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Abstract
There is an emerging consensus that spatial thinking plays a fundamental role in how people conceive, express, and perform
mathematics. However, the underlying nature of this relationship remains elusive. Questions remain as to how, why, and under
what conditions spatial skills and mathematics are linked. This review paper addresses this gap. Through a review and synthesis
of research in psychology, neuroscience, and education, we examine plausible mechanistic accounts for the oft-reported close,
and potentially causal, relations between spatial and mathematical thought. More specifically, this review targets candidate
mechanisms that link spatial visualization skills and basic numerical competencies. The four explanatory accounts we describe
and critique include the: (1) Spatial representation of numbers account, (2) shared neural processing account, (3) spatial
modelling account, and (4) working memory account. We propose that these mechanisms do not operate in isolation from one
another, but in concert with one another to give rise to spatial-numerical associations.Moving from the theoretical to the practical,
we end our review by considering the extent to which spatial visualization abilities are malleable and transferrable to numerical
reasoning. Ultimately, this paper aims to provide a more coherent and mechanistic account of spatial-numerical relations in the
hope that this information may (1) afford new insights into the uniquely human ability to learn, perform, and invent abstract
mathematics, and (2) on a more practical level, prove useful in the assessment and design of effective mathematics curricula and
intervention moving forward.
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Introduction

The mapping of numbers to space is central to how we
operationalize, learn, and do mathematics. From a historical
perspective, it is difficult, if not impossible, to sift through the
major discoveries in mathematics without acknowledging the
central importance placed on the mapping of numbers to space
(Lakoff & Núñez, 2000). For example, the Pythagorean
Theorem, the Cartesian coordinate system (mapping in gener-
al), triangular numbers, the real number line, and Cavalieri's
principle are but a few famous examples of numerical-spatial
mappings (Davis, 2015; Dehaene, 2011; Giaquinto, 2008;

Hubbard, Piazza, Pinel, & Dehaene, 2009). More ubiquitous
examples include the measurement of time and various other
everyday quantities (e.g., cooking ingredients; Newcombe,
Levine, & Mix, 2015). Mathematical instruments as well as
measurement devices are in themselves a testament to the
widespread application of mapping numbers to space. These
examples include the abacus, number line, clock, and ruler. To
flip through any mathematical textbook is to further reveal the
intimate relations between numbers and space. Diagrams,
graphs, and various other visual-spatial illustrations fill the
pages and serve to communicate and improve mathematical
understanding.

From these examples, it is clear that numbers and space
interact in important ways. But how is it that these spatial-
numerical associations come to be in the first place? What
are the cognitive processes that underlie our uniquely human
ability to derive the Pythagorean Theorem or to invent con-
cepts and tools to measure the world around us? In this paper,
we ask what role spatial abilities might play in mathematical
reasoning. More specifically, we focus on the ways in which
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spatial visualization might facilitate numerical reasoning
skills, including the competencies related to basic number
sense and operations. Our primary intent is to go beyond the
question of whether spatial visualization and numerical abili-
ties are linked and instead examine why they may be linked.
The following quote not only speaks to this need, but also
makes it clear why we should care about this area of study:

The relation between spatial ability and mathematics is so
well established that it no longer makes sense to ask wheth-
er they are related. Rather, we need to know why the two
are connected—the causal mechanisms and shared
processes—for this relation to be fully leveraged by educa-
tors and clinicians (Mix & Cheng, 2012, p. 206).

To address this gap in the literature, the following review
presents four mechanistic accounts of why spatial visualiza-
tion may be fundamentally linked to numerical reasoning.
These four accounts include the: (1) Spatial representation
of numbers account, (2) shared neural processing account,
(3) spatial modeling account, and (4) working memory
account. These accounts are based on a synthesis of literature
spanning psychology, neuroscience, and education. They are
not mutually exclusive. For example, there is considerable
overlap between the spatial representation of numbers account
and the shared neural processing account. The extent to which
these various accounts are descriptions of the same underlying
mechanism but vary according to discipline-specific episte-
mologies and research traditions, as well as different levels
of analyses (behavioral vs. neural), is an important possibility
to consider and one that we address in ourGeneral discussion.
However, for ease of communication and in an attempt to best
represent the research traditions in which these accounts orig-
inate from, we present them as separate mechanisms. In the
end, it is our aim to provide insight and stimulate further
questions as to when, why, and how spatial visualization and
numerical abilities are linked.

We intentionally target spatial visualization skills in this
review because this type of spatial thinking appears to be
especially related to mathematical thinking (Mix & Cheng,
2012; Hawes, Moss, Caswell, Seo, & Ansari, 2019). For ex-
ample, while there is little evidence (to date) to suggest that
spatial navigation skills relate to mathematics abilities, there is
well over a century of research linking spatial visualization
and mathematics (Davis, 215; Galton, 1880; Mix & Cheng,
2012). Broadly defined here as the ability to generate, recall,
maintain, and manipulate visual-spatial images and solutions
(Lohman, 1996; see Fig. 1), spatial visualization has been
reported to play a critical role in mathematical and scientific
discovery and innovation. For example, the discovery of the
structure of DNA, the Theory of Relativity, the Periodic Table,
and the invention of the induction motor are all said to have

been borne out of spatial visualization (Davis, 2015; Moss,
Bruce, Caswell, Flynn, & Hawes, 2016; Newcombe, 2010).
According to famed mathematician Jacques Hadamard
(1945), mathematical discoveries first present themselves in
the form of intuitions and visual-spatial imagery. Only then
does one engage in the more arduous and time-consuming
work of testing the veracity of one’s imaginings through for-
mal and symbolic logic. This theory is perhaps best articulated
by Albert Einstein, who in a letter to Hadamard, wrote:

The words or language, as they are written or spoken,
do not seem to play any role in my mechanism of
thought. The physical entities which seem to serve as
elements in thought are certain signs and more or less
clear images which can be “voluntarily” reproduced
and combined. …Conventional words or other signs
have to be sought for laboriously only in a secondary
stage, when the mentioned associative play is sufficient-
ly established and can be reproduced at will (Einstein,
quoted in Hadamard, 1945, p. 142–143).

Critically, Einstein is not alone in describing his thought
process in this way.Many other mathematicians and scientists,
including Poincaré, van’t Hoff, and Pasteur, have offered sim-
ilar introspective accounts (Hadamard, 1945; Root-Bernstein,
1985). These anecdotal accounts provide important, but far
from conclusive, accounts of the role(s) that spatial visualiza-
tion might play in mathematical discovery. But what does the
empirical evidence suggest? Further, and more to the point,
what role do spatial visualization skills play in the learning
and performance of school-based mathematics?

In terms of mathematical and scientific discovery and in-
novations, there is longitudinal support for strong predictive
relations (Wai, Lubinski, & Benbow, 2009). For example, in a
nationally representative sample of US high school students
(N = 400,000), it was found that spatial visualization abilities
predicted which students enjoyed, entered, and succeeded in
STEM disciplines (science, technology, engineering, and
mathematics), even after taking verbal and quantitative com-
petencies into account (Wai, Lubinksi, & Benbow, 2009).
Follow-up studies of this same sample further demonstrated
that spatial visualization skills predicted creativity and inno-
vation in the workplace, suggesting that there may be some
truth to the anecdotal reports noted above (Kell, Lubinski,
Benbow, & Steiger, 2013).

Consistent and robust correlations have been reported be-
tween spatial visualization skills and a breadth of mathemati-
cal tasks (Mix & Cheng, 2012). For example, spatial visuali-
zation skills have been linked to performance in geometry
(Delgado & Prieto, 2004), algebra (Tolar, Lederberg, &
Fletcher, 2009), numerical estimation (Tam, Wong, & Chan,
2019), word problems (Hegarty & Kozhevnikov, 1999),
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mental arithmetic (Kyttälä & Lehto, 2008), and advanced
mathematics (e.g., function theory, mathematical logic, com-
putational mathematics; Wei, Yuan, Chen, & Zhou, 2012).
Figure 1 presents a few examples of the types of measures
that are typically used to capture individual differences in
spatial visualization skills. In subsequent sections, we return
to the question of what it is about this type of reasoning that
might explain the consistent correlations with mathematics,
generally, and with numerical reasoning more specifically.

