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Abstract
The dominant paradigm for inference in psychology is a null-hypothesis significance testing one. Recently, the foundations
of this paradigm have been shaken by several notable replication failures. One recommendation to remedy the replication
crisis is to collect larger samples of participants. We argue that this recommendation misses a critical point, which is that
increasing sample size will not remedy psychology’s lack of strong measurement, lack of strong theories and models, and
lack of effective experimental control over error variance. In contrast, there is a long history of research in psychology
employing small-N designs that treats the individual participant as the replication unit, which addresses each of these
failings, and which produces results that are robust and readily replicated. We illustrate the properties of small-N and large-
N designs using a simulated paradigm investigating the stage structure of response times. Our simulations highlight the
high power and inferential validity of the small-N design, in contrast to the lower power and inferential indeterminacy of
the large-N design. We argue that, if psychology is to be a mature quantitative science, then its primary theoretical aim
should be to investigate systematic, functional relationships as they are manifested at the individual participant level and
that, wherever possible, it should use methods that are optimized to identify relationships of this kind.
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“It is more useful to study one animal for 1000 hours
than to study 1000 animals for one hour” — B. F.
Skinner (quoted in Kerlinger and Lee (1999))

Since the cognitive revolution of the 1960s, the dominant
paradigm for inference from data in scientific psychology
has been a null-hypothesis significance-testing one. Accord-
ing to this paradigm, the goal of experimentation is to draw
inferences about the properties of an underlying population
or populations from measurements made on samples drawn
from those populations. Expressed in model-comparison
terms (Maxwell & Delaney, 1990), the goal of inference
is to decide between two models of the psychological phe-
nomenon under investigation, or more precisely, to decide
between two models of the data-generating process that
gave rise to the observed experimental outcomes. One mo-
del is a null model, in which the value of a parameter in the
data-generating process is zero; the other is an alternative
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model, in which the value of the parameter is nonzero.
Subject to the assumption that the experimental units are
random and a representative sample from some larger
population—needed to ensure statistical unbiasedness—the
estimate of the parameter of the data-generating process
from the sample is used to infer the value of a hypothetical
“population parameter,” which characterizes the experimen-
tal effect. This parameter is conceptualized as the numerical
value that would be obtained if a population-wide census
could feasibly be undertaken.

Recently, our faith in this inference paradigm has been
severely tested. Psychology, we are told, is in the grip
of a “replication crisis,” which threatens to shake the
discipline to its epistemological foundations. The most
persuasive evidence for a discipline in crisis comes from
the Open Science Collaboration (OSC & et al. 2015; Aarts
et al., 2015), which reported the results of 100 attempted
replications of published studies, predominantly in social
and cognitive psychology. Around two-thirds of the OSC’s
attempted replications were unsuccessful and, when they
were successful, the effect sizes were often smaller than
those in the original studies. While the extent, magnitude,
and causes of the putative replication crisis have been,
and continue to be, disputed (Gilbert et al., 2016), the
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implications of the OSC’s findings have not been lost on
either the scientific or the popular press. A commentary in
Nature (Baker, 2015) asserted: “Don’t trust everything you
read in the psychology literature. In fact, two-thirds of it
should probably be distrusted.”

Faced with evidence of a crisis, various suggestions have
been made for reforming experimental and data-analytic
practices (Gelman & Loken, 2014; Gelman, 2015; Sim-
mons et al., 2011). One suggestion is to change the criterion
of “statistical significance” (Benjamin et al., 2017), which
would change the decision rule for choosing between the
null and the alternative model, raising the threshold for “dis-
covery.” Another suggestion has been to advocate the use
of much larger samples of participants, supported by formal
power calculations. Indeed, lowering the criterion for statis-
tical significance (e.g., to the p < .005 as suggested by
Benjamin et al. (2017)) would necessitate a 70% increase
in the sample size to achieve 80% power (Lakens et al.,
2017). Further, some leading journals that publish cognitive
research have begun automatically to decline work that uses
small samples. The stated reason for doing so is the “unre-
liability” of inferences based on small samples: Standard
errors of estimate of population parameters based on small
samples are large, so the resulting scientific inferences—it
is reasoned—must be inherently untrustworthy. This edito-
rial stance reaffirms the view that the ultimate goal of data
analysis is to estimate population parameters from measures
aggregated across the individuals in a sample.

Our goal in this article is to argue for a contrary view.
We argue that some of the most robust, valuable, and
enduring findings in psychology were obtained, not using
statistical inference on large samples, but using small-N
designs in which a large number of observations are made
on a relatively small number of experimental participants.
We argue that, if psychology is to be a mature quantitative
science, its primary theoretical aim should be to investigate
systematic, functional relationships as they are manifested
at the individual participant level. The estimation of
population parameters, while not unimportant, is arguably
of secondary concern and should probably be investigated
using more refined techniques for characterizing individual
differences than the blunt instrument of simple averaging
that conventional statistical methods provide. For one,
averaging tends to obscure important qualitative individual
differences (see, for example, Estes and Maddox (2005),
Liew et al. (2016), and Navarro et al. (2006)). More
importantly, in most of the cases in which the replicability
of psychological data has been called into question, the
populations to which the inferences were intended to apply
were never specified in any demographically precise way
because they were never of central theoretical importance to
begin with. Such practices beg the question: What does it
mean to estimate a population parameter when the defining

features of that population are specified only imprecisely?
Further, how can samples which are inherently biased
toward certain demographic groups (Henrich et al., 2010)
be expected to provide any strong claim toward generality?
Our ultimate aim is to assert the validity and legitimacy
of the small-N design as a method for generating reliable
psychological knowledge and to rescue it from what we
see as a rising tide of “large samples good, small samples
bad” thinking that has threatened to swamp the recent
methodology debate.

