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Abstract
Duffy, Huttenlocher, Hedges, and Crawford (2010, Psychonomic Bulletin & Review, 17[2], 224–230) examined whether the
well-established central tendency bias in people’s reproductions of stimuli reflects bias toward the mean of an entire presented
distribution or bias toward only recently seen stimuli. They reported evidence that responses were biased toward the long-run
mean and found no evidence that they were biased toward the most recent stimuli. Duffy and Smith (2018) reexamine the data
using a different analytical strategy and argue that estimates are biased by recent stimuli rather than toward the long-run mean. I
argue that this reanalysis misses a true effect of the running mean and that the data are (mostly) consistent with the claims in the
original work. I suggest that these results, and many other null results presented by Duffy and Smith, do not have major
theoretical significance for the category adjustment model and similar Bayesian models. (Code and data available: https://osf.
io/tkqvn.)
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At issue in earlier work by Duffy, Huttenlocher, Hedges,
and Crawford (2010, hereafter called DHHC) was whether
the well-established central tendency bias in people’s repro-
ductions of stimuli reflects bias toward the mean of an
entire distribution or bias toward recently seen stimuli.
DHHC reported evidence that responses were biased to-
ward the long-run mean rather than toward the most recent
stimuli and presented these results as consistent with the
category adjustment model (CAM), a Bayesian model of
stimulus estimation (Huttenlocher, Hedges, & Vevea,
2000). In their reexamination, Duffy and Smith (DS;
2018) point out some flaws in the original work, apply a
different analytical approach to the data, and conclude that
estimates are biased toward recent stimuli rather than to-
ward the running mean. They interpret their findings as a
refutation of CAM, and of Bayesian models more general-
ly. Here, I argue that the DS failure to detect the impact of
the running mean on estimates is likely a Type II error. I
also suggest that the paper overstates the theoretical signif-
icance of its findings and of the original findings reported
in DHHC, and that it presents a distorted view of CAM.

An important contribution of CAM was that it provided a
rational account of the central tendency bias in people’s repro-
ductions of stimuli. CAM modeled responses as being drawn
from the posterior distribution created by a Bayesian combi-
nation of two Gaussians—one representing the unbiased but
noisy memory trace of the stimulus and the other representing
prior knowledge about the category from which it was drawn
(i.e., the generating distribution). The resulting responses are a
weighted average of the trace memory mean and the mean of
the prior, and the weighting is determined by the relative pre-
cision of the trace and the prior:

Response ¼ λρþ 1−λð Þ M ð1Þ

Where ρ: mean of the prior
M: mean of the memory trace.
This combination produces responses that are biased to-

ward the mean of the prior. Central to the present argument,
CAM specifically predicts that the degree of that bias will
depend on the deviation of M from ρ. For stimuli that vary in
size, to the degree that stimuli are larger than ρ, they will be
underestimated; to the degree that they are smaller than ρ, they
will be overestimated, and stimuli in the middle (i.e., where M
= ρ) will produce unbiased responses. Thus the normal–
normal combination on which CAM is based predicts a linear
relationship between bias (i.e., response–stimulus) and the
deviation of M from ρ.

DHHC asked, where is ρ? That is, toward what point
do people bias their estimates? Earlier work has
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suggested that, at least in some contexts, participants
use a prior that corresponds to (or at least tracks varia-
tion in) the mean and variability of the generating dis-
tribution (e.g., Duffy, Huttenlocher, & Crawford, 2006;
Huttenlocher et al., 2000). Others noted that the central
tendency bias could also be achieved if people shift
estimates toward only the previous instance (or few in-
stances) without taking into account the entire distribu-
tion (Choplin & Hummel, 2002). DHHC (Experiment 1)
sought to distinguish these possibilities by having par-
ticipants view and reproduce line lengths and using a
distribution that changed between the first half of trials
and the second half so that the long-run mean and
short-run mean would differ. Both distributions had the
same range, but they were skewed so that in the first
half, the distribution’s average was 180 pixels for some
participants and 268 pixels for others, and in the second
half, the distributions flipped. The resulting bias in es-
timates is shown in Fig. 1.