As mentioned above, this review targets candidate mecha-
nisms that link spatial visualization skills and basic numerical
competencies. By basic numerical competencies we are refer-
ring to skills that relate to a basic understanding of number
symbols and their various relations and applications (see Fig.
2 for examples). For example, tasks that require participants to
compare and order numbers, perform arithmetic, and answer
numerical word problems make up the sort basic numerical
competencies we are referring to. Hereafter, the term mathe-
matical and numerical reasoning will be used to refer this
collection of tasks. The decision to specifically target numer-
ical reasoning skills and not mathematics more generally was
done for two reasons: First, in an effort constrain the literature

search, and second, because the relationship between spatial
visualization and numerical skills is not overtly obvious.
While many branches of mathematics are inherently spatial,
including geometry and measurement, the same cannot so
easily be said of the most basic of mathematical entities and
operations: numbers and arithmetic. Indeed, the question of
why spatial visualization skills are linked to basic numerical
competencies remains poorly understood. This review aims to
provide insight into this question. We begin our review of the
four accounts of why spatial visualization and numerical rea-
soning might be linked by considering the possibility that
numbers may be characteristically spatial.

Spatial representation of numbers account

Numbers are the building blocks of mathematics: Their use
omnipresent and fundamentally linked to almost all branches
of mathematics. For this reason, any association between spa-
tial processing and numbers is of potential critical importance
in the effort to better understand the robust link between spa-
tial skills and mathematics performance. As reviewed next,

Fig. 1 Examples of measures used to capture individual differences in spatial visualization skills
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there is a substantial body of research indicating that numbers
may be represented spatially. According to a recent study on
the subject, “spatial processing of numbers has emerged as
one of the basic properties of humans’mathematical thinking”
(Patro, Fischer, Nuerk, & Cress, 2016, pp. 126).

However, it remains unclear whether and to what extent
spatial representations of number may confer any advantages
to learning and doing mathematics. Moreover, and most ger-
mane to the purposes of the current review, it is not well
understoodwhat role higher-level spatial skills, namely spatial
visualization skills, may play in the spatial representation of
numbers.

The idea that numbers might be represented spatially has
origins in Sir Francis Galton’s mental imagery studies of the
late 1800s (Galton, 1881). Galton provided the first evidence
to suggest that numbers may be conceived as objects corre-
sponding to specific positions in space:

Those who are able to visualize a numeral with a dis-
tinctness comparable to reality, and to behold it as if it
were before their eyes, and not in some sort of dream-
land, will define the direction in which it seems to lie,
and the distance at which it appears to be. If they were
looking at a ship on the horizon at the moment that the
figure 6 happened to present itself to their minds, they

could say whether the image lay to the left or right of the
ship, and whether it was above or below the line of the
horizon; they could always point to a definite spot in
space, and say with more or less precision that that
was the direction in which the image of the figure they
were thinking of first appeared. (1881, pp. 86)

Galton referred to such visualizations as number forms,
noting that people’s descriptions of such visualizations varied
according to their visual-spatial properties, including differ-
ences in orientation, colour, and brightness. (e.g., see Fig. 3).
Despite such differences, number forms were said to represent
a reliable and stable trait within individuals.

Galton’s studies on number forms is important because it
provided the first evidence that people may represent numbers
in a spatial format; most typically from left to right, akin to an
actual number line. During the last several decades, consider-
able research efforts have followed up on this possibility
through a wide assortment of empirical investigation.
Perhaps the most influential study in this regard is Dehaene
et al.’s (1993) original findings on the SNARC effect (Spatial-
Numerical Association of Response Codes). In brief, the
SNARC effect refers to the finding that people tend to auto-
matically associate smaller numbers (e.g., 1, 2, 3) to the left
side of space and larger numbers (e.g., 7, 8, 9) to the right side
of space. People are faster and make fewer errors when

Fig. 2 Examples of measures used to capture individual differences in numerical reasoning
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making parity judgments (i.e., determine whether a number is
even or odd) when using the left hand to make judgements
about small numbers and use the right hand to make judge-
ments about larger numbers. This finding has been interpreted
as evidence for the existence of a mental number line: A met-
aphor used to describe the tendency for individuals form
Western cultures to conceive numbers as ordered magnitudes
along a left-to-right axis. Indeed, the mental number line has
been theorized to underlie a host of studies examining spatial-
numerical associations (SNAs; e.g., see Toomarian &
Hubbard, 2018). For example, line bisection tasks (Calabria
& Rossetti, 2005), spatial attention tasks (Fischer & Fias,
2005), and even random number generation are but a few
examples of tasks said to reveal spatial-numerical biases,
interpreted as support for the presence of a “mental number
line” (Loetscher, Bockisch, Nicholls, & Brugger, 2010).
Arithmetic processing has also been suggested to induce au-
tomatic spatial-numerical biases (Knops, Viarouge, &
Dehaene, 2009). For example, the operation-momentum ef-
fect refers to findings of left-right biases associated with ad-
dition and subtraction. Adult participants tend to overestimate
answers to addition problems and underestimate answers to
subtraction problems (McCrink, Dehaene, & Dehaene-
Lambertz, 2007). Even when no calculation is required the
mere presence of the operators themselves (i.e., + and −) have
been found to influence left-right spatial biases (Mathieu et al.,
2017). Importantly, evidence suggests that SNAs are mediated
through cultural and educational practices. For example, the
SNARC effect is reversed in cultures that read from right to
left (Shaki, Fischer, & Petrusic, 2009). Taken together, there is
considerable evidence to suggest that numerical thinking is
related to spatial biases. These biases, in turn, have been taken
as evidence of the “mental number line.”

Critically, the mental number line has been posited to un-
derlie both automatic/unconscious processing of numbers as

well as more effortful/conscious processing of numbers
(Fischer & Fias, 2005; Schneider et al., 2018; Toomarian &
Hubbard, 2018). As we now demonstrate, this distinction has
important implications in addressing the question of when and
why spatial skills and numerical reasoning are related. While
Galton’s inquiries centered around conscious visualizations of
number, the vast majority of studies on SNAs have examined
automatic numerical-spatial biases. Research on the latter has
revealed little evidence that SNAs are related to individual
differences in numerical reasoning skills (Cipora, Patro, &
Nuerk, 2015). Although a systematic review is needed tomore
fully investigate these relations, it is reasonable to conclude
that automatic spatial-biases (as measured with the SNARC
effect for example) have little influence on higher level nu-
merical and mathematical processing. There is even some ev-
idence to suggest that a negative association may exist.
Practising mathematicians, for example, have been found to
demonstrate weaker numerical-spatial biases compared to
control subjects (Cipora et al., 2016). These findings stand
in stark contrast to the research literature on intentional
spatial-numerical associations (e.g., see Schneider et al.,
2018).

For example, research on the number line estimation task
reveals a consistent and reliable association between perfor-
mance on the task and numerical reasoning. (Schneider et al.,
2018). People who are more accurate at estimating where a
given number belongs on a horizonal line flanked by two end
points (e.g., 0 – 100; see Fig. 2), tend to also demonstrate
better numerical and mathematical reasoning skills. Results
of recent meta-analysis revealed an average correlation of
.44 between number line task performance and mathematics
(counting, arithmetic, school mathematics achievement)
across the ages of 4–14 years (N = 10,576; Schneider et al.,
2018). This effect size is considerably larger than the correla-
tions that have been reported between other foundational nu-
merical skills and mathematics achievement. For example,
measures of symbolic number comparison – a widely accept-
ed measure of numerical fluency – is estimated to share a .30
correlation withmathematics achievement (e.g., see Schneider
et al., 2017). Moreover, to date, the most effective mathemat-
ics interventions have used the number line as the instructional
tool used to enhance students’ numerical reasoning (Fischer,
Moeller, Bientzle, Cress, & Nuerk, 2011; Link, Moeller,
Huber, Fischer, & Nuerk, 2013; Ramani & Siegler, 2008).
Interestingly, number-line training studies are theorized to be
effective because they lead to a more refined “mental number
line” (Fischer et al., 2011; Siegler & Ramani, 2009).