To foreshadow the contents of the rest of the article, our
primary aim is not to denigrate current research practices,
but, rather, to provide a sharper and more balanced
appraisal of what we believe are the often-overlooked
merits of small-N designs. These designs concentrate
their experimental power at the individual participant level
and provide high-powered tests of effects at that level.
As a result, they are in a sense automatically “self-
replicating” (Little & Smith, 2018), as we discuss more
fully later. In addition to their self-replicating properties,
small-N studies often embody a number of hallmarks of
good scientific practice, particularly as they pertain to
precise measurement, effective experimental control, and
quantitatively exact theory. Although there is no necessary
connection between the use of small-N designs and these
other features of scientific practice, many researchers who
engage in highly quantitative psychological science often
favor small-N designs because they see them as possessing
distinct advantages. Part of our aim is to argue that the
focus on sample size as the sole or even the primary cause
of unreliable psychological knowledge is to lose sight of
much of what makes good science. To us, it is a source
of irony that, in the current climate of uncertainty and
methodological re-evaluation, studies that embody what
we believe are characteristics of good science can be
rejected by journal editors as a priori “unreliable.” We
therefore wish to challenge the reductive view that the
only route to reliable psychological knowledge is via large
samples of participants. Parenthetically, we note that while
we frequently contrast small-N and large-N designs for
expository purposes we really view them as ends of a
continuum and, for many researchers, the methodological
sweet spot may lie somewhere in between (see e.g., Rouder
and Haaf (in press)). We touch on this issue later.

Recent articles by Grice et al. (2017) and Normand
(2016) make similar points to those we make here.
Like us, Normand stresses the importance of repeated
measures on single individuals as a reliable and in many
ways, preferable, approach for understanding psychological
phenomena. Grice et al. highlight the errors in inference
that can arise when individual-level hypotheses are tested
at the group level, especially when the population to
which the group belongs is not clearly specified. Our
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critique also recalls elements of the now-classic papers by
Meehl (1967, 1990), particularly in our distinction between
process-oriented and phenomenon-oriented research and
our emphasis on parameter estimation and prediction as an
alternative to significance testing.

Our view is that the emphasis on statistical inference and
the need to reform statistical practice as a response to the
replication crisis has led us as a discipline to focus unduly on
one part of the totality of scientific practice to the exclusion
of others. That we have done so is probably because of
psychology’s excessive reliance on statistical inference as a
way to do science. We believe that this reliance on statistics
has become a kind of crutch that often leads us to neglect
other elements that are crucial to good science. Among
psychology’s endemic methodological problems, which are
only indirectly related to statistical inference, are:

1. Weak measurement. Many psychological phenom-
ena are characterized using measurement instruments
whose relationship to the theoretical entities researchers
wish to investigate is unknown, but which is likely to
be at best, in S. S. Stevens’ (1951) typology, ordinal.
This means that an unknown monotonic transformation
intervenes between the latent construct of interest and
its measured expression.

2. Weak theories and models.Many theories, and their for-
mal expression in psychological models, are weak in
either or both of two different ways. First, their pre-
dictions are often only ordinal: “If such-and-such a
condition holds, then performance in Condition A is
expected to be greater (faster, more accurate, etc) than
in Condition B.” These kinds of weak ordinal predic-
tions contrast sharply with the strong functional forms
that characterize predictive relationships in other parts
of science. Second, the predictions are often sparse.
In some cases, theoretical inferences are drawn on the
basis of a single point estimate or a comparison of a pair
of point estimates (i.e., the textbook t-test). The sparse-
ness of the empirical predictions can be quite unrelated
to the internal complexity of the theories themselves.
In the early days of connectionism, for example, many
published articles attempted to draw inferences about
the properties of the neural networks supporting par-
ticular cognitive functions from ordinal comparisons of
simulated network performance and experimental data
in a small number of conditions (Seidenberg & MClel-
land, 1989). The weak measurement problem and the
weak theory problem are intimately connected: If mea-
surement is only ordinal then theoretical predictions can
never be stronger than ordinal.

3. Poor experimental control of error variance. The
methodological gold standard in many areas is one
in which a group of naive participants serves in a

single experimental session and are all exposed to
exactly the same experiment treatment. Any variability
among participants in how they respond to the treatment
is conceptualized as “experimental error.” Such error,
and the fact that it is often large, is usually accepted
as one of the inescapable realities of psychological
experimentation. Because statistical power is inversely
related to error variance, the only recourse when
confronted with large error variance is to increase
sample size. So ingrained has this methodology become
in our way of doing science that it is easy to forget that
there are other ways of tackling the problem of error
variance. To do so requires us to ask: Why are people
variable on this task and are there ways to reduce this
variability?1

We discuss some of the implications of Points 1 to 3 in the
following sections.

What should we expect to find in a small-N
design?

The proposition that small samples lead to unreliable,
hard-to-replicate findings leads to the expectation that
the replication crisis should be deepest in those areas in
which samples are habitually the smallest, like the sensory
sciences and animal learning studies. And we might expect
that the crisis would have spilled over into other areas that
have adopted the small-N approach, such as the cognitive
neuroscience of awake, behaving animals. Indeed, by this
reasoning, the very worst—the most methodologically
irredeemable, epistemologically beyond-the-pale cases—
should be those studies in which the research was carried
out on only a single participant! However, two of the
foundation stones of cognitive psychology, Weber’s Law,
along with Fechner’s generalization of it Link (1992), and
Ebbinghaus’s Law of Forgetting (Baddeley, 1997), were
both carried out in this way: by a single experimenter
(wholly, in the case of Ebbinghaus, and largely in the case of
Fechner) administering a vast number of experimental trials
to himself. As well as involving only single participant,
there can be no suggestion as to the participant’s naivety

1It is, of course, also important to realize that there are other sources
of variability which are typically uncontrolled and add to the error
variance in an experiment. These factors include not only variability
across participants but also across the stimuli which are tested,
equipment, location, time of day, and so on. Baribault et al. (2018)
developed a novel method of determining whether or not any of these
factors contributes to changes in a population parameter estimate by
randomizing all of the various aspects of the experiment that might
contribute to the effect. The specific effect of any factor was then
determined by marginalizing over the other factors providing a way to
isolate causal variables.
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in either of these cases. Despite flouting some of the most
sacred methodological canons, Fechner’s and Ebbinghaus’s
results have stood up robustly for more than a century.
They are fixtures in textbooks; they are among the
comparatively few results in psychology that we dignify
with the name of “law”, and they stand as yet unbuffeted by
the epistemological winds of the replication crisis.