During the first half of trials (left panel), responses are
biased toward the mean of the first-half distribution. This is
shown by the negative slope (smaller stimuli are
overestimated, larger stimuli underestimated), and by the
differing intercepts (because each condition was biasing
toward a different central value). During the first half of
trials, within each condition the cumulative mean and the
mean of recent stimuli are the same (on average), so a
process that adjusted estimates toward either of these would
produce the same overall pattern of bias. In the second half
of trials, the cumulative mean and the recent mean diverge.
If recent stimuli are most influential, estimates should now
shift toward the mean of the second-half distribution, which
is different for the two conditions and so should again
produce two separate bias curves with different intercepts.
However, if the cumulative mean is most influential, the
two conditions should converge as participants in both con-
ditions integrate their exposure to both distributions and
acquire the same cumulative mean.

Fig. 1 Bias (i.e., response–stimulus) by stimulus value for each condition
in the first half (left panel) and second half (right panel) of DHHC
Experiment 1. The first 20 trials of the second half are excluded in
order to give the later trials a better chance of being unaffected by the
running mean. Dotted lines indicate the condition that first viewed longer
lines; solid lines indicate the condition that first viewed shorter ones.

White circle indicates the mean of the longer distribution, black one the
mean of the shorter distribution, and gray one the mean of all stimuli.
Gray bands here and in subsequent figures represent 95% confidence
intervals calculated in ggplot2 using the general additive model method
(Wickham, 2009)
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Figure 1 shows that during the second half of trials, re-
sponses are biased toward the long-run mean rather than the
short-run mean.1 The pattern seems incompatible with the DS
paper’s conclusion that estimates are biased toward recent
stimuli rather than the long-run mean. That conclusion is
based on a null result from an analytical approach that can
be shown to be inadequately sensitive to the effect of the
running mean on estimates that CAM predicts.

In order to assess the impact of the running mean and the
mean of N recent stimuli on responses, DS fit several regres-
sions of the form:

Response ¼ β0 þ β1Stimulus þ β2RunningMean

þ β3LastNMeanþ ε ð2Þ

This approach assesses whether variation in the running
mean and mean of recent stimuli independently predict varia-
tion in responses, but does not directly assess whether estimates
are biased toward the running mean in the manner that CAM
predicts. By treating each predictor as independent, it does not
capture the constrained relation between these predictors in
CAM (i.e., that the weight given to the prior in estimates is
inversely proportional to the weight given to the stimulus).

One way to model this aspect of CAM is to use regression
through the origin (RTO) by dropping the intercept term from
the DS analysis. This was done in the DHHC paper, albeit
without explanation. Although RTO is controversial, it is appro-
priate to test a model in which the response depends on predic-
tors that are proportionally related (Cornell, 2011; Weisberg,
1985), as is the case in CAM. An alternative and more intuitive
approach is to model CAM’s prediction that bias in responses
depends on the deviation of a stimulus from the prior. If the prior
toward which people bias their estimates is the running mean,
and the trace memory of a stimulus is centered on the stimulus
value, then Equation 1 can be revised to:

Response ¼ λð Þ Running meanþ 1−λð ÞStimulus: ð3Þ

This is equivalent to:

Response−Stimulus ¼ −λ Stimulus−Running meanð Þ: ð4Þ

To test whether estimates are biased toward the running
mean without using RTO, one can run regressions of this
form:

Bias ¼ β0þ β1RunMeanDeviationþ ε; ð5Þ

Where Bias: response–stimulus
RunMeanDeviation: stimulus-running mean.
CAM predicts that β1 will be a negative value, the extrem-

ity of which estimates the weight given to the running mean
(i.e., −β1 = λ) and that β0 will be zero. To test whether esti-
mates are also biased toward the mean ofN recent stimuli, one
can also include each stimulus’s deviation from that mean:

Bias ¼ β0þ β1RunMeanDeviation

þ β2LastNMeanDeviationþ ε: ð6Þ

This approach, hereafter called Bdeviations analysis,^ pro-
duces different results from the DS analysis. To see why, con-
sider a simulated experiment in which participants view and
reproduce stimuli drawn at random without replacement from
a set of lines ranging from 80 to 368 in equal increments of 16,
each shown 10 times (similar to the uniform condition of
Huttenlocher et al., 2000). Here, responses were generated to
include both bias toward the running mean (i.e., mean of all
previous stimuli, not including the present trial) and toward
the mean of the three stimuli that preceded the present trial and
some noise:

Response ¼ Stimulusþ :8� Stimulusþ :1

� RunningMeanþ :1� Last3Mean

þ Noise: ð7Þ

From this simulation, we can calculate the running mean
for each participant at each trial number to see how it changes
across trials, as shown in Fig. 2.

