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Abstract
It is unusual for very little to be known about a highly influential psychological scientist, but that is the case for the individual
responsible for promoting one of the most influential laws of the field, the Power Law of Learning, as well as a seminal model of
aiming performance. The individual, who published as E. R. F. W. Crossman, is shrouded in mystery. The authors of the present
article sought to find out who Crossman is or was.We discuss the scholarly context for Crossman’s work, including the classroom
event at which we resolved to find out more about Crossman. In the course of our investigation, which took quite a bit of detective
work, we learned that many other psychological scientists have been curious about Crossman as well. Rather than resolve the
mystery in this abstract, we leave the reader in the state we were in at first, wanting to satisfy our curiosity and, finally, feeling we
had learned important things, not only about the individual at the heart of the investigation, but also about our field in general.
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In teaching, it is common for instructors to speak about the
people whose work is being taught. Such information helps
put the research into historical and cultural perspective. If the
person whose work is described is someone with whom stu-
dents can identify, the work can take on added personal sig-
nificance. This observation sets the stage for the present arti-
cle. The person who is the subject of this article—a certain E.
R. F. W. Crossman—is someone whose work has been taught
to legions of students, yet little is known about him or her.

The two authors of this article have long been interested in
Crossman’s scientific discoveries, but neither of us had a pic-
ture of Crossman, literally or figuratively. The dearth of infor-
mation about him or her was at odds with the investigator’s
impact. We became curious to know who E. R. F. W.
Crossman is or was, and decided to learn about him or her,
both for the human-interest side of the story and to see wheth-
er this clearly brilliant scientist might have produced other
treasures beyond the ones we knew about.

Because of the unusual background of this article, we
want to place Crossman’s research in context by indicating
where it fits in with other work to which it is related. We
also want tell the story of how we finally managed to learn
about Crossman. The outcome of our investigation was
eye-opening in many ways.

The plan for the article is as follows. In the next section (the
article’s second), we focus on an area where one of
Crossman’s best-known projects was extremely influential—
visually guided aiming. It happens that this domain was de-
scribed by the first author in a lecture attended by the second
author, and it was there that the two of us decided to find out
who Crossman is or was.

In the third section of the article, we discuss the contribution
for which Crossman is best known, the Power Law of Learning.
Here we discuss Crossman’s famous study of cigar rolling, cov-
ered in virtually all cognitive psychology and human factors
textbooks. It was the cigar-rolling data, along with other data
concerning the time to complete tasks as a function of the amount
of practice on the tasks, that led Crossman to endorse the Power
Law of Learning. The formula has incited a great deal of discus-
sion, including debate about whether it is the best quantitative
account of data concerning practice-related speeding. Regardless
of how that controversy plays out, the large amount of attention
the formula has received points to the deep interest that
Crossman’s theorizing has stirred.
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In the article’s fourth section, we turn to the path we took to
learn about Crossman. We found ourselves acting like detec-
tives. We describe the steps we took and what we learned
about Crossman. The experience was fraught in many ways.
Pain as well as pleasure was uncovered in the process.

In the fifth and final section, we provide closing remarks
about this remarkable investigator.

Aiming

In early 2018, the second author (hereafter, Markus) traveled
from the University of Tübingen (Germany) to visit the first
author (hereafter, David) at the University of California,
Riverside (USA). During the visit, Markus asked David
whether he could attend a lecture David would be giving that
day. BOf course,^ David answered, appreciating the opportu-
nity to spend more time with Markus and wanting to get com-
ments from Markus about the lecture itself.

The lecture that day happened to be about aiming. The
topic was reaching for targets, with special reference to the
processes of homing in on targets using one’s eyes and hands.
David tried to make clear in the lecture that although reaching
for objects may appear simple, it is actually quite complex, at
least when studied in detail. Being able to reach for things in
the external environment can be challenging, as when a tod-
dler tries to reach for a cup ofmilk and the cup is likely to spill,
or when a Parkinson’s patient tries to move a computer cursor
and the cursor’s path is likely to waver.

As David told the class, several theoretical models have
been developed to explain aiming, and as he also explained,
a number of luminaries in psychological science have delved
into this topic and have used it as a springboard to studying
skill more broadly. You, the reader of this article, are invited to
join the lecture now (recast a bit), to get the main ideas and set
the stage for the presentation of Crossman’s work.

Woodworth

The name Robert Woodworth will be familiar to readers of
this journal. Woodworth is best known for his book-length
review of experimental psychology, the first such publication
(Woodworth, 1938). Less well known may be the fact that
Woodworth’s doctoral dissertation, which was published as a
monograph (Woodworth, 1899), concerned the speed and ac-
curacy of aiming movements.

For his dissertation,Woodworth asked participants tomove
a hand-held stylus back and forth between two targets at dif-
ferent rates, with and without visual feedback. On the basis of
his results, Woodworth drew a distinction between behavior
that is ballistic (unaffected by feedback) and behavior that is
controlled (based on feedback). This distinction set the stage
for the well-known contrast between automatic and controlled

processes (e.g., Posner, 1973). For a review of Woodworth’s
work on aiming and its sequels, see Elliott, Helsen, and Chua
(2001). A useful review of additional research on aiming has
been provided by Elliott et al. (2010).

Woodworth’s brilliance as an experimenter, coupled with
his scholarship, led to his being called the BDean of
Experimental Psychology^ (Hearst, 1979). A biography of
Woodworth was prepared by Graham (1967).

Fitts

The next researcher whose work was covered in the lecture
was Paul Fitts. Fitts is best known for his work on stimulus–
response compatibility, the tendency for responses to be either
easy (quick and accurate) or hard (slow and inaccurate), de-
pending on the particular stimulus–response pairings that are
tested (Fitts & Deininger, 1954). Stimulus–response compat-
ibility has proven to be one of the most powerful tools for
uncovering basic and applied principles of psychological sci-
ence; for reviews, see Proctor and Vu (2006, 2016). Its appli-
cations have even gone so far as to expose implicit bias in
thousands of people who have taken the implicit attitudes test
(Banaji & Greenwald, 2016; Greenwald, McGhee, &
Schwartz, 1998).

