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Abstract

In his comment on Heck and Erdfelder (2016, Psychonomic Bulletin & Review, 23, 1440-1465), Starns (2018, Psychonomic
Bulletin & Review, 25, 2406-2416) focuses on the response time-extended two-high-threshold (2HT-RT) model for yes-no
recognition tasks, a specific example for the general class of response time-extended multinomial processing tree models
(MPT-RTs) we proposed. He argues that the 2HT-RT model cannot accommodate the speed—accuracy trade-off, a key
mechanism in speeded recognition tasks. As a remedy, he proposes a specific discrete-state model for recognition memory
that assumes a race mechanism for detection and guessing. In this reply, we clarify our motivation for using the 2HT-RT
model as an example and highlight the importance and benefits of MPT-RTs as a flexible class of general-purpose, simple-
to-use models. By binning RTs into discrete categories, the MPT-RT approach facilitates the joint modeling of discrete
responses and response times in a variety of psychological paradigms. In fact, many paradigms either lack a clear-cut
accuracy criterion or show performance levels at ceiling, making corrections for incautious responding redundant. Moreover,
we show that some forms of speed—accuracy trade-off can in fact not only be accommodated but also be measured by

appropriately designed MPT-RTs.
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In Heck and Erdfelder (2016), we proposed a general
approach that extends multinomial processing tree (MPT)
models to measure the relative speed of cognitive processes
(see Heck et al., 2018b, for an alternative, parametric
approach). The development of a general model class that
combines MPTs with response times (RTs) is important
given the diverse applications of MPT models, many of
which are associated with ordinal response time predictions
for processing sequences (Erdfelder et al., 2009). In his
reply, Starns (2018) criticized the lack of a parameter
representing speed—accuracy trade-off in an example we
presented, the RT-extended two-high-threshold (2HT-RT)
model. To address this problem, he proposed a novel
model tailored to capture the speed—accuracy trade-off in a
specific paradigm (yes-no recognition) assuming a specific
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mechanism (a race of detection and guessing processes)
with specific parametric assumptions for the processing
times involved (ex-Gaussian distributions, i.e., distributions
of the sum of an exponential and an independent normal
random variable). By doing so, Starns often referred to
“the Heck & Erdfelder (2016) model” (emphasis added)
without distinguishing between the 2HT-RT model and the
general MPT-RT model class we proposed. Even though the
former term may facilitate the distinction between different
extensions of the two-high-threshold model to RTs (e.g., see
Klauer and Kellen, 2018, for a more recent approach), it
also bears the danger of ignoring the conceptual difference
between the specific 2HT-RT model we used as an example
and the general model class advanced in our original paper.

In this reply, we highlight important differences between
the overarching goals and purposes of the general MPT-RT
model class and the narrower aims of specific process models
such as those designed to represent speed—accuracy trade-
offs.! Moreover, we show that, if desired and necessary,

'Here, we refer to the race model as a “process model” because
it assumes a specific processing mechanism to account for speed—
accuracy trade-offs (i.e., a latent race). However, some formal theorists
may prefer the label “measurement model”.
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the proposed class of MPT-RT models can accommodate
speed—accuracy trade-off in principle and even measure it
by specific parameters. We highlight commonalities and
differences between the race model proposed by Starns
(2018) and an analogous MPT-RT model that also captures
speed—accuracy trade-off and is motivated by the pioneering
fast-guess model (Ollman, 1966; Yellott, 1971). Using
Monte Carlo simulations, we show that the fast-guess
model can approximate the race model quite well under
specific conditions without being overly flexible. Following
a discussion of criteria for choice between models, we also
discuss potential limitations of the proposed model class and
point to alternative modeling approaches.

MPT-RTs as a general-purpose model class

As elaborated in Heck and Erdfelder (2016), the proposed
class of MPT-RTs has several advantages compared to spec-
ific process models (including the race model), some of which
are acknowledged by Starns (2018, e.g., p. 2414 and 2416).
First, MPT-RTs can be applied to a variety of paradigms
and combined with existing MPT models relatively easily
without the need to make parametric assumptions about
latent response time distributions. For instance, Brainerd,
Nakamura, and Lee (2019) recently developed an MPT-RT
model for the conjoint recognition paradigm to test whether
familiarity is faster than context recollection. Instead of
indirectly inferring the relative speed of different latent
processes from speed—accuracy functions, Brainerd et al.’s
innovative MPT-RT model aims at testing relative latency
predictions derived from dual-recollection theory directly
(Brainerd, Gomes, & Moran, 2014).