In making these claims for findings like Fechher’s and
Ebbinghaus’s laws, we are of course not attempting to
suggest that all of the historical studies carried out using
small-N or single-participant designs yielded enduring and
reliable knowledge. That would be like claiming that all
the best songs were written in the sixties because the
songs from the sixties that continue to be played today
are better than the songs being written now—and would
embody the same kind of logical error. Rather, it is
to claim that these examples show that use of single-
participant designs is in no way inimical to the discovery of
precise quantitative relationships of enduring psychological
significance. Indeed, it might have been much more difficult
for Fechner and Ebbinghaus to have discovered their laws
had they worked with large-N designs. Moreover, the most
convincing way to investigate these laws today continues to
be at the individual level.

In a recent survey of the role of small-N designs in
psychology, Saville and Buskist (2003) pointed out that
the use of large-N designs is a comparatively recent
phenomenon, which they linked to the publication of R.
A. Fisher’s Statistical methods for research workers in
1925 (Fisher, 1925). They noted that the foundational
studies of animal learning by Pavlov and Thorndike, some
decades before Fisher’s book, were carried using small
samples and that this practice continued in the work of
B. F. Skinner (1938)—who provided us with the epigraph
for this article—and his contemporaries, and that the
small-N design remains the mainstay of animal learning
studies to this day. They also noted that the historical
shift from small-N to large-N designs was traced by
Boring (1954). He analyzed the studies published in the
Journal of Experimental Psychology in the years 1916,
1933, and 1951 and reported that in 1916 not a single
study used a large-sample design, but by 1951 the number
had risen to over 50%. Until the current replication crisis,
this history might reasonably have been read as one of
psychology gradually learning to use more appropriate and
reliable methods—a process that was largely complete by
the time of the cognitive revolution of the 1960s. As a
corollary to this interpretation, we might expect that the
areas of psychology that were slowest in taking advantage
of Fisher’s methodological innovations would be those in
which the replication crisis is now deepest. But this is not
what we seem to find.

We take vision science as an example, as the sensory
science nearest to the areas of cognitive and mathematical
psychology in which we as authors work. We could
have made similar points with reference to other sensory
sciences, like auditory science, or animal learning. Among
the primary outlets for research in vision are journals
like Vision Research, Journal of the Optical Society of
America, A, and more recently, Journal of Vision, in
which the small-N design has tended to be the dominant
paradigm. Published studies in these journals often report
data from as few as two or three participants (typically
styled “observers”), often members of the laboratory, and
consequently far from naive. Our reading is that vision
science shows no evidence of being in the grip of the kind
of replication crisis that is currently afflicting cognitive and
social psychology. Although there are unsolved problems,
unanswered questions, and ongoing controversies in this
area as in any other, vision science provides us, overall,
with a highly coherent picture of how stimuli are coded
and represented in the visual system. Vision science has
undoubtedly benefited from the close theoretical link
between behavior and physiology; but even with this
qualification, there seems to be no evidence that its habitual
use of small samples of participants has led to a replication
crisis of a particularly virulent kind.

So what, then, is different about vision science? We
quote, verbatim, from one eminent vision scientist, John
Ross (2009, pp. 245-246), whose remarks are illuminating:

Research in visual perception began to make increas-
ing use of measurement techniques developed for the
study of psychophysics, and to adapt these for its own
purposes. [...] Psychophysical techniques have pro-
vided visual science with something that is rare in
psychology: measurements that are precise and repli-
cable, on ratio scales such as area of time, or even
on dimensionless scales, such as contrast or sensitiv-
ity. Because these measures are precise and replicable,
and because, when they are applied, individual dif-
ferences between observers tend to be small, papers
reporting careful measurements on a few individu-
als or even a single person are now perhaps more
the rule than the exception, in the perception litera-
ture. Such measurements freed vision scientists from
the inconvenience of having to use large numbers of
participants and from the necessity to assess effect
sizes in terms of individual variation. The use of pre-
cise models to explain, or even better, quantitatively
predict the results of experiments became common.”

Ross’s remarks touch on all three areas of methodologi-
cal weakness we identified above. We comment on each in
turn.
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1. Strong measurement.Ordinal-level hypothesizing is rel-
atively rare in vision science because many experiments
are concerned with characterizing visual sensitivity to
stimuli that are either defined on ratio scales or are
dimensionless transformations of ratio scales. Typical
variables of interest in vision science include exposure
duration, luminance contrast, chromatic contrast, sum-
mation area, summation time, motion direction, motion
speed, motion coherence, spatial frequency, and ori-
entation. These quantities are usually measured via
individual thresholds: that is, the value of a ratio-scale
or dimensionless variable that produces a criterion level
of performance (often taken as the midpoint between
floor and ceiling) in an individual participant making
a perceptual judgment. Although such measurements
presuppose a continuous, invertible, nonlinear mapping
from the stimulus to the observed performance, the
mapping itself (the psychometric function) is theoreti-
cally well specified and empirically testable.

2. Strong theories.Unlike many of the results in the OSC’s
replication study, vision science has benefited from
the widespread use of strong quantitative models. This
practice dates from the introduction of linear systems
theory into vision science by de Lange (1952, 1954,
1958) to characterize visual temporal sensitivity. The
idea promoted by de Lange, that visual mechanisms
can be characterized theoretically and mathematically
as filters possessing specific spatiotemporal response
properties, which possess the linear-system property
of superposition, has proven to be an enormously
fruitful one (Robson, 1966; Sperling & Sondhi, 1968;
Watson, 1986), and one which has allowed researchers
to make systematic theoretical connections between
behavior and physiology. The behavioral link is
typically made via detection-theoretic concepts that
predict a relationship between the response of a visual
mechanism to a given stimulus and the observer’s
psychophysical judgment about it Graham (1989),
where the latter may be expressed variously as a
threshold, a choice probability, or a sensitivity index.