Fitts (1954) also studied aiming. In his first aiming exper-
iment, he measured the time to move a hand-held stylus to
targets of varying sizes at varying distances from a starting
point. The movements were to be made as quickly as possible.
Fitts (1954) found that the time to move from the home posi-
tion to the target grew as the distance increased and as the size
of the target decreased. He obtained similar results in further
experiments with variants of this basic task.

The quantitative relation that Fitts (1954) proposed be-
tween his main independent variables (target distance and tar-
get size) and the dependent variable (movement time) was

MT ¼ aþ b∙log2
2∙A
W

� �
;

whereMT is the movement time, A is the amplitude (distance)
of the needed movement (distance to the center of the target),
W is the width of the target along the axis of movement or the
diameter of the (circular) target to which aiming is required,
and a and b are empirical constants.

Fitts’ formula has come to be called Fitts’ law. It is one of
the few Blaws^ of psychology, that term having been applied
to it because of the enormous range of conditions in which it
holds. For reviews of Fitts’ law, see Elliott et al. (2010),
Rosenbaum (2010), and Schmidt, Lee, Winstein, Wulf, and
Zelaznik (2018). In 2004, a special issue of the International
Journal of Human–Computer Studies was devoted to the im-
pact of Fitts’ law on human–computer interaction research
(Guiard & Beaudouin-Lafon, 2004).
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Fitts, likeWoodworth, extended his interest from aiming to
skill learning more generally. In the final years of his all-too-
brief life—he died in 1965, just four days before his 53rd
birthday—he proposed a three-stage theory of skill learning.
That theory remains one of the most influential theories in
psychological science to this day. According to the theory
(Fitts, 1964; Fitts & Posner, 1967), skill learning begins with
a phase requiring conscious or deliberate control. After that
comes a stage in which tuning occurs. Finally, there is a phase
requiring little or no conscious or deliberate control.

Crossman and Goodeve

The facts just given about Fitts and Woodworth set the stage
for the first work of Crossman’s to be covered in this article,
and in the lecture at which the idea to investigate him was
spawned. The work is cited in the literature as Crossman and
Goodeve (1963/1983). Two dates are given, with a slash be-
tween them, because of the unusual nature of the work’s pub-
lication (which in turn gives a hint as to Crossman’s obscuri-
ty). The work was presented as a talk at the Oxford (England)
meeting of the Experimental Psychology Society in July 1963.
Yet it was not actually published until 1983, when, thanks to
the efforts of Alan Wing (1983), the write-up of the talk,
which had previously been passed around as a mimeograph
(the precursor of a photocopied document), was finally put
into print. Wing (1983, p. 245) wrote in his foreword to the
published article, Bthis paper is probably the most often cited
unpublished work in the current literature on human move-
ment control.^

Returning to the lecture given by David and attended by
Markus, it will help to note that, before turning to the work of
Crossman and Goodeve (1963/1983), David said that when
Fitts had offered his formula relating movement time to target
distance and size, he did not attempt to explain the temporal
dynamics that made the relation possible. Rather, David said,
Fitts had couched his formula in terms of information theory.

Information theory was proposed by Shannon and Weaver
(1949); it had a tremendous impact on psychological science
and still permeates modern technology. The number of bytes
on a computer hard drive is the number of eight-bit strings
(digital values) that the computer can house. The notion that
information can be represented in digital form (as 1s and 0s or
Byes^ and Bno^ values) is the heart of information theory. We
live in the digital age, largely because of information theory.

The way that information theory was applied to psycholog-
ical science can be seen in the Hick–Hyman law of choice
reaction time, according to which choice reaction time in-
creases linearly with the log2 of the number of stimulus–
response alternatives (Hick, 1952; Hyman, 1953; see also
Merkel, 1885). The reason Hick and Hyman investigated
choice reactions and developed the model they did was be-
cause they surmised, on the basis of information theory, that

participants would engage in a clear strategy when choosing
responses based on stimuli. At least implicitly, participants
would subdivide the set of stimuli and responses into succes-
sively smaller sets until, ultimately, just one response would
be possible given the stimulus in that trial. This claim spawned
a great deal of subsequent research, which has also qualified
this interpretation (e.g., Rosenbaum, 2014, chap. 5). For ex-
ample, while many researchers have treated the Hick–Hyman
law as a perceptual phenomenon, others have favored an in-
terpretation in terms of the time required to retrieve a particu-
lar stimulus–response assignment from memory (Jamieson &
Mewhort, 2009).

As we just implied, information theory focuses on uncer-
tainty and its resolution. According to information theory, the
amount of information in a signal is, roughly, the number of
Byes/no^ answers required to pick that signal from the possi-
ble alternatives. The number of Byes/no^ answers (the number
of binary digits or Bbits^) is the amount of information in the
signal.

Seeing the rise of information theory in the late 1940s and
early 1950s, Fitts hypothesized that aiming for a target could
be viewed as picking out the target from the background it
occupied. The farther away a target was, the more information
it contained, and the smaller the target, the more information it
also contained. On the basis of such considerations, Fitts sug-
gested that the time to reach a target is proportional to its
corresponding information content. Critically for the subse-
quent study by Crossman and Goodeve (1963/1983), Fitts left
out speculation about the real-time process by which the target
was identified (physically reached).

It was Crossman and Goodeve (1963/1983) who tackled
this problem. These authors offered a simple model that did a
good job of predicting Fitts’ law. According to the model,
which is schematized in Fig. 1, someone performing an
aiming task behaves in a systematic fashion. He or she moves
his or her stylus a constant proportion, p, of the distance to the
target, and keeps doing so until the target is reached. If p is .5,
for example, the pen tip goes halfway toward the target center
and then stops. If that halfway point is within the target, the
task is completed. Otherwise, the pen tip is moved over half
the remaining distance, and if that move brings the stylus to

In target?