Thus, in considering the above finings, we are left with an
interesting paradox. Automatic/unconscious spatial-numerical
associations do not appear to be related to individual differ-
ences in mathematics. On the contrary, intentional spatial-
numerical associations appear to be strongly related to indi-
vidual differences in mathematics. Moreover, both types of

Fig. 3 An example of how one of the participants in Galton’s study
described their visualization of numbers
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spatial-numerical associations – the unconscious and the con-
scious – are said to reflect the “mental number line.” What
might explain this disconnect?

To gain insight into this question, we turn to the role that
spatial visualization may play in first forming spatial-
numerical associations. Several studies have now provided
evidence that spatial visualization skills relate to improved
number line performance, which in turn is related to improved
arithmetic and mathematics performance (Gunderson,
Ramirez, Beilock, & Levine, 2012; LeFevre, Jimenez Lira,
Sowinski, Cankaya, Kamawar, & Skwarchuk, 2013; Tam,
Wong, & Chan, 2019). In other words, linear numerical rep-
resentations have been found to mediate relations between
spatial and numerical reasoning. Other researchers have found
that spatial visualization skills are positively correlated to au-
tomatic SNAs, including the SNARC effect (Viarouge,
Hubbard, &McCandliss, 2014). It has been hypothesized that
strong spatial visualization skills underlie a greater ease and
fluency in which one can move up and down and carry out
arithmetical operations along the mental number line
(Viarouge, Hubbard, & McCandliss, 2014). However, this
finding is somewhat at odds with the evidence viewed above.
That is, if spatial visualization skills are linked to automatic
SNAs, might we also expect automatic SNAs to relate to
mathematics? Currently, it remains unclear whether, how,
and why automatic SNAs mediate relations between spatial
visualization and mathematics.

While it is easy to imagine the role that spatial visualization
skills play in tasks that explicitly call upon the need to map
numbers to space (e.g., the empty number line task), it is more
difficult to imagine why spatial visualization skills are associated
with automatic SNAs.One possibility is that automatic SNAs are
an artefact of numerical-spatial relations formed earlier in devel-
opment. That is, early in development, spatial visualization skills
may help children to construct relations between space and num-
ber. Over time, children may internalize these spatial-numerical
relations, a process that eventually gives rise to automatic
numerical-spatial biases. An important question is whether spa-
tial visualization skills are still related to automatic SNAs, once
the “building process” is complete. While the study by Viarouge
et al. (2014) suggests that the answer to this question is yes, this is
the one and only study to directly address this question, to our
knowledge. Moreover, even if follow-up research confirms rela-
tions between spatial visualization skills and automatic SNAs,
we are still left with the question of why conscious SNAs but not
automatic SNAs relate to mathematics.

One plausible explanation, related to the argument above,
is that the intentional mapping of numbers to space involves a
host of mathematical reasoning skills, including spatial and
proportional reasoning (Barth & Paladino, 2011; Gunderson
et al., 2012; Simms, Clayton, Cragg, Gilmore, & Johnson,
2016). Although more automatic mappings of number to
space may also require these same skills, their influence on

task performance may not be as paramount. Accordingly, the
relation between spatial-numerical mappings and mathemat-
ics may be explained in part due to the extent that other math-
ematical relevant processes, including spatial visualization,
are recruited during task execution. Said differently, mapping
tasks that require higher levels of mathematical reasoning and
precision are expected to share higher correlations with math-
ematical tasks that also require these same higher levels of
precision and mathematical reasoning. This is a somewhat
straightforward prediction, and, notably, one that aligns well
with the spatial modeling account, but has yet to be investi-
gated. As discussed in the next section, it is also possible that
automatic SNAs are not as automatic as they appear, but rather
constructed on the fly, within the confines of workingmemory
and dependent on the specific task demands.

Critically, the mapping of numbers to space – by way of a
mental number line – might be but one example in which
spatial visualization skills are used to map and make sense
of numerical-spatial relations (e.g., see Lakoff & Núñez,
2000; Marghetis, Núñez, & Bergen, 2014). As pointed out
earlier, mathematics is full of examples in which numbers
are mapped to space (e.g., geometric proofs, measurement,
topology, etc.). Might spatial visualization skills play a more
general role in mapping numbers, but also other mathematical
entities and concepts, onto space? Indeed, as discussed earlier,
the relationship between spatial visualization skills extends to
a wide variety of mathematical tasks (Mix & Cheng, 2012).
Moreover, numbers do not appear to be unique in their auto-
matic association of left-right biases. For example, the
SNARC effect has been extended and replicated with other
ordered stimuli such as the days of week, months of the year,
and letters of the alphabet (Gevers, Reynvoet, & Fias, 2003,
2004). Relatedly, the SNARC effect appears to be flexible and
prone to priming effects. For example, Fischer et al. (2010)
trained participants to view large numbers on the left and
small numbers on the right and found evidence of a reversed
SNARC effect (Fischer, Mills, & Shaki, 2010). Together,
these findings suggest that the SNARC effect is (1) not limited
to numbers, and (2) easily modulated by context. These find-
ings have led to the hypothesis that the SNARC effect is
indicative of context-dependent mappings between ordered
stimuli (numbers, months, letters) and space.

Moreover, these findings challenge the long-held belief
that numbers are inherently spatial and automatically associ-
ated with space. Instead, an alternative viewpoint has
emerged, positing that numerical-spatial associations are con-
structed in working memory during task execution (van Dijck
& Fias, 2011).Whether or not spatial visualization plays a role
in this online constructive process remains to be studied.
However, given the close link between spatial visualization
skills and explicit numerical-spatial mappings (i.e., number
line estimation tasks), spatial visualization skills may also fa-
cilitate more covert numerical-spatial mappings.
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Taken together, questions remain regarding the extent to
which numbers are automatically associated with space versus
actively constructed on a moment-to-moment basis.
Moreover, the role of spatial visualization in mapping num-
bers to space remains largely unknown. In the next section, we
continue to expand on the central idea presented in this section
– that is, spatial and numerical skills may be linked because
numbers are represented spatially. While this section has re-
vealed behavioral evidence in favor of a close coupling of
numbers and space, the next section addresses questions about
the neural mechanisms that underlie these relations.

Shared neural processing account

According to the shared neural networks account, spatial and
numerical processing may be related because they rely on the
same brain regions and make use of similar neural computa-
tions. The first indication that this may be the case came from
neurological case studies. Individuals with damage to the pa-
rietal lobes were sometimes observed to demonstrate joint
deficits in both spatial and numerical processing
(Gerstmann, 1940; Holmes, 1918; Stengel, 1944). In fact,
Gerstmann’s Syndrome presents a rare but specific example
of how damage to the parietal lobes (i.e., the left angular
gyrus) is associated with impaired spatial and numerical rea-
soning. People with Gerstmann’s Syndrome typically display
a tetrad of symptoms including acalculia, left-right confusion,
finger agnosia (difficulty identifying one’s fingers), and
dysgraphia (difficulty with writing) (Gerstmann, 1940). It
has been suggested that these difficulties may be due to a more
general deficit in the mental manipulation of visual-spatial
images, including impaired mental rotation skills (e.g., see
Mayer et al., 1999).