Of course, the assumption of a latent race between det-
ection and guessing processes proposed by Starns (2018) for
the yes-no recognition task can in principle also be genera-
lized to other paradigms and combined with MPT models
that assume more than two latent states. However, such dev-
elopments will pose major theoretical questions, for ins-
tance, which processes actually race against each other and
which do not, 2 let alone the problem of specifying appropri-
ate continuous distributions for the latent processing times
involved. Moreover, application and evaluation of such mo-
dels is technically more complex and requires a strong back-
ground in statistical programming.? In contrast, because
MPT-RTs are nothing else but a special subclass of stan-
dard MPT models (for MPTs, see Batchelder and Riefer,

2In Starns’ comment, this issue is briefly discussed in the section
“Differences in guessing RTs”.

30bviously, technical complexity itself is not a drawback. In an ideal
world, if a technically complex model turns out to be necessary to
explain a cognitive phenomenon, researchers should improve their
skills instead of falling back to simple methods.
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1999; Erdfelder et al., 2009; Hu & Batchelder, 1994), MPT-
RTs can be fitted with standard software for MPT modeling
(e.g., Heck, Arnold, & Arnold, 2018a; Moshagen, 2010;
Singmann & Kellen, 2013), thus making it more likely that
substantive and applied researchers incorporate information
about the speed of processes in their MPT models instead of
ignoring RTs entirely. Adding to these practical advantages,
Heck and Erdfelder (2016) proved formal strategies that
allow checking the identifiability of a new MPT-RT model,
that is, whether the parameters are uniquely determined
by the data. In contrast, comparable analytic strategies to
assess the identifiability of specific process models such as
Starn’s race model are currently lacking, and hence, model
development, refinement, and testing are more complex.

Second, given that many psychological theories currently
do not make precise parametric predictions, MPT-RTs allow
testing core assumptions of a theory (e.g., about the order
of latent processes) without requiring auxiliary parametric
assumptions (e.g., Brainerd et al., 2019; Heck & Erd-
felder, 2017). If one is willing to commit to parametric
assumptions, Starns (2018) showed that a race mecha-
nism for speed—accuracy trade-offs can be implemented,
for example, by assuming ex-Gaussian distributions for the
latent processing times. However, this in turn means that
any “correction for incautious responding” based on the
proposed race model depends on the auxiliary paramet-
ric assumptions. Put differently, the estimated ‘“‘caution-
corrected detection probability” D4y will differ depending
on the types of distributions assumed for the latent processes
since these parametric assumptions determine the speed—
accuracy trade-off function. More generally, the process
characterization of speed—accuracy trade-offs necessitates a
strong theoretical commitment to a specific mechanism (a
race, a diffusion process etc.), which is avoided when using
the MPT-RT model class. Given the broad range of psycho-
logical domains in which MPT models have been applied, it
seems unlikely that a single speed—accuracy mechanism
applies to many diverse areas such as memory, social cog-
nition, and decision making (Erdfelder et al., 2009; Hiitter
& Klauer, 2016). Moreover, even when focusing on a small
subclass of paradigms such as two-alternative forced choice
(2AFC) tasks, it is difficult to identify a single process-
ing mechanism that fully accounts for the speed—accuracy
trade-off. For the popular 2AFC diffusion model (Ratcliff
& McKoon 2008; Ulrich, Schroter, Leuthold, & Birngru-
ber, 2015; Voss, Nagler, & Lerche, 2013), for example, it has
been shown that enforcing speeded decisions does not only
decrease the decision threshold as expected (thus enforc-
ing incautious responding) but unexpectedly also affects
the drift rate of evidence accumulation (Rae, Heathcote,
Donkin, Averell, & Brown, 2014).