Cover ½ remaining distance

Stop
Yes

No

Fig. 1 Crossman and Goodeve’s (1963/1983) aiming model, for the case
of covering p = .5 of the remaining distance to a target
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the target interior, the aiming is done, and so on. By this
analysis, moving to a target can be thought of as a series of
corrections. Said another way, moving to a target is a series of
(implicit) Byes/no^ questions: BAm I in the target now? If not,
keep halving the distance (or reducing the remaining distance
by p, more generally) until I’ve gotten my pen tip inside the
target.^ If each move takes a constant amount of time—an
added assumption of the iterative corrections model of
Crossman and Goodeve (1963/1983)—the relation between
movement time, distance, and target size can approximate
Fitts’ law.

How does it do that? We illustrate how by showing two
graphics used in the lecture attended by Markus. Both were
designed by David for pedagogic purposes. Table 1 shows
how different movement times arise from different combina-
tions of distance and time according to Crossman and
Goodeve’s (1963/1983) model. Figure 2 shows how those
predicted times relate to the times predicted by Fitts’ law.

Crossman and Goodeve’s (1963/1983) model was simple,
and it was so on the mark in terms of predicting Fitts’ law that
it became a vehicle for the analysis of aiming. Many follow-
ups were conducted. For example, the model predicted that
corrective submoves would be observed, and they were
(Jagacinski, Repperger, Moran, Ward, & Glass, 1980). The
model also predicted that Fitts’ law would not apply to very-
short-distance movements, and that prediction was also sup-
ported (Klapp, 1975).

Ironically, Crossman and Goodeve’s (1963/1983) model
was also found wanting. As summarized by Wing (1983)
and others who have reviewed the aiming literature (Elliott
et al., 2010; Elliott et al., 2001; Rosenbaum, 2010; Schmidt
et al., 2018), one problem was that successive submovements
were not always observed. Another problem was that when
successive submovements were observed (i.e., when there
was significant slowing, followed by a significant speeding
up), the stops (or near stops) did not always occur at a constant
proportion, p, of the distance between the last stop point (or
home position) and the target center. Finally, Crossman and

Goodeve’s assumption that p lay between 0 and 1, which it
had to in order to ensure homing in on the target, led to the
prediction that there would never be overshoots, for p could
never exceed 1. Yet overshoots were observed. Much as
golfers hit balls that are too long as well as too short, people
moving pen tips, cursors, and other indicators to targets often
go too far and then reverse course. Homing in on targets is
bidirectional, then, contrary to the prediction of Crossman and
Goodeve’s model.

Given all these problems, one might ask why the iterative-
corrections model got the attention it did, and why Wing
(1983) decided to print it. The reason is that, because of its
simplicity and transparency, it provided a framework for test-
ing specific predictions within a fundamental domain of hu-
man perception and performance. The fact that it was incorrect
in some details did not invalidate its main assumption that
Fitts’ law stemmed from feedback-based error correction. By
analogy to other instances of wrong theorizing, and without
meaning to overstate the case, given the grandiosity of the
other theories to be mentioned now, the incorrectness of
Aristotle’s theory of motion as shown by Newton, and the
incorrectness of Newton’s theory of motion as shown by
Einstein, did not lead to expulsion of these earlier theories
from reviews of progress in physics. So, too, was it with
Crossman and Goodeve’s (1963/1983) model.

Schmidt

Crossman and Goodeve’s (1963/1983) model of aiming led to
other models. These models, and especially the second of the
two to be mentioned, brought the study of aiming to a state of
reasonable integration. We will briefly review these succes-
sors now, though we have completed our coverage of
Crossman and Goodeve’s model, because these successor

Table 1 Predicted time to move to a target of width W/2 (cm) whose
center is distance A (cm) away from the starting point, along with the
distances remaining after the first through the final submoves, for each
combination of A and W

Predicted Time (s) A (cm) W/2 (cm) Distance (cm)

1/4 20 12 10

2/4 20 9 10, 5

3/4 20 4 10, 5, 2.5

2/4 40 12 20, 10

3/4 40 9 20, 10, 5

4/4 40 4 20, 10, 5, 2.5

In this case, the proportion of the remaining distance covered in each
submove is p = .5, and the time per submove is ¼ s

Fig. 2 Predicted time (s) as a function of log2
2�A
W

� �
according to

Crossman and Goodeve’s (1963/1983) model, illustrated in Table 1
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models help set the stage for the presentation of Crossman’s
(1959) Power Law of Learning.

The first alternative to Crossman and Goodeve’s
(1963/1983) model was a response to these authors’ idea that
the temporal dynamics of aiming are mainly rooted in feed-
back. According to this alternative account (Schmidt,
Zelaznik, Hawkins, Frank, & Quinn, 1979), most of the tem-
poral variance in aiming can be explained by the ballistic
phase rather than by the online corrective phase. Recall that
these two phases were the ones Woodworth identified.

Schmidt et al. (1979) obtained evidence for their alternative
hypothesis in experiments in which subjects moved a stylus as
quickly as possible from one point to another. The fact that the
target was just a point meant that subjects could not, strictly
speaking, get inside the target; all they could do was get as
close as possible. Schmidt et al. (1979) found that the standard
deviation of the distance that was covered increased with the
mean of the distance and decreased with the time in which the
distance was traversed. Saying this another way, the standard
deviation of the covered distance was proportional to velocity
(distance divided by time). Building on this fact, Schmidt et al.
(1979) argued that Fitts’ law could be explained without ref-
erence to feedback, but instead could be explained with refer-
ence to feedforward control (i.e., preprogramming of move-
ments and subsequent ballistic execution).

A reason to mention the model of Schmidt and his col-
leagues is to observe that Schmidt, like Woodworth and
Fitts, was interested in skill more broadly. In his best-known
work, Schmidt (1975) introduced a schema theory of skill
learning. The main idea, which was traceable to Bartlett’s
(1932) studies of memory and to Head’s (1920) studies of
the representation of the body, was that knowledge of how
to do things is expressed in schemas. Schemas may be thought
of as functions (in the mathematical sense) that can take on a
range of inputs and yield different corresponding outputs.
Schemas are abstract in the sense that mathematical functions
are.