Research on patients with hemi-spatial neglect provides
further evidence that space and number may depend on intact
parietal lobes. Individuals with hemi-spatial neglect demon-
strate an inability to attend to the contralesional portion of
space (e.g., inability to attend to the left side of space when
the lesion is in the right parietal lobe). This condition is asso-
ciated with a skewed ability to indicate the mid-point of both
real and imagined objects, but also the mid-point of numerical
intervals (Bisiach & Luzatti, 1978; Zorzi et al., 2002). For
example, Zorzi et al. (2002) asked right-brain-damaged pa-
tients to indicate the mid-point of two spoken numbers, such
as “two” and “six.” Presumably, due to an impaired mental
number line, patients tended to overestimate the midpoint be-
tween two numbers as the interval between them increased
(e.g., stating "five" as the midpoint between "two" and
"six."). Taken together, neuropsychological case studies pro-
vide the earliest evidence that spatial and numerical process-
ing may rely on common parietal cortex.

More recently, the advent of fMRI has given way to a host
of follow-up investigations into the neural correlates of nu-
merical and spatial thinking. This body of research points to
the intraparietal sulcus (IPS) as the critical juncture in which
numbers and space may interact (e.g., see Hawes,
Sokolowski, Onoyne, & Ansari, 2019; Fig. 4). Indeed, it is
now well established that the IPS and its neighboring regions
play a critical role in reasoning about a variety of magnitudes,
including non-symbolic quantities, space (size and shape),
luminance, and even abstract notions such as number and time
(see Kadosh, Lammertyn, & Izard, 2008; Hawes et al., 2019b;
Walsh, 2003). Thus, there is evidence to suggest that basic
spatial and numerical processes rely on common regions in
and around the IPS.

There is also evidence that higher-level spatial skills, such as
mental rotation, may also draw on these same parietal regions.
For example, it has long been recognized that a central function of
the parietal lobes is the performance of spatial transformations.
Support for this can be seen in the results of a meta-analysis by
Zacks (2008) on the neural correlates of mental rotation. Zacks
found evidence found evidence to suggest that the IPS was the
most robust and consistently activated brain region associated
with mental rotation. Other spatial visualization processes, such
as being able to compose/decompose and translate geometric
shapes, have also been associated with activity in this region
(Jordan, Heinze, Lutz, Kanowski, & Jäncke, 2001; Seydell-
Greenwald, Ferrara, Chambers, Newport, & Landau, 2017).
One reason that spatial and numerical reasoning may be linked
is through shared processes related to mental transformations.
According to Hubbard et al. (2009): “parietal mechanisms that
are thought to support spatial transformation might be ideally
suited to support arithmetic transformations as well” (2009, pp.
238). Indeed, this is an intriguing possibility and one that supports
the neuronal re-cycling hypothesis.

According to the neuronal recycling hypothesis, numbers
as well as other mathematical symbols and concepts may re-
use the brain’s neural resources that were originally special-
ized for interacting with the physical world (e.g., see
Anderson, 2010, 2015; Dehaene & Cohen, 2007; Lakoff &
Núñez, 2000; Marghetis, Núñez, & Bergen, 2014). In other
words, numerical processing may co-opt or re-use the brain’s
more ancient and evolutionary adaptive spatial and sensori-
motor systems, which originally served our abilities to interact
with tools, objects, and locations in space (Dehaene et al.,
2003; Johnson-Frey, 2004; Lakoff & Núñez, 2000).
Marghetis et al. (2014) offer this summary of the neuronal
re-cycling account: “we may recycle the brain’s spatial prow-
ess to navigate the abstract mathematical world” (pp. 1580).
The neuronal recycling hypothesis has been used by many as
an explanation for numerical-spatial biases observed through
both behavioral and neuroimaging studies.

Taken together, there is compelling evidence that spatial
and numerical processing are associated with overlapping
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regions of the parietal cortex, namely in and around the IPS.
However, there are also some notable gaps in the literature.
One such gap is the emphasis placed on uncovering how basic
spatial processes (e.g., comparing line lengths) relate to basic
numerical processes (e.g., comparing Arabic digits; e.g., see
Sokolowski, Fias, Mousa, & Ansari, 2017). To date, research
on higher-level spatial skills (i.e., those that require spatial
transformation, such as mental rotation) have been studied in
isolation from neuroimaging studies of numerical cognition
(but see Hawes et al., 2019b). So, although there is good
evidence to suggest that higher-level spatial skills also rely
on processes associated with the IPS, we do not yet have
any direct evidence (i.e., from a single study) for this correla-
tion. However, this is a critical gap in the literature for reasons
discussed earlier. While there is robust evidence for relations
between spatial visualization skills and numerical and mathe-
matical performance, there is little evidence that spatial repre-
sentations of number relate to individual differences in numer-
ical and mathematical performance. Thus, when it comes to
better understanding individual differences in mathematics
performance, much can be gained by studying the neural re-
lations between spatial skills proper and numerical and math-
ematical reasoning.

Spatial modeling account

According to the spatial modeling account, spatial visualiza-
tion is related to numerical reasoning because it provides a
“mental blackboard” of which numerical relations and opera-
tions can bemodeled and visualized. More specifically, spatial
visualization has been posited to play a critical role in how one
organizes, models, and ultimately conceptualizes novel math-
ematical problems (Ackerman, 1988; Mix et al., 2016; Uttal &
Cohen, 2012). Although there may be little to no need to
model familiar mathematical content, such as memorized ar-
ithmetic facts, the visualization process may prove beneficial
when confronted with novel mathematical content, such as
arithmetic questions that require multi-step calculations.
Moreover, the spatial modeling account functions to bridge
past, present, and future knowledge states. For example, to

solve the question 58 + 63, one might use prior knowledge
of arithmetic facts to arrive at a previously unknown arithmet-
ic fact (e.g., reason that 50 + 60 = 110 and 8 + 3 = 11; there-
fore, the solution is 110 + 11 = 121). To do this – bridge prior
knowledge with newly created knowledge – one must also
maintain the problem and interim solutions in mind.
Whether or not these same functions might just as easily be
ascribed to a working memory account is an important ques-
tion and one we further address below.

Arguably, the most impressive feature of the spatial model-
ing account, but also perhaps its Achilles heel when it comes
to empirical study, is that there are few, if any, limitations on
the type of mathematical content that can be modeled by way
of spatial visualization. Indeed, spatial visualization processes
provide a space in which one can move back and forth be-
tween a multitude of representations; between the concrete
and the abstract, the symbolic and the nonsymbolic, the real
and the imagined, and static and dynamic representations
(Antonietti, 1999). In short, there appear to be few limitations
on the types of mathematical relations that can be modeled
through visualizations. It is for this reason that it can be diffi-
cult to empirically investigate the spatial modeling account.
How does one reveal the specific type of spatial modeling that
occurs in the “mind’s eye” of any given individual? Are some
types of spatial modeling more conducive to effective mathe-
matical reasoning than others?

One promising approach to these questions comes from
studying how children model solutions to mathematical word
problems. For example, Hegarty and Kozhevnikov (1999)
presented children with the following word problem:

“A balloon first rose 200 meters from the ground, then
moved 100 meters to the east, then dropped 100 meters.
It then traveled 50 meters to the east, and finally
dropped straight to the ground. How far was the balloon
from its original starting place?”

Children’s accompanying drawings to the problem re-
vealed key insights and differences into how children
modeled/visualized the problem.While some children’s draw-
ings were literal representations of the problem, others were
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Fig. 4 Meta-analysis of fMRI studies examining brain regions associated with mental arithmetic (green), basic symbolic processes (red), and mental
rotation (blue)
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more abstract and contained only the relevant mathematical
details needed to answer the question. Based on these differ-
ences, children’s drawings were categorized as either pictorial
(more literal in representation) or visual-schematic (more ab-
stract in representation; emphasis on relevant numerical-
spatial relations; see Fig. 5 for an example). Children who
produced visual-schematic representations were more likely
to arrive at the correct solution. Moreover, children who pro-
duced visual-schematic representations were also found to
demonstrate significantly higher spatial visualization skills.
Several studies have since replicated this finding (see
Boonen, van der Schoot, van Wesel, de Vries, & Jolles,
2013; Boonen, van Wesel, Jolles, & van der Schoot, 2014).
Taken together, these studies suggest that spatial visualization
skills may indeed help learners to better model mathematical
relations, which in turn, may lead to improved mathematical
performance.