Third, the main point of criticism of Starns (2018) is
that “the Heck and Erdfelder (2016) model lacks a speed—
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accuracy mechanism” and thereby fails the “critical test for
any RT model (---) to accommodate the speed—accuracy
trade-off.” This argument takes it for granted that any formal
modeling of response times in cognitive psychology nec-
essarily requires parameters representing speed—accuracy
trade-off. However, there are many examples of useful and
successful RT models in psychology that focus on general
processing mechanisms without considering or implement-
ing speed—accuracy mechanisms, for instance, the additive
factors method (Sternberg, 1969), system factorial tech-
nology (Townsend, 1984), and models for judgment and
decision making (Glockner & Betsch, 2008). Admittedly,
many of these models often do not require a speed—accuracy
mechanism because performance is at ceiling or because
accuracy is not well defined. However, considering the vari-
ety of paradigms for which influential MPT models have
been developed (Erdfelder et al., 2009), it is obvious that
many of these paradigms lack a clear-cut accuracy criterion
that is a prerequisite for modeling speed—accuracy trade-
off (e.g., randomized response paradigms or social dilemma
games; Klein, Hilbig, & Heck, 2017).

In MPT applications where responses can be classified
as correct vs. incorrect, accuracy is usually incentivized
and there is no response deadline. For such paradigms and
experimental designs, in which speed—accuracy trade-offs
are not expected to have any effects (e.g., when manipu-
lating the item types in a recognition-memory experiment),
it may still be of interest to test predictions of different
theories on the relative speed of the cognitive processes
involved. As already outlined above, Brainerd et al. (2019)
recently used an MPT-RT model to evaluate predictions of
the dual-recollection theory on the relative speed of famil-
iarity, context recollection, and target recollection in the
conjoint recognition paradigm. Moreover, in an application
of MPT-RT models to probabilistic inferences (e.g., judg-
ments on questions such as “which city is larger?””), Heck
and Erdfelder (2017) showed that the RT-extended r-model
(which is based on the r-model by Hilbig, Erdfelder, &
Pohl, 2010) allows testing predictions of two process mod-
els against each other, and that existing data from different
studies and labs suggest a clear winner. Importantly, Heck
and Erdfelder (2017) also showed that both process models
cannot be discriminated on the basis of response frequencies
only. That is, whereas the standard r-model ignores RTs and
thus cannot discriminate between the two process models,
an MPT-RT extension of the r-model that includes RTs can.

These two recent examples already show that Starns’
generally framed statement “one critical test for any RT
model is its ability to accommodate the speed—accuracy
trade-off” (emphasis added) does not hold in full generality.
RT models that do not account for speed—accuracy trade-
offs can obviously still be useful and valuable to test
psychological theories, especially if these theories assume

multiple cognitive processes as in MPT modeling, and if
responses are given with a clear-cut focus on accuracy.
More generally, MPT models are mainly concerned
with explaining response distributions by parameters that
represent the probabilities of different underlying latent
states or processes under specific experimental conditions.
The validity of this approach does not hinge on any type
of counterfactuals such as “how well could have someone
performed if this person attempted to be more accurate?”
In the 2HT-RT model, for example, an estimate such as
d, = .70 means that 70% of responses to old items were
driven by a detection state. Whether this estimate could have
been higher under some other condition is mostly irrelevant.
What usually matters in typical MPT applications is what
is happening in a given experimental condition, not in an
“ideal” condition that was not observed. +

Nevertheless, we agree that it is a benefit (although not a
necessity) for RT models to make explicit and testable as-
sumptions why and how much accuracy decreases when the
focus is on speeded responding. For instance, a speed—acc-
uracy trade-off mechanism is obviously required to capture
effects of response deadlines and it should also be con-
sidered as a potential source of bias for other types of mani-
pulations that might be confounded with (in)cautious res-
ponding. Are MPT-RTs useless when the goal is to account
for effects of this sort? As discussed in the next section,
this is not the case. MPT-RTs are sufficiently general to
accommodate speed—accuracy trade-offs if researchers are
interested in modeling data with response deadlines.