Schmidt (1975) argued that the essence of skill is being
able to perform in a range of related circumstances.
Schemas support such flexibility, he suggested, in a way that
more rigid knowledge structures cannot. Consistent with this
hypothesis, Schmidt (1975) showed that learning in a range of
circumstances leads to more skillful long-term performance
than does learning in highly specific circumstances. This ben-
efit is shown most clearly when new circumstances arise (e.g.,
van Rossum, 1990; but see Shea & Wulf, 2005).

Meyer

The final model of aiming covered in David’s lecture was that
of David Meyer and his colleagues (Meyer, Abrams,
Kornblum, Wright, & Smith, 1988; Meyer, Smith, &
Wright, 1982). It is worth saying something about this model,

both to round out the story of aiming and also to observe that
here was another psychological scientist of note—Meyer was
elected to the National Academy of Sciences in 2009—who
studied aiming and later set his sights on amore general theory
of skill learning, as had been the case for the others discussed
above, and for Crossman as well, as will be seen in the next
section.1

Meyer and colleagues wondered whether the model pro-
posed by Schmidt et al. (1979), which focused on feedforward
control, could be reconciled with the model of Crossman and
Goodeve (1963/1983), which focused on feedback control.
Meyer et al. (1988; Meyer et al., 1982) proposed that such a
rapprochement was possible. They proposed a hybrid model
that included both processes. According to their optimized
submovement model, moving to a target can be viewed as a
series of submovements, any of which may undershoot or
overshoot the target. The proportion of the remaining distance
to the target covered by a submovement can change (unlike in
Crossman&Goodeve, 1963/1983), depending on the ultimate
aim of minimizing the time to reach the target, subject to the
constraint that the standard deviation of the submove distance
increases with the submove velocity (as in Schmidt et al.,
1979). Meyer et al. (1988; Meyer et al., 1982) showed that
Fitts’ law reflects such optimization.

Although some challenges have been raised to the model of
Meyer et al. (1988; Meyer et al., 1982; e.g., that the distribu-
tion of the primary movements’ endpoint is not centered at the
middle of the target, but rather undershoots the target more
than it overshoots; see Elliott et al., 2010, and also
Worringham, 1991), this model is generally considered the
best account of aiming today.

Besides wanting to round out our coverage of aiming,
our other reason for mentioning Meyer is that he pursued a
general theory of skill learning (Kieras & Meyer, 1997).
The model of Kieras and Meyer focused on the strength-
ening of stimulus–response bonds in the context of a pro-
duction system (i.e., a system of if–then, condition–action
pairs). According to the model, the probability and rapidity
with which effective condition–action pairs can be pro-
duced increases with practice. The model makes detailed
predictions and accounts for many core findings on skill
acquisition, including the fact that speed increases with
practice. This is the topic of the next section, and the topic
for which Crossman is best known.

The Power Law of Learning

As we have said, many researchers who studied aiming were
also interested in pursuing a general theory of skill learning.

1 Meyer is best known in psychological science for his demonstration, with
Roger Schvaneveldt, of semantic priming (Meyer & Schvaneveldt, 1971).
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Was Crossman, too? Indeed he was.2 Crossman offered a
quantitative description of the relation between task comple-
tion time and amount of practice. The description he offered
has come to be called the Power Law of Learning. This law—
so called because of its generalizability—has attracted a great
deal of attention, not just in psychological science, but also in
human factors, computer science, and other fields. All theories
of skill learning that have sought to explain the relation be-
tween practice and task completion time have, to the best of
our knowledge, addressed Crossman’s formulation.

The mathematical claim and its basis

What does the Power Law of Learning say, and on what basis
did Crossman develop it? The Power Law of Learning says
that the more a task is practiced, the less time the task takes. In
addition, and more subtly, the rate at which the task time
declines becomes smaller as practice continues. Expressed
mathematically, the law says

T ¼ a � P−b þ c;

where T is task completion time, P is the amount of practice
(typically expressed in terms of the number of times the task
has been done), and a, b, and c are empirical constants.3

In terms of the data that Crossman (1959) used to motivate
the Power Law, it is often said that those data came from a
study of factory cigar rollers. AWikipedia entry on the Power
Law of Learning (https://en.wikipedia.org/wiki/Power_law_
of_practice; retrieved on February 2, 2019) is instructive in
this regard. It says that Crossman developed it from Ba study
of a cigar roller in Cuba^ (i.e., just one person in this
Caribbean country). We mention this, aware that Wikipedia
is not always the most reliable source of scholarly
information, just to illustrate how rumor-prone the coverage
of Crossman’s work has become. Its susceptibility to rumor
reflects how often it is discussed.

If one reads Crossman’s (1959) article, one sees that cigar-
rolling data did play a role in his research, but the data came
from Bseveral girls in the same shop, operating special-
purpose cigar-making machines^ (p. 156). On that same page
of the article, Crossman says that the data were reported in full
in chapter 10 of his doctoral dissertation (Crossman, 1956).4

This chapter 10, entitled BIndustrial Case-Studies of
PerceptualAnalysis,^ describes, among other tasks, the twomain
steps of cigar making: bunch making and wrapper laying. The
data presented in Fig. 2 of Crossman (1959) correspond to Fig.
10.4 of Crossman (1956). According to the figure captions in the
article and the thesis, the data were gathered from ten (female)
workers, each with a varying amount of experience. The most
important feature of the data, Crossman observed, was that the
longer the workers worked, the faster they got. Even for cigar
rollers who had rolled upward of ten million cigars, their cigar-
rolling times still decreased, albeit ever so slightly. If there was an
asymptote to the performance time (a final leveling-off value), it
had not been reached, even after ten million cigar rolls. This
conclusion was supported by Crossman’s (1959) fit of a Power
Law equation to the data. A critically important feature of the
Power Law fit is that it has no predefined final limit of perfor-
mance. This contrasts with an exponential function, which does.
The consideration of the exponential function will be important
later in our discussion.

