Blascovich, J. J., & Beall, A. C. (1999). Immer-
sive virtual environment technology as a basic research tool in
psychology. Behavior Research Methods Instruments & Comput-
ers, 31(4), 557-564. http://www.springerlink.com/index/10.3758/
BF03200735

Lynch, K. (1960). The image of the city. Cambridge: The MIT Press.

McKellar, J., & Fettiq, A. (2013). Twisted: Network programming
essentials, 2nd edn. O’Reilly.

Meilinger, T., Knauff, M., & Biilthoff, H. H. (2008). Working memory
in wayfinding: a dual-task experiment in a virtual city. Cognitive
Science, 32(4), 755-770.

Michael, D. R., & Chen, S. L. (2005). Serious games: Games that
educate. Train, and inform. Muska & Lipman/Premier-Trade.
Miller, G. A. (1956). The magical number seven, plus or minus
two: Some limits on our capacity for processing information.

Psychological Review, 63(2), 81-97. doi:10.1037/h0043158

Moeser, S. D. (1988). Cognitive mapping in a complex building.
Environment and Behavior, 20(1), 21-49. http://eab.sagepub.com/
content/20/1/21.abstract

Montello, D. R., Hegarty, M., Richardson, A. E., & Waller, D. (2004).
Spatial memory of real environments, virtual environments, and
maps. In G.L. Allen (ed.), Human Spatial Memory: Remem-
bering Where (pp. 251-285). Lawrence Erlbaum Associates
Publishers.

O’Neill, M. J. (1992). Effects of familiarity and plan complexity on
wayfinding in simulated buildings. Journal of Environmental Psy-
chology, 12(4), 319-327. http://www.sciencedirect.com/science/
article/pii/S0272494405800805

Papapetrou, M., & Kugiumtzis, D. (2013). Markov chain order esti-
mation with conditional mutual information. Physica A: Statis-
tical Mechanics and its Applications, 392(7), 1593-1601. http://
linkinghub.elsevier.com/retrieve/pii/S0378437112010837


http://dx.doi.org/10.1001/jama.282.9.861
http://dx.doi.org/10.3758/BF03207798
http://www.sciencedirect.com/science/article/pii/S0003347213002443
http://www.sciencedirect.com/science/article/pii/S0003347213002443
http://rsif.royalsocietypublishing.org/content/11/91/20130904.abstract
http://rsif.royalsocietypublishing.org/content/11/91/20130904.abstract
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4287241
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4287241
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2783
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2783
http://www.sciencedirect.com/science/article/pii/S0360131512000619
http://www.sciencedirect.com/science/article/pii/S0360131512000619
http://www.ncbi.nlm.nih.gov/pubmed/22045563
http://www.ncbi.nlm.nih.gov/pubmed/22045563
http://jag.sagepub.com/content/28/6/743.abstract
http://jag.sagepub.com/content/28/6/743.abstract
http://dx.doi.org/10.3758/BF03200656
http://dx.doi.org/10.3758/BF03204735
http://www.ncbi.nlm.nih.gov/pubmed/20479172
http://www.ncbi.nlm.nih.gov/pubmed/20479172
http://www.ncbi.nlm.nih.gov/pubmed/20160302
http://books.google.com.sg/books?id=XatRrLaZ-AcC
http://books.google.com.sg/books?id=XatRrLaZ-AcC
http://www.sciencedirect.com/science/article/pii/S027249448980012X
http://www.sciencedirect.com/science/article/pii/S027249448980012X
http://dx.doi.org/10.3758/s13428-012-0264-3
http://www.sciencedirect.com/science/article/pii/S0010028505000733
http://www.sciencedirect.com/science/article/pii/S0010028505000733
http://eab.sagepub.com/content/35/1/81.abstract
http://eab.sagepub.com/content/35/1/81.abstract
http://www.springerlink.com/index/10.3758/BF03200735
http://www.springerlink.com/index/10.3758/BF03200735
http://dx.doi.org/10.1037/h0043158
http://eab.sagepub.com/content/20/1/21.abstract
http://eab.sagepub.com/content/20/1/21.abstract
http://www.sciencedirect.com/science/article/pii/S0272494405800805
http://www.sciencedirect.com/science/article/pii/S0272494405800805
http://linkinghub.elsevier.com/retrieve/pii/S0378437112010837
http://linkinghub.elsevier.com/retrieve/pii/S0378437112010837

Behav Res (2016) 48:621-639

639

Pelechano, N., Stocker, C., Allbeck, J. M., & Badler, N. L.
(2008). Being a part of the crowd: Towards validating VR
crowds using presence. In Multiple values selected (pp. 1-7).
Estoril.

Pengfei, X., Lees, M., Hu, N., & Viswanathan, V. (2011). Valida-
tion of agent-based simulation through human computation: An
example of crowd simulation. In /2th international workshop on
multi-agent-based simulation (pp. 1-12). Teipei.

Persson, M., & Bergensten, J. (2009). Minecraft. https://minecraft.net/

Schwarz, G. (1978). Estimating the dimension of a model. The Annals
of Statistics, 6(2), 461-464. doi:10.2307/2958889

Siegel, A. W., & White, S. H. (1975). The development of spatial
representations of large-scale environments. Advances in Child
Development and Behavior, 10, 9-55.