Modeling speed-accuracy trade-offs using
MPT-RTs

In his reply, Starns (2018) proposes a novel discrete-state
model for a standard recognition paradigm. Overall, we
applaud the idea and effort to develop a discrete-state
model that has a mechanism for speed—accuracy trade-offs.
However, as mentioned above, the proposed “correction
for incautious responding” builds heavily on the assumed
race mechanism and the (auxiliary) parametric assumptions.
Hence, before relying on this model, a careful empirical
validation is necessary by showing that experimental
manipulations selectively influence the parameters.

In Heck and Erdfelder (2016), we proposed and tested
a RT-extended version of the two-high threshold model
(2HT-RT) as an example of an MPT-RT model. This
specific model aimed at modeling recognition memory
when individuals are not under time pressure but have
sufficient time to respond as accurately as possible.
Importantly, the model never aimed at accounting for

4We thank David Kellen for outlining this important point very clearly.
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speed—accuracy trade-offs, but for the relative speed of
detection and guessing processes in situations with a
focus on accuracy. Consequently, the data we analyzed in
Heck and Erdfelder (2016) were collected with explicit
accuracy instructions and no response deadlines involved.
As one of the main empirical results, we found that
responses based on guessing were stochastically slower than
detection responses. Notably, using the conjoint recognition
procedure with a focus on accuracy, Brainerd et al. (2019)
recently also found that responses involving guessing’
were slower than either type of memory-based responses
considered in their MPT-RT model.

When the interest is in situations with a focus on accuracy
only, the speed—accuracy mechanism proposed by Starns
(2018) becomes less relevant. To illustrate this, we remind
the reader that the race model by Starns (2018) distinguishes
two detection probabilities D: The probability D4y that
detection is in principle available due to successful encoding
and the probability D4c that a tested item is actually
detected (which requires that the detection process finishes
before the guessing process). Essentially, the race model
predicts that Dgc = r - Day, where r is a shrinkage factor
between zero and one that quantifies the relative decrease in
accuracy due to fast responding:

r :/yc(t)FD(t)dt, (1

where y and I" are the density and cumulative distribution
functions of the ex-Gaussian distribution, respectively, and
the indices G and D represent the processes (i.e., Guessing
vs. Detection) to which the latency distribution refers (for
details, see Starns, 2018). Figure 1 shows that this factor
r depends on the overlap of the two independent finishing
time distributions of the detection and guessing process.
If guessing is relatively slow compared to detection (e.g.,
if the mean parameters pu satisfy ug > wup), it follows
that detection usually succeeds, implying that r =~ 1 and
Dasc ~ Dyy. Hence, in high-accuracy conditions, the
standard 2HT-RT model for accuracy conditions (shown in
Fig. 2A) provides estimates for D¢ = d,, that approximate
the parameter D4y of the race model. Empirically, this
assumption is justified by our finding that guessing is
stochastically slower than detection when the focus is
on accuracy (Heck & Erdfelder, 2016). Only when the
finishing times of guessing are similar to or even faster than
those of detection (i.e., in situations with a focus on speed),
the shrinkage factor r drops substantially below one (cf.
Figure 1).

If the interest is in modeling data from both accuracy
and speed conditions, MPT-RTs can in principle still be

SNote that Brainerd et al. (2019) refer to guessing processes as bias
processes.
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developed based on the core idea of the now classical fast-
guess model (Ollman, 1966; Yellott, 1971). The fast-guess
model assumes that observed responses emerge as a mixture
of fast, stimulus-independent guesses and slower, stimulus-
dependent responses. Figure 2B shows how this simple
idea allows to generalize the 2HT-RT model to account for
speeded responding: In addition to the two latent states of
the original 2HTM (i.e., guessing and detection), we assume
a third state representing fast guessing. This is in line
with Starns’ (2018; p. 8) assumption that “psychologically,
this means that, on each trial, participants commit to
guessing ‘old’ or ‘new’ at some point relatively early in
the trial.” Hence, a certain proportion f of responses and
RTs is merely due to fast guessing and results in correct
‘old’ responses with probability g. Importantly, the model
assumes that stimulus-independent fast guesses result in a
different distribution of RTs than slow guesses following
detection failure, as indicated by the distinct latency
parameters L ¢ and L, respectively. If the model is fitted
to data from a speed and an accuracy condition jointly, the
model is identified when assuming that fast guessing does
not affect responding in the accuracy condition, f2°¢ = 0
(which is justified by our observation that the shrinkage
factor for the detection probability is ¥ &~ 1 when the focus
is on accuracy).