Cigar rolling was not the only speed skill task that
Crossman (1959) summarized. He talked about other
tasks as well, including crossing out es in nonsense French,
card sorting, adding digits, substituting one code for another,
maze learning, and operating a lathe. For all these speed skills,
which had data sets obtained by others rather than by
Crossman himself, though he did summarize them, there
was a clear distinguishing feature: When the data were plotted
in log–log coordinates (i.e., when the logarithm of task com-
pletion time was plotted as a function of the logarithm of the
number of practice trials), the data were fitted well with
straight lines. Crossman (1959) emphasized that he was not
the first to show this. Rather, the relationship was first shown
by a Dutch researcher named de Jong (1957). Crossman was
so impressed with de Jong’s result that he declared in his 1959
article that Bthe relationship may be called de Jong’s law^ (p.
156). His statement to this effect provides some insight into
his character.5

The temporal dynamics behind the Power Law of
Learning

De Jong (1957) was surely aware that linear fits in log–log
coordinates reflect a Power Law relation, for whenever one

2 We use Bhe,^ letting the cat out the bag about Crossman’s gender, to stream-
line the writing.
3 A Power Law relation was postulated before Crossman (1959), by Snoddy
(1926), but Snoddy’s dependent measure was an error score (on a mirror-
tracing task), not the time to complete the task. Crossman (1959) did not cite
Snoddy, for reasons unknown to us. More importantly here, Crossman was the
first to suggest a Power Law relation for task completion times. His article was
reprinted in an anthology edited by Moray (2005).
4 The complete dissertation can be downloaded at https://ethos.bl.uk/Home.do
after free registration.

5 Speed skills, which are the kind Crossman (1959) focused on, are skills in
which speed as well as accuracy is critical. It is important to remember that
many skills are not speed skills, so that speed is not the sine qua non of the
performance. A violinist who has practiced an adagio movement of a sonata
over many years does not try to complete the piece as quickly as possible. We
say this as a reminder that not all practice is designed to reduce time, nor
should time (and accuracy) be the only measure of skill learning. A model
of skill learning that potentially explains refinement of skill as well as speeding
of performance is the sort of model one should endorse. In our opinion, and as
one of us argued in a book (Rosenbaum, 2014), the sort of model put forth by
Crossman (1959), which is fundamentally Darwinian, meets this criterion.
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takes the logarithm of both sides of an equation such as the
Power Law equation, one gets a linear relation. But much
as Fitts did not focus on saying why his quantitative rela-
tion held, neither did de Jong, as far as we know, although
de Jong did mention that BDiscontinuous and hesitant
movements become smoother^ (p. 55) with increasing cy-
cles (i.e., with more practice).

Crossman (1959) sought to come up with a process model
for de Jong’s law, much as he did for Fitts’ law. Interestingly,
the mechanism that Crossman (1959) proposed for the Power
Law was similar to the one he proposed for Fitts’ law. In both
cases, he conceived of a hunt based on feedback. For Fitts’
law, the hunt was for a target in a space of possible targets,
where reaching the target was the culmination of the hunt. For
the Power Law, the hunt was for a better method in a space of
possible methods; finding a method that was better than the
best one achieved so far (in terms of a shorter task completion
time) was the goal. Finding a better method, in Crossman’s
model, was, at any given time, a matter of chance.

Relying on chance in this way meant that Crossman
appealed to trial-and-error learning. He did so explicitly, right
from the start of his 1959 article. Indeed, he motivated his
analysis by referring to Thorndike’s (1898) classic work on
learning by trial and error, although he cited Hilgard’s (1948)
textbook, Theories of Learning, rather than Thorndike’s work
itself. Crossman (1959) also cited Fisher’s (1930) Genetical
Theory of Natural Selection to establish the mathematical and
biological plausibility of a random selection process.

Crossman showed that methods that enable ever shorter
task completion times can be selected with ever higher prob-
abilities, and that the chance of finding a method that enables a
shorter time decreases as practice continues. The improve-
ments come more and more gradually and are smaller as prac-
tice continues. This relation is captured by the Power Law.6

Developments after Crossman’s (1959) article

Since the publication of Crossman’s article, more demonstra-
tions of the Power Law have appeared, including (but not
limited to) reports that the law applies to the time to learn to
read distorted text (Kolers, 1976), the time to read sentences
aloud as well as subvocally (MacKay, 1982), and the time to
write books for the prolific author Isaac Asimov (Ohlsson,
1992). It has also been used as a benchmark for developing

theories of learning. Here is a quote about its importance from
Heathcote, Brown, and Mewhort (2000, p. 185), a study we
will focus on shortly:

The power function’s status as a law has also made it a
gold standard by which to judge the success of models
of skilled performance, including ACT and related
models . . . , the component power laws model . . . ,
network models . . . , instance theories . . . , and Newell
and Rosenbloom’s (1981) chunking model. . . . Logan
(1988) leaves no doubt about the importance of the form
of the practice function for theories of skill acquisition:
BThe power-function speedup [is] a benchmark predic-
tion that theories of skill acquisition must make to be
serious contenders^ (p. 495).

In spite of all this support for the Power Law, its legitimacy
has been questioned. The authors who provided the foregoing
quote (Heathcote et al., 2000) entitled their article, BThe
Power Law Repealed: The Case for an Exponential Law of
Practice.^ As this title indicates, these authors felt that an
exponential function provided a better fit than a power func-
tion for predicting practice-based time reductions.7

What was the problem that Heathcote et al. (2000) saw
with the Power Law? They observed that data for individual
subjects were fitted better with an exponential than with a
power function, though the Power Law gave a better fit to
data averaged over subjects than did the exponential.
According to these authors, only two previous teams had fitted
single-subject as well as average-subject data, and those two
teams had got the same result—better power-function fits for
data averaged over individuals, but better exponential-
function fits for the data of individuals (Josephs, Silvera, &
Giesler, 1996; Rosenbloom & Newell, 1987).