One the implications of the use of strong quantitative
models is that the research focus changes from
significance testing to model fitting. The primary
question is no longer “does performance in these
two conditions differ significantly?” but “does my
model agree with my data within the limits of
my measurement precision?” Because the dominant
focus is changed from inference to measurement,
this kind of reasoning might (slightly provocatively)
be termed “Gaussian,” to distinguish it from either
classical or Bayesian inference and because it is
reminiscent of Gauss’s use of the concept of “probable
error” to characterize discrepancies between theory

and empirical measurements (Sheynin, 1979). In
psychology, these kinds of question are best asked at the
individual observer level, where measurement precision
is controlled by the number of trials performed by
the observer in each stimulus condition. The goal of
maximizing measurement precision naturally leads to
designs in which a small number of observers perform
a large number of number of experimental trials,
rather than the converse, and to methods that minimize
within-condition, within-observer variance. Because
models in vision science typically predict performance
across a range of stimulus and performance levels
simultaneously—that is, across the entire psychometric
function (Lu & Dosher, 1999)—these kinds of models
avoid the sparse prediction problem and the associated
reliance on significance testing of point hypotheses.2

3. Effective control of error variance. Two practices
commonly used in vision science to control error
variance have meant researchers have not been prey to
the variation usually found in groups of naive observers.
One is the use of practiced, experienced observers; the
other is the use of stimulus manipulations designed
to put all observers at a particular, criterion level
of performance in a baseline or reference condition.
Researchers who do small-N studies would agree that
people are most variable, both in relation to themselves
and in comparison to others, when they begin a task, and
that within-observer and between-observer variability
both decrease progressively with increasing time on
task. While the nature of the processes by which
people’s performance changes over time—the process
of perceptual learning—is an important question in
its own right (Dosher & Lu, 1999), in many studies
the primary goal of research is to characterize the
resolution, sensitivity, or capacity limits of the system.
These questions are best asked in relation to practiced
rather than naive observers in which the system is
performing at its theoretical limits under optimum
conditions.

The second practice is the use of stimulus manipula-
tions designed to equate performance across observers

2The form of statistical inference that most closely corresponds to
the form of reasoning we are calling ”Gaussian” is the kind that uses
confidence intervals, which have been proposed as an alternative or
an adjunct to null-hypothesis testing by various authors (Cumming
& Finch, 2005; Estes, 1997; Loftus & Masson, 1994). When used
in the context of the kind of large-N design that is common in
psychology, confidence intervals cannot compensate for the problems
of weak measurement and weak theory we have identified here and
do not represent a solution to the replication crisis. The power of the
approach we are advocating derives from the use of strong theories and
computational models that predict entire functions, not just isolated
points.
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by putting them all at the same operating point. If, for
example, stimulus contrast is thought to be the relevant
variable, then a frequent practice is to scale the stim-
ulus contrasts for individual observers to be multiples
of their detection or discrimination thresholds for the
task. If the experimenter’s hunch is correct and con-
trast is indeed the relevant variable for performance,
then scaling contrast levels individually to make stim-
uli functionally rather than physically equivalent can
produce a marked reduction in inter-observer variance.
The combination of practiced observers and individ-
ually tailored stimulus manipulations has meant, as
J. Ross (2009) pointed out, that there is high degree
of inter-observer agreement in many tasks, obviating
the researcher from the need to run large numbers of
observers.

Psychophysical methods in cognitive
andmathematical psychology

The use of experimental methods characterized by J.
Ross (2009) as “psychophysical” are not confined to
vision and other sensory sciences, but are also common
in cognitive psychology, especially in those areas of
cognitive psychology that use explicit mathematical models.
Among these areas are categorization (Ashby & Alfonso-
Reese, 1995; Fifić et al., 2010; Nosofsky, 1986; Nosofsky
& Palmeri, 1997), recognition (Nosofsky et al., 2011;
Osth & Dennis, 2015; Raaijmakers & Shiffrin, 1981;
Ratcliff, 1978; Shiffrin & Steyvers, 1997), decision-making
(Busemeyer, 1985; Busemeyer & Townsend, 1993; Roe
et al., 2001), working memory (Cowan, 1999), episodic
memory (Dennis & Humphreys, 2001), psychophysical
studies of attention (Bundesen, 1990; Smith, 1995; Smith &
Ratcliff, 2009), and systems factorial technology studies of
cognitive architecture (Townsend & Nozawa, 1995; Little
et al., 2017). This list is not in any way intended to
be exhaustive and simply reflects some of the areas in
which we as researchers are personally interested. The
common aim of experimental design in all of these areas
is to try to maximize the contact between theory and
data. The scientific intuition behind this design imperative
is that a theory or model that predicts performance in
many conditions simultaneously is more persuasive than
one that predicts performance in relatively few conditions.
For example, models of speeded decision-making like the
diffusion model (Ratcliff, 1978) and other similar models
(Brown & Heathcote, 2008; Usher & McClelland, 2001)
predict entire families of response times distributions for
correct responses and errors and the associated choice
probabilities and how these jointly vary as a function
of experimental conditions. This unusually rich contact

between theory and data allows for very stringent model
tests. To take another example, models of categorization like
the generalized context model (Nosofsky 1984, 1986) or
decision-bound models (Ashby &Gott, 1988; Ashby & Lee,
1991) predict observers’ categorization performance from
their identification performance, not merely on a single
set of categories, but across a variety of different category
structures simultaneously at the level of individual items.
The theoretical power and psychological interest of these
models comes from their rich and detailed contact with
data across multiple experimental conditions. Similar points
could be made about experimental design and model testing
in any of the other areas we have listed.