Interestingly, the proposed fast-guess extension of the
2HT-RT model resembles the race model by Starns (2018)
in that guessing results in a decrease of the probability of
detection d,, by the shrinkage factor r = 1 — f. Hence, both
models predict that the probability of available detection
decreases in the speed condition to d, - r. However, the
proposed fast-guess model predicts a constant shrinkage
factor r that does not depend on the relative speed of latent
detection and guessing processes as in the race model (cf.
Eq. D).

Importantly, it is possible to test empirically whether the
shrinkage factor is constant or not—even without modeling
RTs parametrically. For this purpose, consider a 2 x 2 design
of memory strength (weak vs. strong) and testing context
(focus on speed vs. accuracy). Assuming that memory
strength does not affect the probability of fast guesses, the
fast-guess model would predict that the decrease from d,
to d, - r between the accuracy and speed conditions is
identical for the strong and the weak memory conditions
(i.e., rSong = pweaky Tn contrast, when assuming that better
memory leads to faster detection times, the race model
would predict that rS7o" > pWVeak gince detection succeeds
more often when it becomes faster relative to guessing (cf.
Figure 1). Hence, we have derived a critical test between
two distinct mechanisms for speed—accuracy trade-offs, that
is, stimulus-independent fast guesses (Yellott, 1971) vs. a
latent race between detection and guessing (Starns, 2018).
More generally, these considerations show that the MPT-RT
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Fig. 1 a Ex-Gaussian distributions assumed for the latent processes in

speed—accuracy function) for the probability of available detection D4y

model class is useful for deriving and testing assumptions
about speed—accuracy trade-offs, even though the specific
model tested in Heck and Erdfelder (2016) did not include
a mechanism for this purpose.

The fast-guess 2HT-RT model
as a nonparametric approximation
of the race model

The proposed fast-guess extension of the 2HT-RT model
makes different predictions than Starns’ race model in

(b) Relative Decrease: r = Dpc/Day

Guess slow
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Shrinkage factor r

0.2

Guess fast |

0.0

0.0 05 1.0
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the race model by Starns (2018). b Implied shrinkage factor (i.e.,

general and should thus best be considered as an alternative
(nonparametric) approach to model speed—accuracy trade-
off in yes-no recognition tasks. Notwithstanding this
fact, one might still be interested in how well the
fast-guess model can approximate data known to be
perfectly in line with the race model. If such an
approximation succeeds reasonably well under practically
relevant context conditions, it seems defensible to use our
fast-guess extension of the 2HT-RT model as a simple
default measurement model to account for effects of
response deadlines, even if the exact nature of the speed—
accuracy trade-off mechanism (i.e., stimulus-independent

(a) RT-extended two-high threshold model for accuracy:

do
Target (acc.)

(1-dy)

Hit / Ly

g —— Hit / L,

(1—-g)— Miss / L,

(b) Fast-guess version of the 2HT-RT model:

f<i::
Target (speed) <
von{

g Hit / Ly
(I1—-g9) Miss / Ly
d, Hit / Lg

g——Hit / L,
(1-d){

(1—g) — Miss / L,

Fig.2 a Original version of the RT-extended two-high threshold model (Heck & Erdfelder, 2016). b Fast-guess extension of the 2HT-RT model
motivated by the fast-guess model (Yellott, 1971). The model parameters refer to the probability of detecting an old item (d, ), guessing ‘old’ (g),
or making a fast guess (f). The corresponding probabilities of responding faster than a predetermined RT boundary for these three processes are
labeled Ly, Lg, and Ly, respectively. Responses due to target detection (as opposed to guessing) are highlighted with solid boxes
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fast guesses vs. race between detection and guessing) is not
entirely clear.