6 Trial-and-error learning has a long and influential history in psychological
science and is traceable, at least, back to Darwin’s theory of natural selection,
in which Blearning^ occurs on a phylogenetic rather than ontogenetic scale.
The parallels between natural selection and learning have been widely
discussed (e.g., by Campbell, 1960). One of us has written a book on the
subject, suggesting that Darwin’s theory provides a useful metaphor for
explaining a broad range of phenomena in perception, action, and cognition
(Rosenbaum, 2014). The Nobel laureate Gerald Edelman (1987) wrote a book
on the application of Darwin’s theory to the workings of the brain.

7 Whereas the power function takes the form T = a · P−b + c, as we indicated
before, the exponential takes the form T = a · e−bP + c (where e is Euler’s num-
ber). In both cases, T is the task completion time, P is the amount of practice
(typically expressed in terms of the number of times the task has been done),
and a, b, and c are empirical constants. Both of these equations predict drops in
T as a function of P, provided that a and b are positive real numbers.
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In keeping with the historical focus of the present article,
we note that since the publication of Heathcote et al.’s (2000)
study, Snoddy’s (1926) original mirror-tracing task was repli-
cated so that data from individual subjects could be fitted with
an exponential as well as with a power function. Recall that
Snoddy’s study was the one that provided the first source of
evidence for a power-law relation, though the data were errors
rather than times; Crossman was the first to focus on time.
Harking back to Snoddy’s work, Stratton, Liu, Hong,
Mayer-Kress, and Newell (2007) showed that the exponential
function did indeed do a better job accounting for the mirror-
tracing error data of 16 individual subjects than did the power



Fig. 3 Simulation results of a random search process akin to the one
proposed by Crossman (1959).
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function, exactly as predicted by Heathcote et al. At the same
time, the power function did a better job accounting for the
average data (the data averaged over subjects), again consis-
tent with Heathcote et al.

What should one make of this? Certainly, important lessons
can be drawn about the dangers of averaging. It is misleading
if the best curve for an aggregate of data misrepresents what
the data look like for individuals. This point has been
discussed in connection with Heathcote et al.’s (2000) article
by Lewandowsky and Farrell (2011). Heathcote et al. also
emphasized this point in their article, but they stressed that
they really cared about the difference between the two func-
tions because the functions implied (or assumed) different
kinds of learning rates. In the case of the exponential, the
learning rate stays constant, whereas in the case of the power
function, the learning rate decreases.

Does this difference matter? It might matter in applied
settings where performance at various times could poten-
tially differ, depending on the constancy or inconstancy of
the putative learning rate. The difference might also matter
if different models of learning, including neural or
machine-learning models, had to be judged according to
whether they predicted power-law or exponential learning.
One might also question whether it makes sense for there
to be an a priori final limit, which is the case for the expo-
nential, but not for the power function.

As to whether the difference matters for Crossman’s legacy,
we have two comments. First, Crossman did not check expo-
nential function fits. The reason, presumably, was that his
theory didn’t predict an exponential function. Many possible
functions—indeed, an infinite number of them—might under-
lie any given data set. Checking the fits of functions that aren’t
relevant for theoretical purposes is unnecessary. If Crossman
didn’t evaluate exponentials, he needn’t be reproached for
failing to do so, nor has he been, as far as we know, including
by Heathcote et al. (2000).

Second, it is unclear, a priori, whether it is antithetical to
Crossman’s (1959) substantive theory if an exponential func-
tion prevailed over a power function. A random search process
in which current solutions are supplanted by better solutions
can lead to an exponential function, as shown below.

We conducted simulations in which we used the learning
process that Crossman assumed, seeking to determine whether
the simulated learning data could be accounted for with an ex-
ponential function as well as, or possibly better than, a power
function (see the Appendix). Our general approach was to create
a function, F(x), which, along with whatever parameters it used,
comprised an ideal model for generating outputs given inputs x.
Next, we had our (Matlab) program randomly choose parameter
values that potentially reduced the sum of the squared deviations
between the ideal and predicted outputs. We assumed that a
learner effectively engages in such a random search process, at
least if he or she is using trial-and-error learning. In effect, he or

she hunts for better parameters, letting the new parameters take
over once they are found. Critically, and in keeping with
Crossman’s core claim, in our simulations better solutions were
found by chance alone.

We ran our simulations as follows. For each of T =
2,000 trials per run, we generated a random parameter
set and retained it if it yielded a better fit than the best
parameter set that had been found so far. Whenever a
better fit was found (i.e., a smaller sum of squared devi-
ations between the ideal and obtained values), the trial
number of the improvement was recorded, as was the
smallest sum of squares up to that point. By repeating this
process R = 2,000 times (i.e., running through the T =
2,000 trials a total of R = 2,000 times), we built a histo-
gram of the trial numbers in which better fits (smaller
sums of squares) were obtained.

The result is shown in Fig. 3. As expected, the trials in
which improved fits were found were most numerous in early
trials, and decreased thereafter. Whether the histogram was
fitted with a power function or an exponential function made
no meaningful difference. In both cases, the proportion of
variance accounted for exceeded .99. The bottom line, a
propos Crossman (1959), is that a random search process, akin
to the one he proposed, can yield data that are accounted for
well with an exponential function. Therefore, finding that an
exponential function fits actual data, and may actually fit bet-
ter than a power-law function, does not impugn Crossman’s
(1959) substantive theory.