What these areas have in common is that theory testing
is carried out by fitting (or otherwise evaluating) explicit
mathematical models and that the relevant model proper-
ties are most directly expressed at the individual participant
level. Of course, this kind of research is only possible
with experimental manipulations that do not produce strong
carry-over effects (Keppel 1982, p. 371), because model-
testing at the individual level requires a sufficient number
of experimental trials to produce an adequate level of
within-condition measurement precision. The requirement
that experimental manipulations not produce strong carry-
over effects is needed in order to allow consecutive trials to
be treated as statistically independent. In practice, because
of the sequential effects that are found in many cognitive
tasks (Luce, 1986; Treisman & Williams, 1984), models
that assume independent trials can only approximate the
true probability structure of such tasks. Sequential effects
complicate the task of defining an appropriate goodness-
of-fit measure for model evaluation, but the problems are
not insurmountable. One way of dealing with the effects of
uncontrolled (i.e., unmodeled) sources of across-trial vari-
ability in probability models is to use an appropriate model
of statistical overdispersion (McCullagh & Nelder, 1989;
Smith, 1998). Another way is to model the sequential depen-
dencies directly (Jones, Curran, Mozer & Wilder, 2013;
Little et al., 2016).

The fact that mathematical models most often predict
performance at the individual participant level does not
automatically preclude aggregation, by averaging or some
other means, across participants, but does imply that
conclusions made at the group level ought to be verified
at the individual participant level (Grice et al., 2017). This
implies that a sufficient number of trials must be collected
at the individual level in order for such verification to
be meaningful. Whether averaging or aggregation leads to
artifacts that can distort inference depends wholly on the
domain and the models in question and it is difficult to
give a priori, domain-independent prescriptions. On the one
hand, one of the most well-known examples of aggregation
artifact is that of learning curves (Estes, 1956; Gallistel et
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al., 2004; Sidman, 1960). As has long been recognized,
averaging a family of discontinuous learning curves of
the kind produced by insight-based, all-or-none learning
in which the insight point occurs at different times can
produce a smoothly increasing group curve of the kind
predicted by incremental-learning, linear operator models
(Batchelder, 1975). That is, the conclusions one would draw
at the group and individual levels are diametrically opposed.
Zealously averaging over unknown individual differences
can produce results that potentially misdirect the theoretical
direction of the entire field. For example, Liew et al. (2016)
recently demonstrated that attempts to model several types
of context effects, such as the similarity, attraction, and
compromise effects which arise in multiattribute decision-
making, simultaneously obscures the fact that these effects
do not appear concurrently in any single individual but only
in aggregate.

On the other hand, studies of speeded decision-making
are often carried out on group data created by averaging
quantiles of response time distributions across participants
(Ratcliff & Smith, 2004). Fits of the diffusion decision
model to quantile-averaged group data typically agree fairly
well the averages of fits to individual participant data
(Ratcliff et al., 2003; Ratcliff et al., 2004). The reason is
because of the affine quantile structure of many empirical
families of response time distributions, which is captured
by the diffusion model (Ratcliff & McKoon, 2008; Smith,
2016), and which allows quantile-averaging of distributions
without distortion (Thomas & Ross, 1980).3 The empirical
affine structure is likely to be only approximate rather than
exact (Rouder et al., 2010)–which is why individual-level
verification is always advisable—but is often enough that
the group- and individual-level pictures turn out to be in
good agreement. In these situations, the value of averaging
is primarily the pragmatic one of data smoothing, rather than
the inferential one of estimating population parameters.

Similar results on the effects of aggregation were
reported in a number of other cognitive tasks by Cohen,
Sanborn, and Shiffrin (2008). They investigated models
of forgetting, categorization, and information integration
and compared the accuracy of parameter recovery by
model selection from group and individual data. They
found that when there were only a small number of trials
per participant parameter recovery from group data was
often better than from individual data. Like the response
time studies, their findings demonstrate the data-smoothing
properties of averaging and the fact that smoother data
typically yield better parameter estimates. In the case

3“Affine” structure is structure that is more commonly referred to as
“linear.” It means that the j th quantile for the ith observer, Qi,j , is
linearly related to the corresponding quantile for the kth observer,
Qk,j , by a function of the form Qi,j = a + b Qk,j ,where a and b are
constants that depend on the two observers being compared.

of response time studies, which usually collect large
samples of data from individual participants, the benefits
of aggregation arise mainly in relation to estimating model
parameters that depend on parts of the data space that are
sampled only sparsely, such as the tails of distributions of
error responses to highly discriminable stimuli. Cohen et
al.’s results also highlight the fact that, while distortion due
to aggregation remains a theoretical possibility, there are no
universal prescriptions about whether or not to aggregate;
aggregation artifacts must be assessed on a case-by-case
basis rather than asserted or denied a priori.

From an inference perspective, the practice of fitting
models at the individual participant level has one particu-
larly profound consequence, namely, the individual, rather
than the group, becomes the replication unit. That is, a
small-N design that reports measurements and model fits
for, say, three, six, or ten participants is actually reporting
three, six, or ten independent replications of the experiment.
As J. Ross (2009) noted, the high degree of measurement
precision afforded by the use of psychophysical methods in
vision science means there is often a high degree of uni-
formity in measurements and model fits across participants.
From this perspective, an article that reports a consistent
set of measurements and fits across three participants is
not statistically underpowered; rather, it is doing what the
OSC has charged that cognitive and social psychology typi-
cally fail to do and carrying out multiple replications. From
this perspective, the goal of “replication” is not to estimate
population parameters; it is to ascertain whether the same
functional relationships and the psychological processes
they reflect are exhibited consistently across individuals.
We believe that the reason why vision science and related
areas are apparently not in the grip of a replication crisis is
because of the inbuilt replication property of the small-N
design. This property, combined with psychophysical mea-
surement methods that produce a high degree of consistency
across individuals, means that many published papers in
vision science serve as their own replication studies.