To evaluate whether the fast-guess 2HT-RT model
provides an acceptable approximation of Starns’ race
model, we performed Monte Carlo simulations. We relied
on simulations instead of analytical derivations since linking
the two models analytically appeared to be intractable.
Based on the R scripts provided by Starns (2018), we
generated data from the race model for two conditions
(speed vs. accuracy) each with two item types (target vs.
lure). We simulated 250 replications with 1500 trials per
condition (cf. Starns, 2018) and data-generating parameters
that were similar to those of the original simulations:
The probability parameters Dzlg, DYy, and g were
drawn from uniform distributions on the interval [.20, .80].
The detection RTs followed an ex-Gaussian with random
parameters mean up € [0.400, 0.800], standard deviation
op € [0.050, min(up/5)], and mean of the exponential
component Ap € [0.100, 0.333]. The speed—accuracy trade-
off was modeled by a manipulation of the mean parameter
of the ex-Gaussian for guessing responses, with fast guesses
in the speed condition, ;Lg)eed € [up — 0.200, up +
0.200], and slow guesses in the accuracy condition, u%° €
[up + 0.200, up + 0.500]. Moreover, the two guessing
RT distributions were identical with respect to the standard
deviation o € [op — 0.020, op + 0.020] and the mean of
the exponential component Ag € [Ap + 0, Ap + 0.300].

In each replication, we fitted both the race model and the
fast-guess model shown in Fig. 2 with two RT bins (using
the geometric mean as RT boundary; Heck and Erdfelder
2016). As mentioned above, the latter model assumed that
fast guesses do not occur in the accuracy condition ([ =
0), which renders the model identifiable. Figure 3 shows the
recovery of this simulation, where the true, data-generating
parameters are on the x-axis and the estimated parameters of
the fast-guess model are on the y-axis. The results show that
the fast-guess 2HT-RT model provides valid estimates of
the two probabilities of available detection D 4y for studied

and new items, and also for the guessing probability g. Note
that both detection probabilities are slightly underestimated
(with an average difference of —.04). This is due to the
shrinkage factor which is actually only close to one but
not identical to one in the accuracy condition as assumed
in our fast-guess model (cf. Fig. 1). Apart from this small
expected bias, the model allows to measure differences in
the parameters validly, as indicated by the high correlation
between the estimated and the true parameters (rg, = .966,
ran = 974, and r; = .996). The fast-guess model also
recovered the shrinkage factor r = 1 — f (cf. Eq. 1) quite
well, the complement of the fast-guess probability (with a
correlation of r, = .857). Moreover, the estimated order of
the latent RT distributions was identical in all replications
and followed the expected pattern that fast guesses were
stochastically faster than detection responses, which in turn
were stochastically faster than slow guesses (as reflected by
the latency parameters Ly > Lp > Lg; for a detailed
interpretation of these L parameters, see Heck & Erdfelder,
2016).

Of course, fitting Starns’ race model to the same data
resulted in even higher correlations of the estimated and
the true parameters (rgp = .982, rgp = 984, r, =
997, and r, = .980). However, this is not surprising
given that the race model was in fact the data-generating
model in our simulations. Its fit to the data thus cannot be
exceeded by any other (factually misspecified) model such
as the fast-guess 2HT-RT model. Overall, the simulation
shows that the fast-guess version of the 2HT-RT may serve
as an approximation of the race model without requiring
any distributional assumptions on guessing and detection
latencies. The approximation worked well under practically
relevant conditions, that is, when finishing times of guessing
in the accuracy condition were larger than those of detection
(in which case the race model predicts a shrinkage factor
r & 1, meaning that almost all items that are in principle
detectable are indeed detected; see Fig. 1). It is expected
that the approximation quality will decrease if one cannot

do dn

1.00 4

0.751
'_
&
'_
& 050
=
0.251
02 04 06 08 02 04 06 08 02 04 06 08 02 04 06 08
Race model

Fig. 3 Correlation of the data-generating parameters of the race model (x-axis) with the estimates of the fast-guess 2HT-RT with two RT bins

(y-axis)
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establish an accuracy condition in which fast guesses are
very unlikely (i.e., f = 0). In such a case, the assumption
f = 0 required for the identifiability of the model will be
violated. However, to investigate this issue in more detail
for specific scenarios, one may adapt the simulation scripts
that are available on the Open Science Framework (https:/
osf.io/qkfxz/). This notwithstanding, the present simulation
results clearly showed that it is possible to construct MPT-
RT models that can account for speed—accuracy trade-
offs (based on the pioneering ideas of Ollman, 1966 and
Yellott, 1971).