It is important to note that this topic still raises considerable
interest in contemporary research. Just recently, Evans,
Brown, Mewhort, and Heathcote (2018) readdressed the issue
of power versus exponential functions while at the same time
integrating additional phenomena, such as an Binitial period of
slower learning followed by a speed-up before the final



Ted Crossman

Who, then, is or was E. R. F. W. Crossman? In turning to this
question, we return to the lecture where we decided to address it.
In the lecture, when David got to Crossman and Goodeve
(1963/1983), he said something similar to the following: BI’m
about to tell you about a tremendously influential study in the
field of aiming, but I know nothing about the first author, and
everyone I’ve ever talked to in the field is equally ignorant of
who this person is or was. I wish I could tell you more, but I
can’t.^ As David made this pronouncement, he showed a
PowerPoint image of a gray figure with a question mark. The
image contrasted starkly with the other pictures he had shown, of
Robert Woodworth and Paul Fitts, and subsequently would
show, of Richard Schmidt and David Meyer.

After the class, Markus told David that he, too, had also
long wondered about Crossman. It was then that we resolved
to do some detective work. We decided we would try to find
out who Crossman is or was, mainly to satisfy our curiosity,
not having the idea that wewould eventually prepare an article
about this person.

We began by emailing others in our field and learned very
quickly that they, too, knew virtually nothing about Crossman.
We also learned that they, like us, wanted to learn more. We
also found out that most of these colleagues were (or are) a bit
like the first author in not being quite as web-savvy as might
be ideal. It turned out that with a bit of web-search smarts, one
can get some basic information about Crossman.Markus, who
is more web-savvy than David (perhaps because he is about
20 years younger), was able to get some useful information,
including, most usefully, an obituary that we used to get in
touch with his family members (www.berkeleydailyplanet.
com/issue/2001-02-12/article/3412?headline=UC-Berkeley-
Professor-Emeritus-Ted-Crossman-dies). Thanks to their
cooperation, we can now present much more information
than can be gotten on the internet.

Edward Robert Francis Ward Crossman (Fig. 4) was born
on September 25, 1925, in Hambrook, Bristol, UK. He was
the son of two doctors. He had a brother and a sister. Crossman
went by the name BTed,^ as we learned from Rachel Hope
Crossman, Ted’s daughter-in-law and our primary informant.
As we also learned from Rachel, family tradition was to in-
voke the names of one’s ancestors, which is why Edward
(BTed^) had so many names. This may have also been why
he published with that long string of initials.

Ted Crossman was the nephew of a famous UK politician,
Richard Crossman, who was a leading light of the British left.
When Richard Crossman died in 1974, The New York Times
ran a long obituary about him (https://www.nytimes.com/
1974/04/06/archives/richard-crossman-66-is-dead-leading-
thinker-of-british-left.html).

We have a story about Ted Crossman (the psychological
scientist) and Richard Crossman (the politician) from Rachel,
who wrote this to us in an email:

When Ted got married and went on a honeymoon he
played a practical joke on his uncle and sent a postcard
(intended to arrive on April Fool’s Day) saying that he
and his bride had been kidnapped by the Russians. It
apparently did not read as a joke and became a (minor)
international incident with headlines in England scream-
ing that the nephew of a member of parliament had been
kidnapped! We have those newspaper clippings! Ted
was a real character.

The honeymoon that Ted went on was with Patricia
Marie Carter, with whom he had four children. The two
oldest children died at separate times in adulthood. As we
learned from Rachel, Francis (Frank) Hedley Danvers
Crossman, Ted’s oldest son, died of a heroin overdose,

Fig. 4 Ted Crossman in his passport photo (1989). The photo was
generously provided by Crossman’s daughter-in-law, Rachel Hope
Crossman
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approach to asymptote^ (p. 594), by adding a delay parameter
to the original formulations. According to their results, the
delayed exponential model provided the best fit in the major-
ity of the data sets considered. These authors also acknowl-
edged a number of exceptions, so the topic likely will remain
of interest in the coming years.

http://www.berkeleydailyplanet.com/issue/2001-02-12/article/3412?headline=UC-Berkeley-Professor-Emeritus-Ted-Crossman-dies
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and Ted’s daughter, Lucia (Lucy) Edna Alice, died from a
brain aneurysm less than a year later. Ted Crossman’s mar-
riage later ended in divorce.

Well before gettingmarried and becoming a father, Ted joined
the Royal Air Force at the age of 19. At the age of 22, he was
stationed inHiroshima, shortly after its bombing inWorldWar II.

After his military service, Ted began his higher education.
He went to Cambridge University and received a B.A. in
Natural Sciences. After that, he did graduate work at
Birmingham University, where he received his Ph.D. in
Engineering Production in 1956. After getting his doctorate,
he taught at Reading University, and then moved to Oxford
University in 1962.

In short order, while at Oxford, Ted was offered tenured
positions at MIT and Berkeley. He visited both places and,
according to family, chose Berkeley because the weather
was so much better than at MIT, which was too much like
weather in England. Another reason Crossman decided to go
to Berkeley was that a new mechanical engineering building
was being built there (Etcheverry Hall). Crossman joined
Berkeley’s Department of Industrial Engineering in 1964.

During his time at Berkeley, Crossman served as depart-
ment chair from 1969–1970. He resigned that post after a short
time to protest the university’s way of dealing with the student
demonstrations in People’s Park, especially in the Bloody
Thursday incident on May 21, 1969. This information came
to us by way of our sources.

By all accounts, Crossman was a reclusive, somewhat
quirky figure. According to his family, he would often be off
in another world, so to speak—thinking. He had a notebook
(or series of them) in which he wrote down ideas when they
came to him, even in the midst of family dinners. One of the
pictures we have of Crossman (Fig. 5) shows him apparently
holding one of his notebooks.