Singer, P, Helic, D., Taraghi, B., & Strohmaier, M. (2014).
Detecting memory and structure in human navigation pat-
terns using Markov chain models of varying order. PloS one,
9(7), €102070. http://www.pubmedcentral.nih.gov/articlerender.
fegi?artid=4094564 &tool=pmcentrez&rendertype=abstract

Spivey, M. J., Grosjean, M., & Knoblich, G. (2005). Continuous
attraction toward phonological competitors. Proceedings of the
National Academy of Sciences of the United States of Amer-
ica, 102(29), 10393-10398. http://www.pnas.org/content/102/29/
10393.abstract

Stankiewicz, B. J., & Eastman, K. (2008). Lost in Virtual Space 1I:
The role of proprioception and discrete actions when navigating
with uncertainty. In ACM Trans. on Applied Perception. under
review.

Stankiewicz, B. J., & Kalia, A. A. (2007). Acquisition of struc-
tural versus object landmark knowledge. Journal of Experi-
mental Psychology: Human Perception and Performance, 33
(2), 378.

Stankiewicz, B. J., Legge, G. E., Mansfield, J. S., & Schlicht,
. E. J. (2006). Lost in virtual space: Studies in human and ideal

spatial navigation. Journal of Experimental Psychology: Human
Perception and Performance, 32(3), 688.

Strelioff, C. C., & Crutchfield, J. P. (2014). Bayesian structural infer-
ence for hidden processes. Physical Review E, 89, 042119. http://
link.aps.org/doi/10.1103/PhysRevE.89.042119

Thorndyke, P. W., & Hayes-Roth, B. (1982). Differences in spatial
knowledge acquired from maps and navigation. Cognitive Psy-
chology, 14(4), 560-589. http://www.sciencedirect.com/science/
article/pii/0010028582900196

Tolman, E. C. (1948). Cognitive maps in rats and men. The Psycholog-
ical Review, 55(4), 189-208.

Viswanathan, V., Lee, C., Lees, M., Cheong, S., & Sloot, P. (2014).
Quantitative comparison between crowd models for evacuation
planning and evaluation. The European Physical Journal B, 87(2).
doi:10.1140/epjb/e2014-40699-x

Viswanathan, V., & Lees, M. (2012). An information processing
based model of pre-evacuation behavior for agent based Egress
simulation. Pedestrian and Evacuation Dynamics, 125-133.

Waller, D., Bachmann, E., Hodgson, E., & Beall, A. (2007). The
HIVE: A huge immersive virtual environment for research in
spatial cognition. Behavior Research Methods, 39(4), 835-843.
doi:10.3758/BF03192976

Waller, D., Loomis, J. M., Golledge, R. G., & Beall, A. C. (2002).
Place learning in humans: The role of distance and direction
information. Spatial Cognition and Computation, 2, 333-354.

Washburn, D. (2003). The games psychologists play (and the data they
provide). Behavior Research Methods, Instruments & Computers,
35(2), 185-193. doi:10.3758/BF03202541

Weisman, J. (1981). Evaluating architectural legibility: Way-finding in
the built environment. Environment and Behavior, 13(2), 189-204.
http://eab.sagepub.com/content/13/2/189.abstract

Wilson, M. (2002). Six views of embodied cognition. Psychonomic
Bulletin & Review, 9(4), 625-636. http://www.springerlink.com/
index/10.3758/BF03196322

@ Springer


https://minecraft.net/
http://dx.doi.org/10.2307/2958889
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4094564&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4094564&tool=pmcentrez&rendertype=abstract
http://www.pnas.org/content/102/29/10393.abstract
http://www.pnas.org/content/102/29/10393.abstract
http://link.aps.org/doi/10.1103/PhysRevE.89.042119
http://link.aps.org/doi/10.1103/PhysRevE.89.042119
http://www.sciencedirect.com/science/article/pii/0010028582900196
http://www.sciencedirect.com/science/article/pii/0010028582900196
http://dx.doi.org/10.1140/epjb/e2014-40699-x
http://dx.doi.org/10.3758/BF03192976
http://dx.doi.org/10.3758/BF03202541
http://eab.sagepub.com/content/13/2/189.abstract
http://www.springerlink.com/index/10.3758/BF03196322
http://www.springerlink.com/index/10.3758/BF03196322

	The influence of memory on indoor environment exploration: A numerical study
	Abstract
	Introduction
	Setup of the experiment
	The game
	Participants

	Analysis
	Types of exploring agents
	Markov agents

	Results
	Room visit frequencies
	Expected coverage given number of hops
	Expected hops given coverage
	Empirical analysis
	Existence of decision points
	Location recognition and memory


	Conclusion and implications
	Notes
	Open Access
	Appendix  A: Validity check for Markov analysis
	Effect of dataset size
	Decision base size at decision points
	Appendix B: Detailed description of the game
	Appendix  B: Detailed description of the game
	The Minecraft gaming environment
	References