In the above studies on word problems, it appears best to
create mental models of only the relevant mathematical de-
tails. However, the question of what to model is likely
task/question specific. For some maths problems, it is not so
much about “doing away” with irrelevant details, but about
retaining, manipulating, and forming new relations with the
information given. For example, take missing term problems,
such as 5 + __ = 7. It has been suggested that one of the ways
in which children come to develop fluency with such ques-
tions is through the ability to re-structure (re-model) the prob-
lem. So, instead of 5 + __ = 7, the learner might transform the
question into the more familiar form, ___ = 7-5. What role
might spatial visualization skills play in this process? To in-
vestigate this question, Cheng and Mix (2014) carried out a
randomized controlled trial with 6- to 8-year-olds. Half the
children were assigned to mental rotation training condition
and the other half were assigned to an active control group.
Compared to the control group, children in the mental rotation
group demonstrated significant gains on the missing term
problems. Consistent with the spatial modeling account, the
authors suggested that gains on the missing term problems
may have a resulted from an improved ability to re-model

the problems into an easier format. This study provided the
first causal evidence that spatial visualization training may
transfer to mathematics. However, a recent follow-up study
byHawes et al. (2015) failed to replicate this finding. It is clear
that more research is needed before causal claims can be made
about the generalizability of spatial training tomathematics. In
moving forward, such efforts should also try to more specifi-
cally address the mechanism of transfer. For example, what
evidence is there that the changes in mathematics occur be-
cause of the effect that spatial training has on the way the
problems are modelled? Insights into this question are needed
in order to test the validity and make causal claims about the
spatial modeling account.

As mentioned earlier, one of the predictions of the spa-
tial modeling account is that spatial modeling is most used
when dealing with novel versus familiar mathematical con-
tent. There is some evidence that this may be the case. To
test this possibility, Mix et al. (2016) examined the relation
between spatial skills, including spatial visualization, and
novel and familiar mathematical content. Their results sug-
gested that spatial skills were most closely related to novel
mathematical problems. A follow-up study by Hawes et al.
(2019a) provides additional insights into this issue. Using
latent variable analyses, it was found that spatial visualiza-
tion skills were highly correlated to both basic numerical
skills as well as more advanced numerical skills (e.g., ap-
plied number problems, number operations). However, the
relations between spatial visualization skills and higher-
level numerical skills were much stronger than relations
between spatial visualization skills and basic numerical
skills. These studies provide some important preliminary
support for the spatial modeling account. However, these
studies do not provide any direct evidence that spatial vi-
sualization is differentially used as a function of problem
familiarity or difficulty.

It is important to note that the spatial modeling account
overlaps with other theories of numerical and mathematical
cognition. In particular, it bears close resemblance with
grounded and embodied accounts of mathematical cognition

Fig. 5 An example of a visual-schematic representation (A) vs. a pictorial representation (B)
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(Lourenco et al., 2018). According to these perspectives,
mathematical thought is grounded in our everyday sensory
and bodily experiences (Anderson, 2010, 2015; Lakoff &
Núñez, 2000; Marghetis, Núñez, & Bergen, 2014). It is
through engaging with metaphors, mental imagery, and simu-
lated actions that mathematics becomes meaningful, and iron-
ically, “groundless” (e.g., see Lakoff & Núñez, 2000). This
view contrasts with the perspective that mathematics is largely
independent of sensorimotor experiences and instead is a func-
tion of symbolic amodal thought (e.g., see Barsalou, 2008).
Most relevant to the spatial modeling account is the role that
mental simulation has been hypothesized to play in cognition
in general, and in mathematics, in particular (Anderson, 2016;
Barsalou, 2008; Huttenlocher, Jordan, & Levine, 1994).
Indeed, mental simulation and mental modeling are alike in
that they describe mental processes related to the re-enactment
of sensorimotor experiences (e.g., mental imagery) in the ser-
vice of a future goal (e.g., arriving at the correct solution to a
word problem). The following provides an apt summary of the
grounded cognition account, including clear parallels with
mental simulation and the spatial modeling account:

Operations with some of the objects in mental models
are like operations with physical objects. In reasoning
about these objects, the person mentally moves about on
them or in them, combines them, changes their sizes and
shapes, and performs other operations like those that
can be formed on objects in the physical world
(Greeno, 1991, pp. 178).

To be clear, the spatial modeling account is a more specific
instantiation of mental simulation; one that is confined to the
discipline of mathematics and deals explicitly with spatial
relations. The above quote speaks to the “neuronal recycling”
hypothesis mentioned earlier, offering additional insights into
why space and number might both heavily recruit bilateral
regions in and around the IPS. It is possible that numbers
and various other mathematical concepts are processed in
ways similar to the planning and actions associated with our
handling of everyday objects. This point perhaps speaks to the
common practice amongst mathematicians to refer to numbers
as well as other mathematical concepts and abstractions as
objects (Font, Godino, & Gallardo, 2013). A better under-
standing of why and how mathematicians come to view var-
ious concepts as objects may prove useful in better under-
standing the spatial modeling account as well as the develop-
ment of mathematical expertise. For example, decades of re-
search on human learning and memory indicate that objects
are more easily remembered and expressed than abstract con-
cepts (Paivio, 1983, 2013). Might this same finding apply to
the realm of mathematics? Rather than dealing with isolated
fragments of mathematical procedures carried out in a step-
by-by fashion, presumably under the control of a more

verbally mediated cognitive system, might the mathematical
mind operate with greater ease and efficiency when dealing
with holistic and object-like mental models? At the moment,
research into these as well as other related questions
concerning the spatial modeling account remain scarce. As
such, the spatial modeling account remains a largely specula-
tive account of why spatial visualization and numerical rea-
soning are so often linked.

Working memory account

Another way in which spatial visualization and numerical
skills may be related is through another variable which shares
relations with performance in both of these areas. For exam-
ple, it is possible that spatial visualization skills are essentially
a proxy for other cognitively demanding skills, such as exec-
utive function skills, working memory, and general intelli-
gence. Visual-spatial working memory (VSWM), in particu-
lar, may explain the relations between spatial visualization and
numerical skills. In this section, we review the evidence for
and against this proposal.

Research to date suggests that both spatial visualization
skills and VSWM are strongly related to numerical reasoning.
For example, performance on spatial visualization tasks, such
as mental rotation, have been linked to basic measures of
numerical competencies, including arithmetic, number com-
parison, and number line estimation. Similarly, VSWM has
also been found to explain similar amounts of variance in
these same measures. Furthermore, there is evidence of close
relations between all three of these variables –VSWM, spatial
visualization, and numerical reasoning – when measured con-
currently in the same studies (Alloway & Passolunghi, 2011;
DeStefano & LeFevre, 2004; Hawes et al., 2019a; Kaufman,
2007; Kyllonen & Christal, 1990; Kyttälä et al., 2003; Li &
Geary, 2017; Mix et al., 2016). Together, these findings ques-
tion the extent to which spatial visualization and VSWM skills
make unique contributions to numerical abilities.

It has been suggested that poor spatial abilities are a result
of low VSWM. For example, several researchers have dem-
onstrated notable differences in people of low- versus high-
spatial abilities in their abilities to form, maintain, and trans-
form visual-spatial representations (Carpenter & Just, 1986;
Just & Carpenter, 1985; Lohman, 1988). Carpenter and Just
(1986) concluded that “a general characterization...is that
low spatial subjects have difficulty maintaining a spatial rep-
resentation while performing transformations” (p. 236). That
is, individuals with low-spatial abilities tend to “lose” infor-
mation as they engage in the act of spatial transformation. For
example, when mentally rotating cube figures, individuals
with low-spatial abilities often lose “sight” of the mental im-
age and require multiple attempts at rotation (Carpenter &
Just, 1986; Lohman, 1988). Against this background,
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researchers have attributed individual differences in spatial
visualization as primarily due to differences in working mem-
ory (e.g., see Hegarty & Waller, 2005).