We also have a verbal sketch of Crossman from Professor
John Morton of the Institute of Cognitive Neuroscience in
London and former director of the Medical Research Cognitive
Development Unit at University College London. Readers may
recall that John Morton famously introduced the logogen model
of memory (Morton, 1969), conducted experiments on the suffix
effect in short-term memory (Morton, Crowder, & Prussin,
1971), wrote a brilliantly hilarious one-page article on recursion
(Morton, 1976), and introduced the concept of perceptual centers
for heard words (Morton, Marcus, & Frankish, 1976), among
other contributions. Here is an extract of an email that Morton
sent us about Crossman on May 24, 2018:

I met him in 1957. He was then a lecturer in psychology at
Reading University. I guess he’d been there for three or
four years. It was a very small department with just four
lecturers and the head of Department, Magdalena
(Maggie) Vernon. But there would only be a dozen or so
honours undergraduates each year and I was the only

graduate student in the Department for the whole three
years I was there. . . . Ted became my de facto supervisor
and protector. He was extraordinarily generous in his time,
effectively built the amplifiers that were necessary to re-
cord eye movements (all very primitive by current stan-
dards), gave me someone to bounce ideas off. Not only
that, but after I’d been in Reading a year I went to live in
his house. He was married to Pat and they had at that time
one child, Frankie. Pat was pregnant with Lucy, Rob
followed the following year and Martin was born in
Oxford I believe. Pat and Ted were a very unlikely couple.
Pat was glamorous, vivacious, loquacious, interested in
books and poetry music and theatre. Ted was interested
in work, and that was all that manifested itself. He was
an incredibly shy person. I was chatting just now to an
old friend who I first met in Reading, also a psychologist,
who commented BTed was not one of the world’s great
communicators.^ He added that he thought Ted was very
civilised, and treated students like grown-ups Bdespite be-
ing the worst lecturer I ever encountered.̂

Fig. 5 Ted Crossman in front of his house in Berkeley, California, taken
around 1998. The small black book in his left hand (atop the newspaper)
is most likely one of the notebooks he apparently carried with himmost of
the time, in his desire to write down new ideas, according to his daughter-
in-law Rachel Hope Crossman, who kindly provided this photo.
According to her, the newspaper was the Wall Street Journal
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That shyness may also explain why, when we contacted
former department colleagues of Crossman’s at Berkeley,
their replies hinted at the fact that Crossman was, to say the
least, not at the center of the social scene in the department.
His family, too, confirmed that he stayed away from aca-
demic politics. Indeed, the fact that so little was known
about him among researchers in his (and our) field may
have been a reflection of how much he kept to himself.
Yet the generosity he showed to others, reflected in his
enthusiastic accolade for de Jong (1957) in the Power
Law article, and his pioneering spirit in science, reflected
in John Morton’s remembrance, was communicated to us
as well by Pete Goodeve, the co-author of Crossman and
Goodeve (1963/1983), with whom we emailed on October
19–20, 2018:

I spent my graduate time in 1174 Etcheverry Hall (in the
basement—next to the nuclear reactor at the time!). Ted
had managed to acquire the first minicomputer on
campus—a PDP-8—which I spent a lot of time working
on. As I remember, to get it he had to avoid calling it a
Bcomputer.^ It was a BDigital controller^ or some such. .
. . One of his main interests was always limb
control—following on from that original paper. I re-
member he built an apparatus with a cord attached to a
stylus and potentiometers with which we could track the
actual time course of a hand movement. The PDP-8 was
of course essential for that. . . . I think he was probably
the first to use a minicomputer in psych research. In later
years a lot of folks on campus were doing the same.

Ted Crossman retired in 1987. According to his obituary,
Bhe maintained an office in Etcheverry Hall until the time of
his death, where he continued to meet with graduate students^
(Berkeley Daily Planet). The obituary reported that he died
after a short illness on February 5, 2001, at the age of 75.

Concluding remarks

The story we have told gives a small glimmer of who Ted
Crossman was. The most surprising feature of his story,
which frankly was a bit disappointing to us, was that the
two articles of his that we knew about were the main
articles he produced. Our consultation of Google Scholar
revealed a remarkably sparse publication record, other
than his 1959 and 1963/1983 works. He published some
work on optometry (Crossman, Goodeve, & Marg, 1970;
Marg, Crossman, Goodeve, & Wakamatsu, 1972), other
work on discriminability (Crossman, 1955), some work
on organizational issues (Globerson & Crossman, 1976a,

1976b), and a few book chapters and reports, among them
studies from the Fire Research Group at UC Berkeley.
When we asked Pete Goodeve (who left academia) about
Crossman’s relative lack of productivity, Goodeve wrote

My guess is that the environment at Oxford was highly
stimulating for his interests. Industrial Engineering at
Berkeley . . . may have been much less so. I never got
a sense of much interaction between the Human Factors
Lab and other members of the department.

Goodeve also told us that he did not think the death of
Crossman’s two oldest children was the cause of Crossman’s
lack of productivity, nor was Crossman’s divorce, which, ac-
cording to Goodeve, was ultimately amicable.

Perhaps the single clearest hint to the cause of the
relative paucity of published work by Crossman was his
own reticence. The fact that it took another investigator,
Alan Wing, to get Crossman and Goodeve’s paper into
print, 20 years after the work was presented at a meeting
and written up as a technical memorandum that was
passed around informally, speaks to Crossman’s reluc-
tance to publish or to his relative indifference about doing
so. Not all investigators are intent on publishing, of
course, and the times and culture around publishing were
different in the 1950s and 1960s than they are now.

This article is appearing nearly 40 years after Alan
Wing’s resurrection of Crossman and Goodeve’s mimeo-
graph. The fact that researchers like Alan Wing and the
two of us have found Crossman’s work worth considering
over so many spans of time speaks to the depth of
Crossman’s thinking. Ted Crossman must surely be
viewed as one of the important thinkers in the area of
human perception and performance. He had a deep influ-
ence within this domain, and in psychological and other
sciences more generally. From what we have learned, it
appears that Ted Crossman was not just a brilliant person,
but a generous one as well. We regret that we never met
him, but are glad to have been able to learn at least a little
and to be able to share what we have learned with others.
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Forschungsgemeinschaft, DFG; ZUK 63). Many people helped us
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Robert Crossman, Ruth Crossman, Pete Goodeve, Antonia
Hamilton, Richard Ivry, Richard Jagacinski, Stuart Klapp, John
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Appendix: MATLAB program (Code) to simulate trial-and-error learning per Crossman’s (1959)
model and the result (Output) of the program in a typical run
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