Model flexibility

A common concern regarding models with many parameters
is overfitting, implying that MPT-RTs such as the proposed
fast guess model may be overly flexible and thus be able
to fit even random data. To rule out that the (parametric)
race model is prone to overfitting, Starns (2018) assessed
the model fit for distorted datasets that were obtained
by adding an arbitrary constant to the model-generated
RTs. Building on this idea, we ran a second simulation
study to test whether the fast-guess 2HT-RT can fit even
distorted datasets obtained by randomly permuting the
model-generated frequencies (for a similar approach to
assess MPT model flexibility see Erdfelder and Buchner,
1998). Based on the order constraint that fast guesses
are stochastically faster than detection responses and slow
guesses (ie., Ly > Ly and Ly > L, we generated
100 frequencies for each item type and condition based
on the fast-guess 2HT-RT with random parameter values
in the interval [.20,.80]. Next, we randomly permuted

the simulated frequencies for the “fast” and “slow” RT
bins within each of the 8 original response categories of
the 2HT model (e.g., for hits in the speed condition).
This procedure induced between O to 8 permutations of
the original data and only distorted those aspects of the
data concerning the relative speed of responses (but not
those concerning accuracy). Figure 4 shows the estimated
statistical power of rejecting the fast-guess RT model based
on a goodness-of-fit test G*Wdf = 5) and a significance
level of ¢ = 5%. Without permutations, the goodness-of-
fit test adhered to the nominal significance level. However,
if one or more of the RT frequencies were permuted, the
test correctly rejected the null hypothesis with substantial
power (1 — B > 65%), especially if 3—7 frequencies were
permuted (1 — B > 87%). Moreover, random permutations
affected the recovery of the memory parameters d, and
d,. Whereas the correlation between data-generating and
estimated parameters was r = .74 for undistorted datasets,
correlations dropped to values between r = .39 and r = .51
for 1 to 7 permutations (with a peak of r = .68 for eight
permutations). Overall, the simulation thus shows that the
fast-guess 2HT-RT is not overly flexible to fit arbitrary
datasets with randomly permuted RT frequencies.

Choice between models

The decision which of the available modeling approaches
is applied in empirical research should ultimately depend
on specifics of the research question and a careful
consideration of the benefits and drawbacks of each model
class and the context conditions of the study. For example,
consider the research question of separating accuracy and

1.00
° b ° »
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& °
8 0754
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caution effects when only two conditions or groups are
available (Starns, 2018, p. 2411). By assuming a specific
mechanism and parametric shape of the speed—accuracy
trade-off (cf. Figure 1B), the race model allows to test
whether performance differences in two populations (e.g.,
between young and old adults) are due to differences
in memory or due to incautious responding. In contrast,
the incautious responding parameter f in the proposed
fast-guess 2HT-RT model is not identifiable in a simple
between-subjects design because the model does not assume
a parametric speed—accuracy mechanism. Thus, the fast-
guess model would be of no help for a two groups design.
However, a simple extension of this model allows to test
whether a focus on speed has different effects on young and
old adults by implementing a 2 x 2 design with age as a
between-subjects factor and speed vs. accuracy as a within-
subjects factor. Based on this design and the assumption
that one can establish an accuracy condition in which both
young and old participants perform as best as possible (i.e.,
f = 0), one can test whether inducing a focus on speed has
the same effect on the probability of fast guesses for both
age groups (i.e., fyoung = fold)-

This example highlights the general principle that diffe-
rent types of models enable researchers to test different types
of research questions based on different sets of assumptions.
Essentially, it depends on the substantive context whether
researchers deem it to be easier to commit to a specific,
parametric speed—accuracy mechanism or to other assump-
tions such as constraining a parameter to zero (e.g., f = 0)
in certain experimental conditions. In the former case, para-
metric frameworks such as the race model proposed by
Starns are valuable candidates to account for data that might
be affected by speed—accuracy trade-offs. In the latter case,
however, the proposed fast-guess 2HT-RT model may pro-
vide an alternative means of testing substantive hypotheses
based on factorial experimental designs.