Evidence to suggest that spatial visualization skills and
VSWM are not as related as suggested above comes from
three separate bodies of research: factor analyses, research
on sex differences, and training studies. Studies from factor
analytic studies suggest that VSWM, spatial visualization, and
executive functions represent distinct cognitive constructs
(i.e., latent variables; Hawes et al., 2019a; Miyake et al.,
2001). Moreover, Hawes et al., 2019a demonstrated spatial
visualization and numerical skills (both basic and advanced)
not only represent distinct constructs, but that the relations
between the two could not be explained by general intelli-
gence or executive functions, including measures of
VSWM. Lastly, Mix et al. (2016) found evidence that in sixth
grade, VSWM shared stronger cross-loadings with a general
mathematics factor compared to measures of spatial visualiza-
tion, which were more associated with a general spatial factor.
Together, these findings indicate that spatial visualization and
VSWM represent separable cognitive factors and share differ-
ential relations with numerical and mathematics performance.

Further evidence that spatial visualization and VSWM are
separable constructs can be gleaned from findings of reliable
sex differences on measures of spatial visualization but not
VSWM (Halpern et al., 2007).1 Beginning by about the age
of 10 years, males tend to outperform females on measures of
mental rotation, with estimated effects sizes ranging from .9 –
1.0 (Halpern et al., 2007; Titze, Jansen, & Heil, 2010).
Importantly, sex differences are not confined to mental rota-
tion tasks but also emerge on other spatial visualization tasks,
including mental paper folding tasks (Halpern et al., 2007).
Findings of sex differences in spatial visualization skills, but
not VSWM, further suggests that these two aspects of visual-
spatial processing may represent distinct constructs.

Training studies provide further evidence that VSWM and
spatial skills behave and operate in unique ways. Although the
effects of VSWM training are hotly debated and there is little
evidence that training generalizes to other untrained tasks
(e.g., mathematics; Redick, Shipstead, Wiemers, Melby-
Lervåg, & Hulme, 2015), a different picture has emerged with
respect to spatial training. A recent meta-analysis of 217 spa-
tial training studies by Uttal et al. (2013) indicates that spatial
thinking can be improved in people of all ages and through a
wide assortment of training approaches (e.g., course work,

task-based training, video games). Furthermore, the re-
searchers concluded that although further evidence is still re-
quired, it appears as though the effects of spatial training trans-
fer to a variety of novel and untrained spatial tasks. In subse-
quent sections, we return to the topic of spatial training and the
extent to which spatial training transfers to numerical reason-
ing. The take away point in this section, however, is that com-
pared to VSWM, spatial visualization skill appears to repre-
sent a more flexible and adaptive cognitive system, providing
further insight into the separability of VSWM and spatial
skills.

At this point, it is worth returning to the question at hand:
Does VSWM explain the relationship between spatial visual-
ization skills and numerical/mathematical abilities? Based on
the available evidence, there are reasons to suspect that (1)
spatial visualization and VSWM are separable constructs,
and (2) that each share independent pathways with numerical
skills. An important follow-up question is why VSWM and
spatial visualization skills may differentially contribute to nu-
merical and mathematical learning and performance.

One proposal is that VSWM and spatial visualization differ
according to the cognitive demands placed on the need to
“recall” versus “generate” visual-spatial information. For ex-
ample, at a measurement level, most VSWM measures pri-
marily require participants to recall, maintain, and
(sometimes) manipulate visual-spatial information. Most spa-
tial visualization measures, on the other hand, require partic-
ipants to perceive, maintain, manipulate, and generate visual-
spatial solutions. Thus, the shared need to maintain and ma-
nipulate visual-spatial information may explain the previously
reported correlations between VSWM and spatial visualiza-
tion. However, the differences in task requirements might be
one reason to predict differential relations with numerical per-
formance. While VSWM skills may play a greater role in
numerical tasks that emphasize the need to recall and maintain
information (e.g., basic arithmetic), spatial visualization skills
may play a greater role in numerical tasks that emphasize the
need to generate novel solutions (e.g., word problems, applied
problems). Notably, this prediction supports the spatial model-
ing account discussed earlier. Spatial visualization skills are
predicted to be especially useful, even more so than VSWM,
on problems that require the modeling and generation of prob-
lem solutions. Future research is needed to formally test this
hypothesis.

Discussion

To this point, the relationship between spatial ability and
mathematics has been well-studied but scarcely understood.
The purpose of this review was to shed light on this issue by
reviewing the literature in search of potential mechanisms that
might explain the historically tight relations between spatial

1 It should be recognized that this argument also applies to relations between
spatial visualization and numerical reasoning. Although sex differences are
frequently observed on measures of spatial visualization (namely mental rota-
tion), sex differences do not regularly occur on measures of numerical reason-
ing (e.g., see Hutchison, Lyons, & Ansari, 2019; Kersey, Braham, Csumitta,
Libertus, & Cantlon, 2018). This finding provides an additional constraint to
consider in the attempt to disentangle the link between spatial visualization and
numerical reasoning.
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and numerical reasoning. More specifically, this review
targeted the ways in which spatial visualization might be
linked to numerical reasoning. Based on comprehensive re-
view of research from psychology, neuroscience, and educa-
tion, four potential mechanisms were identified: (1) Spatial
representation of numbers account, (2) shared neural process-
ing account, (3) spatial modeling account, and (4) working
memory account. In the following section, a brief summary of
each account is provided. We then engage in a more thorough
discussion of the limitations as well as potential for improving
spatial-numerical relations.

A summary of the four accounts

In brief, the spatial representation of numbers account sug-
gests that numbers and their various relations are represented
along a “mental number line.” In turn, the precision of one’s
mental number line has been posited to play an important role
in performing a host of numerical reasoning tasks, including
comparing, ordering, and operating on numbers. A small body
of research suggest that spatial visualization skills play a fun-
damental role in the learning and formation of numerical rep-
resentations. The shared neuronal processing account sug-
gests that numbers and space are linked through shared under-
lying neuroanatomical substrate. According to the neuronal
recycling theory, numerical reasoning capacities re-use the
same neuronal resources that were originally (evolutionarily
speaking) deployed for spatial reasoning, including spatial
visualization. The spatial modeling account places much
more emphasis on spatial visualization as a more general
mechanism used to model, organize, and simulate a wide va-
riety of numerical concepts. This account is closely connected
to other theories ofmathematical reasoning, including ground-
ed, embodied, and the aforementioned neuronal recycling ac-
counts. A common feature of these theories is the use of the
visual-spatial imagination to act upon mathematical objects,
including numbers, in ways not unlike the ways we experi-
ence and use objects in the real world. Lastly, the working
memory account calls into question unique relations between
spatial visualization and numerical reasoning skills. Instead,
the link may have its roots in individual differences in visual-
spatial workingmemory (VSWM). However, evidence to date
suggest that these two constructs are not one and the same and
make independent contributions to numerical and mathemat-
ical performance. Moving forward, it will be important to
continue to study the ways in which spatial visualization rep-
resents a unique construct as well as the ways in which it
interacts with other cognitive systems.

An integrated description of the four accounts

The extent to which these various accounts are descriptions of
the same underlying mechanism but in different forms and at

different levels of analysis is an important question. For ex-
ample, it is possible that one of the ways in which numbers
become represented spatially is through the active processes
of spatial modeling (e.g., visualizing a number line to reason
about numerical relations). From a biological perspective, it
could be that the IPS and closely associated regions provide
the necessary neuronal networks to carry out these modeling
and transformational processes.Moreover, even when the spa-
tial modeling of numerical concepts no longer serves the in-
dividual (i.e., the concepts at hand have become automatized
more or less), these same neural substrates may continue to
underlie both numerical and spatial processes (e.g., see Hawes
et al., 2019b). This may occur despite an independence in
function. If we assume that spatial visualization is a relatively
stable trait, then we should expect to see lasting correlations
between spatial visualization and numerical skills even when
spatial visualization no longer serves a purpose in one’s se-
mantic understanding/representation of number. In other
words, spatial and numerical processes may continue to be
correlated, both neurally and behaviorally, long after they
have become conceptually divorced from one another. This
relation may remain because of individual differences in spa-
tial visualization skills that once helped give rise to conceptual
mappings between numbers and space. This integrated ac-
count may explain why we continue to see correlations be-
tween spatial visualization skills and basic numerical compe-
tencies into adulthood. It might also explain why we see rela-
tions between intentional numerical-spatial mappings (e.g., as
measured with the number line task) and mathematics
(Schneider et al., 2018), but mixed evidence for relations be-
tween automatic numerical-spatial mappings (i.e., SNARC)
and mathematics (Cipora, Patro, & Nuerk, 2015).