As we emphasized earlier, we are not attempting to
claim that population-level inferences are unimportant.
In studies of individual differences, or in studies of
special participant populations, inferences about population
parameters are evidently central. However, questions about
population structure, and the population parameters that
characterize them, are arguably better approached using
more refined techniques for characterizing populations
than simple averaging, such as the methods developed
by Lee and colleagues (Bartlema et al., 2014; Lee &
Wagenmakers, 2005), which seek to discover the best latent
population structure underlying a set of data empirically.
From this perspective, the small-N and large-N are
not mutually exclusively approaches to doing inference;
rather they are ends of a continuum. Processes that
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Phenomenon-based versus process-based
research

Consider the following two research questions: The first
question, taken from Cohen’s (1990) paper questioning
psychological research practices, tests whether children
from poorer socioeconomic backgrounds perceive the sizes
of coins to be larger than estimates provided by children of
wealthier socioeconomic background. The second question,
reported in a conference paper presented at Fechner Day
by Helen Ross (1990), tests whether participants who
grew up and live in rural settings are more susceptible to
horizontal line illusions like the Mueller-Lyer illusion than
are participants who grew up and live in urban settings.
(H. Ross also evaluated the converse hypothesis that
participants from urban environments are more susceptible
to vertical line illusions than are participants from rural
settings.) On the surface, these two questions seem similar
to each other, and, indeed, both involve weak, ordinal
predictions about the direction of the statistical test.
However, only the second of these hypotheses is based
on theorizing about the underlying process that could
conceivably lead to a difference in illusion susceptibility.
The general hypothesis is that the distribution of orientation-
tuned neurons in the visual system varies as a function of
the distribution of orientations in the visual environment
(Coppola et al., 1998; Switkes et al., 1978). The structure
of the environment therefore has a direct influence on
perception which in turn affects judgments based on spatial
aspects of the environment (cf. Furmanski and Engel
(2000)). While attempts to directly replicate Ross’s original
results, which supported the proposed hypothesis, have not
to our knowledge been conducted, similar results have been
reported by others (Segall et al., 1963).

By contrast, the first question does not have any strong
link to theories of perception. Instead, the logic seems

to be that there might be some high-level conceptual
influence resulting from values or experience that leads to
a change in the perception of size. The key point is that
the processes which lie between activation of the concept
and influence of perception are not specified with any
detail. The aim of asking such a question is therefore
not to elucidate any theoretical prediction but instead,
to demonstrate some phenomenon that would presumably
prompt radical revision of hypotheses about the interaction
of concepts and perception. Cohen’s hypothetical study has
in fact been carried out numerous times, apparently first by
Bruner and Goodman (1947) who found that poor children
do overestimate coins sizes compared to rich children even
when the coins are physically present as a comparison!
In a serendipitous demonstration of cyclical trends in
psychological science, this experiment was soon repeated
with the result failing to replicate (Carter & Schooler, 1949)
and in some cases reversing (Rosenthal, 1968).4 This type
of atheoretical effects-driven research acts as proxy for
the entire category of research focused on demonstrating
phenomena rather than examining process. The problems
with this approach are further evinced, to take one example,
by the recent history of research on social priming starting
from Kahneman’s (Kahneman 2011, p. 57) statement that
“disbelief...[in social priming results]...is not an option” to a
series of high profile replication failures (Doyen et al., 2012;
Pashler et al., 2012; Rohrer et al., 2015). Changing the focus
from whether or not some behavior occurs to the process
underlying it allows a progressively more refined picture
to be built up of the conditions under which the behavior
occurs and the likely mechanisms that give rise to it. In the
remainder of the article, we argue that adopting a small-
N approach to testing process-based predictions allows for
much stronger inferences than the corresponding large-N
approach.

Individual- versus group-level inference: a
simulation using additive factors

In this section, we illustrate the difference between
individual- and group-level inference in order to highlight
the superior diagnostic information available in analyz-
ing individuals in a small-N design and the problems of

4Bruner and Goodman (1947) also demonstrated greater overestima-
tion by poor children compared to rich children when the estimation
was based on memory. This result held in Carter and Schooler’s (1949)
replication but reversed in older children in Rosenthal’s (1968) replica-
tion. Rosenthal explained his results by positing that familiarity likely
played a critical role in estimated from memory. We direct the reader
to Firestone and Scholl’s (2016) review of the larger topic of top-down
influences on perception.

are conceptualized theoretically at the individual level
are best investigated using designs that allow tests at
the individual level, which leads most naturally to the
small-N design. Genuine questions about the distributions
of those processes within populations—as distinct from
the vaguely defined populations that are invoked in
standard inferential statistical methods—naturally lead to
larger-sample designs, which allow the properties of
those populations to be characterized with precision. As
emphasized by Meehl (1967), the style of research that
remains most problematic for scientific psychology is
research that is focused on demonstrating the existence
of some phenomenon, as distinct from characterizing the
processes and conditions that give rise to and control it. We
illustrate the distinction, with examples, below.
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averaging over qualitatively different individual perfor-
mance in a group-level analysis. For this exercise, we
have chosen to use Sternberg’s additive factors method
(Sternberg, 1969). The additive factors method has been
highly influential in the cognitive literature as a method
for characterizing the structure of the processes underly-
ing response time (a Google Scholar search reveals more
than 3700 articles that reference it) and has been the cat-
alyst for much later theorizing about mental architecture
(McClelland 1979; Schweickert 1978, 1980; Townsend &
Nozawa 1995). Our primary reason for using the additive
factors method is that it occupies something of a middle
ground between the kinds of strong mathematical models
we emphasized in the preceding sections and the null-
hypothesis significance testing approach that was the target
of the OSC’s replication study. One likely reason for the
historical success of the additive factors method is that it
was a proper, nontrivial cognitive model that was simple
enough to be testable using the standard statistical methods
of the day, namely, repeated-measures factorial analysis of
variance. Off-the-shelf repeated-measures ANOVA routines
became widely available during the 1970s, the decade after
Sternberg proposed his method, resulting in a neat dove-
tailing of theory and data-analytic practice that undoubtedly
contributed to the method’s widespread acceptance and use.
By using the additive factors method as a test-bed we can
illustrate the effects of model-based inference at the group
and individual level in a very simple way while at the
same time showing the influence of the kinds of power and
sample-size considerations that have been the focus of the
recent debate about replicability.