The variability in the running mean decreases across trials,
as it must with increasing sample size.2 The variability of the
mean of the last three (or n) stimuli does not suffer the same
fate because it is always based on only three (or n) data points
(see Fig. 3).

Because the DS analysis treats the running mean as an inde-
pendent predictor of responses, its sensitivity to the effect of the
running mean will depend on the variability in the running
mean, which decreases across trials. It will detect the effect of
the running mean in initial trials, but not later trials. Analyzing
each half of this simulated data set with the DS analyses and
with the deviations analysis produces the estimates in Table 1.

In the first half of trials (left column of Table 1), both
analyses reveal a statistically significant effect of the running
mean and the last-three mean, although the standard errors in
the DS analysis show that it estimates the running mean effect
less precisely than it does the effect of the last-three mean and
also less precisely than does the deviations analysis. In the
second half (right column), where there is little variation in

1 DHHC calculated means and 95% confidence intervals for the point of zero
bias (i.e., the value of x where y = 0) in each condition and each half of the
experiment. They reported that in the first half, the 95%CIs included the mean
of the distribution shown in that half, but in the second half, the 95% CIs were
shifted toward the cumulative mean and did not include themean of the second
half of trials. The DS examination does not address this analysis.

2 Specifically, the standard deviation of participants’ running means at trial n
will be approximately s

ffiffiffiffiffiffi

n−1
p .
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the running mean, the DS approach is unable to detect its
effect, although it does detect the effect of recent stimuli. In
contrast, the deviations approach estimates both effects with
comparable precision and does so in the second half of trials as
well as it does in the first.

In response to concerns about power in their analysis, DS
simulated data based on the changing distribution used in
DHHC Experiment 1. In this simulation, each response was
a weighted average of the target stimulus (.9) and the running
mean (.1), with some added noise. For this data, the DS

Fig. 2 Running mean for each participant in a simulated data set from Trials 2–190

Fig. 3 Mean of previous three stimuli for each participant in a simulated data set from Trials 4–190
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analysis produced a significant effect of the running mean on
estimates, a result that they claimed, Bshould leave no doubt
that our methods are able to detect CAM by identifying a
significant relationship involving the running mean variable.^
However, as the right column of Table 1 illustrates, it is pos-
sible to produce simulated data with baked-in bias toward the
running mean in which the DS analysis fails to identify the
running mean effect. When both analytical approaches are
applied to the data that DS generated, the deviations analyses
estimates the simulated effect more precisely than does the DS
analysis (see OSF page for analysis). This is not surprising,
because the deviations analysis follows directly from the
weighted average at the heart of CAM.

Applied to the real data from DHHC, the two analytical
approaches produce different results. In each experiment, the
DS analysis finds a significant effect of the last three stimuli,3

but not of the running mean, whereas the deviation analysis
finds an effect of both, with the effect of the running mean
being larger than the effect of the recent stimuli (see Table 2).
The deviations analyses also produces intercepts near zero,
indicating that estimates are biased toward the hypothesized
values (running mean and mean of last three) rather than to-
ward some other value. The estimates here are very close to
those presented in the original DHHC paper, which did not
center the data but instead ran a regression through the origin
(intercept set to zero) to estimate the relevant slopes.

Based on the null effect of the running mean in their anal-
ysis, Duffy and Smith concluded that DHHC was wrong and
that there is no evidence of bias toward the running mean. An
alternative interpretation is that this null effect shows the lim-
itations of an analytical strategy. The deviations analysis pro-
vides more precise estimates of the running mean effect in
simulated data, and when applied to real data, it finds a

significant effect. Its results are compatible with Fig. 1, which
suggests a process in which estimates are biased toward a
long-run mean.

It is important to note that both analyses show a significant
effect of the mean of the last three stimuli. DHHC failed to
detect this effect, possibly because, as DS points out, they did
not use a hierarchical regression approach and instead estimat-
ed parameters for individual participants. DHHC acknowl-
edged that there may be an effect of recent stimuli and ad-
dressed situations in which giving more weight to recent stim-
uli would be sensible. Their conclusion was that a process of
blending the current stimulus with only recent stimuli would
not produce the pattern of bias observed in this data set.