Ultimately, of course, the decision between both model-
ing approaches may also be made based on experimental
data. If data are available for a 2 x 2 design with one factor
manipulating speed vs. accuracy (e.g. short response dead-
line vs. no response deadline) and the other factor affecting
D, selectively, then both the fast-guess 2HR-RT model
and the race model can be fit to these data. By using the
shrinkage factor criterion already outlined in the section on
“Modeling speed—accuracy trade-offs using MPT-RTs” the
better model for these data is easily identified.

Limitations
As in any modeling approach, both the fast-guess model and

the MPT-RT model class in general come with limitations
that should not be overlooked. We already outlined the
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major structural limitation of the fast-guess 2HT-RT model:
It does not allow to separate accuracy and caution in simple
two-conditions between-subjects designs. Hence, if only
two conditions are available and an extension to a more
complex experimental design is not feasible, it is necessary
to commit to a specific processing mechanism such as the
one assumed by the race model to account for possible
differences in incautious responding between groups.

Looking at limitations of MPT-RT models in general,
the probably most important issue that must be kept in
mind concerns the nature of the “relative speeds” (or
latencies) measured by these models. Strictly speaking,
what is measured by MPT-RT models is the relative latency
of a branch in an MPT model, that is, the overall duration of
a sequence of cognitive processes or states represented by
such a branch. To illustrate, when we measure the relative
latency of responses based on guessing using the 2HT-
RT model, we actually measure the relative duration of
guessing “yes” (or “no”, respectively) following detection
failure in a recognition test (see the corresponding branches
in Fig. 2A). When such a sequence of cognitive processes
turns out to be relatively slow (or fast, respectively),
MPT-RTs cannot determine uniquely whether this is due
to the process resulting in detection failure, the process
resulting in guessing “yes” or “no”, or both. Researchers
interested in decomposing the total processing time of a
branch into additive latencies for each component process
involved need a different modeling approach such as the
one originally proposed by Hu (2001) for the level of
mean latencies and more recently elaborated to a new RT-
MPT model family that allows to estimate the latency
distributions of serial processing steps separately, including
the option to test between different possible orders of the
component processes (Klauer & Kellen, 2018). Of course,
this surplus of information does not come for free: Complex
parametric assumptions about the component latencies and
their joint distribution are required to fit RT-MPT models.
However, if a research question clearly aims at estimating
the component latencies, we recommend to pay this price
and switch from MPT-RT models (Heck & Erdfelder, 2016)
to RT-MPT models (Klauer & Kellen, 2018).

Conclusions

Overall, we applaud the effort of Starns (2018) to develop
a discrete-state model of recognition memory that includes
a race mechanism of speed—accuracy trade-off. Whereas the
race model aims at explaining a specific phenomenon for
two-alternative choice tasks, MPT-RTs provide benefits as a
broad class of general-purpose, simple-to-use models (Heck &
Erdfelder, 2016). In this reply, we highlighted some of these
advantages and also showed that MPT-RTs are sufficiently



Psychon Bull Rev (2020) 27:571-580

579

general to account for speed--accuracy trade-offs and allow
for the derivation of novel critical tests between different
ways of modeling speed--accuracy trade-off. We also showed
that a specific MPT-RT—the fast-guess 2HT-RT model—may
approximate Starns’ race model quite well under practically
relevant conditions and can thus be used as a simple default
model for speeded yes-no recognition tasks.

More generally, we want to stress again that RT models
in general and MPT-RT models in particular can be useful
even when they do not account for speed—accuracy trade-
offs. Supporting this argument, Brainerd et al. (2019, p. 17)
concluded that “we have seen how easily this new procedure
[the MPT-RT approach by Heck and Erdfelder (2016)]
generates latency extensions of existing cognitive models
and how such an extension can deliver a rich assortment
of novel findings on fundamental theoretical questions.”
Evaluating any RT model or modeling approach with
respect to merely one specific phenomenon that has been the
focus of some (but definitely not all) research in cognitive
psychology (i.e., the speed—accuracy trade-off) may give
rise to a criticism of potentially powerful model families that
have benefits for behavioral science as a whole.
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