From this example it can be seen how biology and behavior
interact in complex ways to give rise to potentially dynamic
and ever-changing numerical-spatial relations. To what extent
does genetically endowed neuroanatomical structures influ-
ence one’s abilities to visualize numerical-spatial relations?
To what extent is spatial visualization malleable and transfer-
able to numerical reasoning? These are important questions;
the answers of which may help to more fully understand the
interplay that may exist between the various accounts of
space-number relations.

Biological considerations of the four accounts

An interesting question concerns the extent to which one’s
spatial visualization abilities are constrained by genetic and
corresponding neuroanatomy. Results from a meta-analysis
of twin studies (N=18,296 monozygotic twins; N=23,327 di-
zygotic twins) suggest that spatial visualization abilities are
largely heritable (.61), with non-shared environmental factors
having a substantial impact (.43) and shared environmental
factors have a little effect (.07; King, Katz, Thompson, &
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Macnmara, 2019). In other words, approximately 60% of the
variability in spatial visualization can be accounted for, statis-
tically, by genetic differences between people (in this particu-
lar sample). Evenmore germane to the current study, however,
is the extent to which relations between spatial visualization
and numerical abilities are due to shared genetics. This
question was recently addressed by Tosto et al. (2014) through
a twin study (N=1,539monozygotic twins; N=2,635 dizygotic
twins). As expected, they found a strong relation between
spatial visualization skills and mathematical abilities, includ-
ing measures of numerical reasoning (r > .40). Moreover, they
found that approximately 60% of this overlap was explained
by common genetic effects, while 40% of the overlap was due
to environmental experience (26% and 14% by shared and
non-shared environments respectively). Taken together, these
studies suggest genetics may help explain individual differ-
ences in spatial visualization skills as well as common vari-
ance between spatial and numerical relations.

The malleability of spatial visualization

Although biological factors may place certain constraints on
one’s range of spatial visualization abilities, it is also clear that
spatial skills are highly malleable constructs (Uttal et al.,
2013). Compared to other core cognitive capacities, including
working memory, spatial abilities – most notably spatial visu-
alization skills – appear to be highly subject to practice and
training effects. Evidence for this comes from Utall et al.
(2013) who performed a meta-analysis examining the overall
effects of 217 spatial training studies over a 25-year period
(1984-2009). The study concluded that spatial training is an
effective means for improving spatial thinking in people of all
ages and across a variety of training techniques (e.g., video
games, in-class training, spatial task training). The average
effect size was large, approaching half a standard deviation
(0.47). In theory, an improvement of this magnitude would
approximately double the number of individuals with the spa-
tial skills typically associated with being an engineer (Uttal
et al., 2013). Moreover, the results revealed evidence of equal
transfer for near and intermediate transfer measures. That is,
training on one particular task, such as mental rotation, was
found to not only lead to improvements in that same type of
task, but resulted in improvements in untrained spatial tasks,
such a mental paper folding (e.g., see Wright et al., 2008; Chu
& Kita, 2011). In terms of durability, similar gains were ob-
served immediately after training, less than 1 week delay, or
less than one month delay. Moving forward, it will be impor-
tant to assess just how long training related gains persists. The
results of this study are important but puzzling.

They are important as the implications are significant and
far reaching, especially in considering the ways in which spa-
tial training might help boost STEM-related performance (as
suggested in the engineering example above). The results are

puzzling in that the effects of training spatial abilities appears
unlike the training of any other cognitive abilities. To our
knowledge, only spatial training has been found to reliably
yield intermediate transfer effects. Inquiries why this is and
what makes spatial thinking an especially malleable cognitive
construct are needed. This information may be useful in de-
signing educational curricula and interventions.

Does spatial visualization training transfer
to mathematics?

Given the evidence that spatial thinking is highly malleable,
might spatial training be an effective means to improve nu-
merical thinking? Indeed, the answers to this question have
the potential to provide key insights into the four candidate
mechanisms reviewed. Unfortunately, there is no conclusive
answer to this question. To date, the evidence is mixed and
appears to very much depend on the training approach.
Moreover, there are only two studies which meet the criteria
for a randomized controlled trial, both of which included small
sample sizes. In Cheng and Mix’s (2014) study, 58 children
aged 6–8 years underwent either 40 min of spatial visualiza-
tion training (mental rotation) or 40 min of an active control
task (crossword puzzles). Compared to the control group, chil-
dren in the spatial training group demonstrated gains on a
measure of spatial visualization, but, most impressively, also
demonstrated improvements on calculation problems of two
types: standard calculation problems (e.g., 56 + 6 = __) and
missing term problems (e.g., 5 + __ = 12). Gains were more
pronounced on the missing terms problems. In line with the
spatial modeling account, the authors suggested that the inter-
vention may have been effective because it encouraged par-
ticipants to more effectively model the problems (e.g., reorga-
nize 5 + __ = 12 into the more familiar question format,
__ = 12-5. A follow-up study by Hawes et al., 2015 failed to
replicate these effects. In this study, 61 6- to 8-year-olds were
assigned to either 6 weeks (3 h total) of computerized spatial
visualization training program or 6 weeks of computerized
literacy training (control). Compared to the control group,
children who received spatial training demonstrated improve-
ments on spatial visualization measures but demonstrated no
evidence of gains on any of the mathematics measures, includ-
ing miss-terming problems. These mixed findings and the
small sample sizes used make it clear that much more research
is needed before any conclusions can be made about whether
spatial training generalizes to numerical and mathematical
reasoning. Moreover, future studies of this sort should aim
to more explicitly address the potential mechanism(s) that
may or may not facilitate transfer. For example, to further test
the possibility that the spatial modeling account might be at
play (as the authors of both the training studies above sug-
gest), it is imperative to capture evidence of this. This may be
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achieved through self-report strategy use or through having
participants write or draw their solution strategies.

The two studies above represent the only randomized con-
trolled studies; however, three other studies have examined
the effects of spatial visualization training on mathematical
performance through classroom-based “quasi-experimental”
studies. Because random assignment did not occur at the level
of the individual, the effects of these studies may have been
more influenced by uncontrolled variables (e.g., different
teachers). A major benefit of these studies, however, is that
they were carried out by classroom teachers and may be con-
sidered more ecologically valid approaches to spatial training.
In the first of these studies, Hawes, Moss, Caswell, Naqvi, &
MacKinnon, 2017 worked with kindergarten to Grade 2
teachers to implement a 32-week spatial visualization training
intervention as part of teachers’ regular mathematics instruc-
tion (total ~ 45 h of spatial training). Compared to an active
control group (n = 28), children in the spatial training class-
rooms (n = 39) demonstrated widespread improvement on a
variety of spatial reasoning measures as well as gains on a
symbolic number comparison task. However, as noted by
the authors, many of the spatial visualization activities also
incorporated aspects of numerical reasoning, which may have
influenced the results. In fact, it is possible that the greatest
potential for mathematical learning lies in the combination
and integration of spatial and numerical instruction.
However, such an approach limits the conclusions we can
make about the unique contributions of spatial visualization
in the learning ofmathematics. In a somewhat similar study by
Lowrie et al. (2017), the authors also found some evidence of
transfer to mathematics following an intensive in-class spatial
training program with 10- to 12-year-olds (N = 186; 20 h of
training over 10 weeks). Children in the spatial training class-
rooms, but not the control classrooms, demonstrated improve-
ments in spatial visualization as well as a comprehensive mea-
sure of mathematics. However, the mathematics measure in-
cluded a combination of items related to both numerical con-
cepts as well as geometrical concepts. Thus, it is possible that
the gains were due to changes in geometrical reasoning, argu-
ably closely related to or even dependent on spatial reasoning,
and not numerical reasoning. Lastly, a recent study by Cornu
et al. (2017) failed to find any transfer to mathematical rea-
soning. Compared to children in the control kindergarten
classrooms (n = 57), children in the spatial training kindergar-
ten classrooms (n = 68) demonstrated some gains on near
transfer spatial measures, but showed no evidence of improve-
ments on seven separate measures of mathematics (e.g.,
counting, number comparison, number naming, arithmetic).