Implications for the category adjustment
model

As are all models, CAM is obviously wrong (Box, 1979). It
makes assumptions that are simplifying and skeletal (e.g.,
treating trace memory and priors as normally distributed)
and never claims to capture the whole complexity of human
judgment. The DS paper constructs a straw man when it
claims BCAM predicts that judgments will not be affected
by features of the experiment that do not improve the accuracy
of the judgment^ (p. 1740). Their claim that Bone prediction of
CAM is that participants will not be sensitive to recently
viewed stimuli^ (p. 1740) should be revised to state that
CAM makes no strong predictions about the effect of recent
stimuli. DHHC concluded that recent stimuli were not driving
the observed effects, but also acknowledged that in a system-
atically changing world, it could be adaptive to use a prior
based on recent stimuli rather than one learned long ago (cf.
Duffy & Crawford, 2008). More broadly, CAM does not re-
quire purely inductive priors in which every previous instance

3 Here, I present an analysis using the mean of the last three stimuli. Many
other subsets could be used to instantiate the idea of recency (as in DS) and the
last three deserve no special status; they just happen to produce stronger effects
than other subsets I examined.

Table 2 Coefficients with standard errors for DHHC Experiment 1 and
DHHC Experiment 2

DS analyses DHHC 1 DHHC 2

df 4668 8457

Intercept 12.836 (5.875)* 19.815 (7.306)

Stimulus 0.803 (.005)*** 0.784 ( 0.005)***

Running mean 0.041 (.028)ns 0.060 ( 0.032) ns

Mean of last 3 0.092 (.009)*** 0.068 ( 0.009)***

Deviations analysis

df 4670 8458

Intercept −1.676 (2.262) 0.127 (2.582)

Deviation from running mean −0.113 (.009)*** −0.147 (0.010)***

Deviation from mean of last 3 −0.085 (.008)*** −0.067 (0.009)***

Note. Results of random-intercepts model fit with lme4 package in R.
***p < .001, *p < .05

Table 1 Coefficients with standard errors for each half of trials in a
simulated data set

DS analyses (df = 3517) First half of trials Second half of trials

Intercept −2.162 (5.839) 12.252 (29.640)

Stimulus 0.801 (.005)*** 0.799 ( 0.005)***

Running mean 0.106 (.027)*** 0.048 ( 0.132)ns

Mean of last 3 0.100 (.009)*** 0.099 ( 0.008)***

Deviations analysis (df = 3518)

Intercept −0.648 (.414) 0.075 (0.483)

Deviation from running mean −0.099 (.010)*** −0.102 (0.010)***

Deviation from mean of last 3 −0.100 (.009)*** −0.098 (0.008)***

Note. Results of random-intercepts model fit with lme4 (Bates, Maechler,
Bolker, & Walker, 2015) packages in R. ***p < .001
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is weighted equally, and it does not require that participants
start every experiment with a diffuse, uninformative prior, as
DS assume. What it (and Bayes theorem) does offer is a way
of quantifying why such open-mindedness would be a good
idea.

CAMhas been useful as a descriptive rather than normative
Bayesian model, a distinction suggested by Tauber, Navarro,
Perfors, and Steyvers (2017). It has offered an explanation for
certain biases in memory and generated novel predictions
about how manipulations that affect the precision of a trace
memory or prior would influence bias. Many studies have
used CAM to examine the nature of the priors people
actually use without requiring that those priors be optimally
tuned to the environment. In Huttenlocher et al. (2000) and
DHHC, the priors were thought to be the mean of all presented
stimuli. In Duffy and Crawford (2008), the prior appeared to
give more weight to stimuli presented early in the sequence. In
many spatial memory tasks (e.g., Crawford, Landy, &
Salthouse, 2016; Huttenlocher, Hedges, & Duncan, 1991),
the priors people use have nothing to do with the stimulus
distribution at all, and yet those priors still have a stronger
influence under conditions that are likely to make trace mem-
ory less precise, as predicted by CAM.

Conclusion

I disagree with Duffy and Smith’s (2018) conclusion that re-
sponses reported in the DHHC paper are biased toward only
recent stimuli and not toward the running mean. I raise con-
cerns about their analytical strategy, suggest an alternative
approach, and show that this alternative better recovers the
impact of the running mean in simulated data. Applied to the
real data, this analysis suggests that estimates are biased to-
ward the running mean, and to a lesser extent, toward recent
stimuli. Finally, I suggest that these results, and the various
null results presented by DS, do not have major theoretical
significance for CAM and similar Bayesian models.
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