The additive factors method originated as a way to
determine the presence or not of sequential or serial stages
of processing in response time (RT) tasks (Sternberg, 1969).
Two factors, varied factorially, which influence different
processes, will have additive effects on response time under
the assumption that the processes are arrayed sequentially.
The additivity of two sequential stages can be assessed
by examining the significance of the interaction effect in
a 2 × 2 ANOVA. If the interaction is significant, then
the influence of the two factors on RT is not additive,
in which case, other processing architectures are inferred
(such as the common influence of both factors on a single
processing stage). Hence, unlike a point-null hypothesis,
which arises as a vague prediction of ordinal hypotheses
and is almost always false (Meehl, 1967), an interaction
effect of 0 is a point prediction, which provides for a strong
inferential test of the serial model as a model of individual
performance.

In the following demonstration, we simulated response ti-
mes (RTs) from a small number of hypothetical participants
in an additive factors design. To characterize the individual-
level effects, we bootstrapped each of these participants’

data by downsampling with replacement.5 For each bootstrap
sample, we conducted both group- and individual-level
analysis of the RTs in order to characterize the exact value
of the interaction. To characterize the group effects, we
averaged the mean RTs from the stimulus conditions for
each simulated participant and analyzed the results using
a standard repeated-measures ANOVA. Thus, we illustrate
the different goals of each method: estimating the value of
a parameter, in the case of an individual-level analysis, and
inferring whether a population-level interaction is different
from the null, in the case of the group-level analysis.
The bootstrapping procedure allowed us to establish the
variability in the power (i.e., the probability of detecting
a significant result when one is present) for each method
given a fixed data set. We repeated this sampling procedure
a number of times to examine the variability in the presence
of the effect in our small sample characterizing the power of
each method across the range of interaction effect sizes.

In comparing group and individual analyses in this way,
we do not intend to imply that this is would be the preferred
way to analyze data from an experiment of this kind if such
a study were carried out today. For many researchers, the
method of choice for analyzing these kinds of data would
be hierarchical modeling, using either classical or Bayesian
methods (Kruschke, 2014; Rouder et al., 2012; Thiele et al.,
2017). Hierarchical methods have several attractive features,
particularly when there are only limited data available for
each participant (Ratcliff & Childers, 2015); but they do
require the researcher to specify a compound model: one
level of the model specifies the process that generates the
individual-level effects and the other level specifies the
population distribution of the parameters of the process.
Such models can fail if either of these submodels is
misspecified, so inferences about processes at the individual
level become conditional on a correctly specified population
model. They also yield solutions in which the individual
parameters tend to cluster towards to the center of the
population distribution, particularly when there are limited
individual data, a phenomenon known as “shrinkage.”
Moreover, they lack the attractive self-replicating properties
of individual analyses in a small-N design. Here we
have chosen for didactic purposes to report the results
of a “bare-hands” analysis to highlight the differences in
sensitivity provided by group- and individual-level analysis.
The group-level analysis, of average effects using repeated-
measures ANOVA, is intentionally the simplest and most
common way of characterizing treatment effects in a
population, but this is precisely the kind of analysis that has

5Downsampling (of a larger sample) is typically used in bootstrapping
when comparing two samples of unequal size (Racine et al., 2014);
here, we applied downsampling to increase the variability of the
individual distributions.
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been the focus of the recent debate about replication failure
and the associated calls for methodological reform.

Simulation details

Here we provide an intuitive overview of our simulation;
details can be found in the Appendix. For each simulated
participant, for each item condition, we sampled 400 RTs
from a log-normal distribution. Four hundred trials is a
fairly typical sample size for a small-N design in which the
researcher is attempting to characterize the RT distributions
in each condition for each participant individually. We chose
the number 400 on this basis rather than on the basis of
any formal power analysis. We attach no strong theoretical
interpretation to the log-normal and use it simply as a
flexible family of unimodal positively skewed distributions
that has sometimes been used to characterize distributions
of RT empirically (Woodworth & Schlosberg, 1954). The
parameters of each item distribution were linked via a linear
equation in which the interaction effect was either present
or absent.

For the group analyses, we simply averaged the resulting
mean RTs for each item across subjects and conducted
a 2 × 2 ANOVA. We then repeated this procedure by
bootstrapping the sampled RTs from each participant 1000
times to get an estimate of the variability of the ANOVA
results. New samples of participants were generated with
different proportions of subjects having a null interaction.
We drew 20 independent samples with a proportion of
[.10, .25, .50, .75, .90] having a null effect. To estimate the
power for this analysis, we simply estimated the proportion
of bootstrapped samples which had a significant interaction
effect (using an α level of .05).

For the individual analyses, we used two methods. One
method estimated the size of the interaction effect using
weighted linear regression. Here we also estimated the
power using the proportion of bootstrapped samples which
had a significant effect. The other method was to fit a log-
normal distribution to the data using maximum likelihood
estimation. We fit a general model, in which the interaction
term was allowed to be non-zero, and a constrained model,
which forced the interaction term to zero. We then used
model selection (i.e., a G2 test) to determine whether
the more general model fit significantly better than the
constrained model.

Simulation results

In our first simulation, we set N = 4. The results of this
simulation are shown in Fig. 1. For the individual-level
analyses, we have binned the estimated power by the true
simulation value of the individual interaction effect; for
the group analysis, we binned the estimated power by the

true average interaction effect for the simulated group. For
both analyses, we used a bin size of 5 ms. The results of
the weighted least squares analysis are shown on the left
panel and the maximum likelihood parameter estimation
method are shown on the right. The results of the group-
level ANOVA are shown in both panels for comparison.
The dotted line presents the average power at the true
estimate level, and the shaded patch is the bootstrapped 95%
confidence intervals.