In another quasi-experimental study, Cheung, Sung, and
Lourenco (2019) examined the effects of an at-home spatial
visualization intervention with 6- to 7-year-olds (N = 62).
Compared to an active control group, children who participat-
ed in the at-home mental rotation training demonstrated near

transfer gains in mental rotation ability and far transfer to
arithmetic performance. Critically, such transfer could not be
attributed to general cognitive improvement, as no gains were
observed on measures of nonsymbolic comparison, verbal
working memory, or language ability following training.
Relevant to the current review, the authors speculate that far
transfer may have been due to improvements in children’s
ability to mentally model arithmetical relations and/or ground
numerical information along a mental number line.

Overall, the results of these “quasi-experimental” studies
are difficult to interpret and at this point in time, few conclu-
sions can be drawn. It is clear, however, that when improve-
ments do occur in mathematics (and this was true in the Cheng
and Mix study as well), the mechanism of transfer is not well
understood. In fact, not one training study to date has system-
atically addressed the question of what might mediate the
effects of spatial visualization training on numerical reason-
ing. Thus, moving forward, it will be critical to target the
underlying agents of change. The four candidate mechanisms
reviewed here provide a good place to start. For example,
different predictions can be made depending on the different
accounts reviewed. According to the spatial representation of
numbers account, one might predict that spatial training is
related to improvements in one’s internal representation of
numbers according to a more spatially precise mental number
line. This refinement in one’s “mental number line,” in turn, is
predicted to facilitate greater numerical reasoning. Critically,
in order to test this hypothesis, future training studies will need
to include measures of spatial-numerical mappings (e.g., in-
tentional number-line estimation tasks, automatic SNA tasks,
including SNARC effects). Any gains in more general mea-
sures of numerical reasoning should theoretically be mediated
by change on these measures. As mentioned above, one way
of testing the spatial modeling account would be to gain in-
sights into the strategies that participants use while engaging
in the numerical tasks. What evidence is there that the spatial
visualization training actually led to an improved ability to
mentally model the problem at hand? For example, collecting
process data of the sort used in Hegarty and Kozhevnikov’s
(1999) word problem studies could be used to demonstrate the
extent to which spatial visualization training results in im-
proved schematic representations of the problems. Evidence
of this sort would lend support for the spatial modeling ac-
count. In terms of the shared neural processing account, re-
searchers have yet to examine the neural correlates of spatial
training. However, a rather straightforward prediction would
be that training-induced changes in neural activity (or the un-
derlying neuroanatomical structures) should be correlated
with improvements in numerical reasoning. Lastly, according
to the working memory account, changes in spatial visualiza-
tion shouldmore broadly be encapsulated by changes in work-
ing memory. Indeed, it is possible that spatial visualization
training is akin to working memory training. Future training
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studies thus need to also include measures of working mem-
ory to provide evidence for or against this possibility.

To conclude, future spatial training studies should look to
go beyond simply measuring the effects of spatial training on
numerical reasoning. Instead, trainings studies should be de-
signed in ways that provide insights into the theorized mech-
anisms at play. This approach is critical in revealing why and
under what conditions spatial training might be effective for
some individuals but not others.

Potential mediators and moderators

As hinted at, the link between spatial visualization and numer-
ical reasoning is likely to vary from individual to individual.
For ease of clarification, this paper has only hinted at some of
the potential mediators and/or moderators of the space-
number relations. For example, we have suggested that spatial
visualization may share stronger relations with unfamiliar vs.
familiar numerical question types. With practice and experi-
ence, the need to engage visualization processes may be re-
duced. According to this proposal, the space-math link may
differ across individuals as a function of their experience and
familiarity with the mathematical task in question. For exam-
ple, a child who is first learning basic arithmetic may find it
useful to model the solution, whereas a child fluent in basic
arithmetic may have no need to pause, reflect, and model the
problem and solution. This suggests the need to not only con-
sider the mathematical content under investigation, but also
the learner’s familiarity with the mathematical content when
examining mechanisms underlying the space-math link. Said
differently, mathematical experience may moderate relations
between space and maths. To our knowledge, this represents a
major gap in the literature and represents a promising area of
future study.

In discussing the working memory account it was sug-
gested that working memory or executive functions might
mediate the relations between spatial visualization and
mathematics. While research to date suggest evidence
against this notion, more research is needed to more fully
test this possibility. Moreover, it is possible that general
intelligence (g) might account for the relations between
space and mathematics. In fact, according to one account,
intelligence might best be operationalized as the ability to
spatially manipulate mental models (Lohman, 1996).
Given prior findings of close relations between spatial
visualization and general IQ (more specifically, non-
verbal IQ), future research efforts are needed to further
disentangle associations between spatial visualization
abilities, general intelligence, and mathematics. To date,
only one study has investigated this triad of relations and
the results demonstrated strong and unique relations be-
tween spatial visualization and general mathematical abil-
ities, even after controlling for g; Hawes et al., 2019a (as

well as visual-spatial working memory). An important
question moving forward is whether spatial visualization
is related to mathematical reasoning due specific shared
processes (e.g., the need to engage in mental rotation) or
is related through more general processes (e.g., deductive
reasoning). In addition to cognitive factors, many other
variables might moderate the relation between spatial vi-
sualization and numerical reasoning, including, age, sex,
type of mathematics instruction received in school (spatial
vs. non-spatial), types of numerical reasoning required,
past experiences with spatial learning, use of spatial ver-
sus non-spatial strategies, and various socioemotional and
affective factors including spatial/mathematics anxiety. In
combination, these factors represent a kaleidoscope of
possible interactions. At present, we have only scraped
the surface in studying how these and other variables
may moderate space-number relations.

Conclusion

This paper highlights the potential ways in which spatial vi-
sualization and numerical abilities may be related to one an-
other. Research is now needed to further probe and test the
validity of these various accounts – both in isolation from one
another but also in combination. Ultimately, it seems likely
that all four accounts may offer insights into the ways in which
spatial visualization and number are linked. In moving for-
ward, it will not be enough to loosely base a study on one of
the mechanistic accounts provided. For example, several stud-
ies to date have hypothesized strong relations between spatial
abilities and mathematics because of research demonstrating
shared neural resources. Indeed, as reviewed in this paper,
there is good evidence to suggest that this is the case.
However, we must go well beyond this level of theorizing:
Not only stating which mechanism(s) are believed to underlie
shared relations, but most critically, stating the precise ways in
which the mechanism works to give rise to the relationship in
question. A metaphor of a car mechanic helps to make this
point. It is of use to know that car’s mobility depends on its
motor. This knowledge might help isolate the potential source
of the problem. However, if the mechanic does not understand
how the motor works, he/she has little chance of fixing a
broken motor and regaining mobility. When it comes to
expanding our understanding of spatial-numerical relations it
is not enough to identify potential mechanisms that link spatial
and numerical thought. The time is right to begin understand-
ing why and under what specific conditions the mechanisms
work, or just as importantly, fail to work. By better illuminat-
ing the learning processes that link spatial visualization and
numerical competencies, we may be afforded new insights
into the uniquely human ability to learn, perform, and invent
abstract mathematics. This information, in turn, may prove
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critical in the assessment and design of effective mathematics
curricula and intervention moving forward.
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