The results for the weighted least squares analysis and
the maximum likelihood method are qualitatively similar,
and we make no further distinction between them except to
note that the maximum likelihood estimation appears to be
more sensitive to small differences from the null interaction.
The next thing to note is that the individual analysis picks
up the difference in individuals sampled from the null
interaction and the positive interaction quite clearly, with
the two distinct regions reflecting the separation between
individuals. For the individuals sampled with a positive
interaction, the individual analysis is very sensitive with
the average power greater than .9 even at the lowest levels
of the effect. The individual-level analysis is also sensitive
even to small effects near zero, from individuals sampled
with a null interaction. Effectively, the analysis is sensitive
enough to occasionally detect that the interaction effect
is different from zero even when that effect is rather
small. Lest one think it problematic that the near-zero
results are significant some proportion of the time for
the individual analysis, recall that the individual analysis
provides an estimate of the interaction for each participant.
Consequently, one can examine the value of the estimate
to determine its importance rather than relying on a null
hypothesis test to decide whether it is or is not actually
zero.

By contrast, the group analysis is only showing compara-
ble power when all four of the simulated participants show
a positive interaction. When any of the participants in the
group is sampled from the null interaction effect, the power
of the analysis drops substantially (from near 1.0 to .3). The
implication is that the group-level analysis is masking the
individual differences in the presentation of the interaction.
When half or fewer of the participants show the interaction,
the group-level analysis only very rarely detects an interac-
tion. It seems wholly undesirable that one could conclude
in favor of the null hypothesis when half of one’s sample
shows the effect.

The effect of increasing N on the individual- and
group-level analyses

We conducted additional simulations in which we increased
the sample N (see Fig. 2). As N increases, the power of the
group-level analysis increases as expected, but it is only at
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Fig. 1 Simulated results for N = 4 participants. The dotted line shows the average power estimate, and the shaded region is the bootstrapped 95%
confidence intervals for each analysis. The x-axis is the magnitude of the interaction parameter in the generating model (Equation A4); the y-axis
is the proportion of times in which a significant interaction was identified in the simulations

large levels of N that the group-level analysis is comparable
to the individual-level analysis. We would further note
that at large N , the group-level analysis continues to
obscure qualitative individual differences in the level of the
effect. Furthermore, the group-level analysis provides no
indication of the effect size at the individual level, which, by
contrast, the individual-level analysis captures as its primary
focus.

Implications of the simulation study
for research practice

There are several important implications of our simulation
study that are worth highlighting. First, the tests of the
interaction contrast at the individual participant level are
carried out with very high power. Statistically, they are tests
of the null hypothesis of no interaction; psychologically,
they are tests of the cognitive model that the two
experimental variables affect different processing stages.
The high power is a result of the small-N nature of the
design: Each participant contributes 400 trials to each of
the distributions in the four cells of the x × y design.
These distributions and the precision with which they are
estimated determine the accuracy of the estimate of the
βxy parameter and the power of the associated statistical
test. Figure 2 shows that these within-participant tests are
extremely sensitive to the true value of the parameter. When
the true value of the interaction parameter δ was 1, the
overwhelming majority of tests correctly detected this fact.
That is, the tests showed a high degree of replicability,
even in the smallest (N = 4) design. When the true value
of δ was zero, and the mean of βxy was likewise zero,
the overwhelming majority of the tests again reflected this

fact, but they were also very sensitive to deviations in the
sampled value of βxy from its population mean.

In addition to providing high-powered tests of the
interaction at the individual participant level, the tests
also provide valuable information about the distribution of
βxy within the population. This information is completely
obscured by the group-level analysis, which assumes, a
priori, that the effects are sampled from a homogeneous
population. The picture that emerges from the group
analysis—which is false in this particular instance—is of an
experimental design that is substantially underpowered at all
but the largest (N = 128) sample size. The editorial stance
recently adopted by some leading cognitive journals is that
large-N studies, supported by formal power calculations,
are the only way to satisfactorily address questions of this
kind. Our simulation highlights just how misleading such an
approach can be.

It could be objected that the assumption we made in
setting up our simulation study, of a bimodally distributed
interaction parameter, was an artificial one, and that
anomalies of this kind would be detected by routine data
screening. However, it is important to recognize that the
bimodality is not at the level of the data but at the level of the
parameters of the cognitive model that generated the data.
How that bimodality is expressed at the level of the data will
depend on a transformation (usually nonlinear, e.g., Eqs.
A2 and A3) that expresses the value of the parameter in
the observed data. The qualitative expression of bimodality
at the level of empirical measurement is merely that some
participants display convincing evidence of an interaction
while others display weak or no evidence.

In situations of this kind, the logic of small-N and
large-N scientific discovery will unfold very differently.
The large-N approach would be to run a big sample of
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Fig. 2 Individual- and group-level analysis as a function of increasing the sample size (from top to bottom). The x-axis is the magnitude of the
interaction parameter and the y-axis is the proportion of significant interactions found in the simulation

participants who, because of resourcing constraints, are
likely at best to be minimally practiced on the task and,
consequently, highly variable. The large-N researcher will
view the magnitude of the interaction effect through the
lens of the between-participants error variance (repeated-
measures ANOVA tests the x × y interaction against the
Participants × x × y residual term) and will conclude,
perhaps based on the results of previous studies, that the
treatment effect is somewhat on the small side and will
need a large sample to demonstrate reliably. A less well-
informed researcher will adopt Cohen’s (1988) definition of
“small,” “medium,” and “large” effect sizes as armor against
ignorance and likely decide that a “medium” effect size
sounds reasonable aspirationally (unlikely to offend journal
reviewers), and come to a similar conclusion — although

probably on the basis of a differentN . After a few iterations,
the field as a whole will conclude that the effect is somewhat
fragile, requires large resources to demonstrate reliably, and
is therefore uninteresting theoretically, and will move on to
study something else.

The small-N approach is somewhat different. The small-
N design has the advantage of putting the statistical power
where it is required theoretically, in the test of the x × y

interaction at the individual participant level. Depending on
resourcing and other considerations, the small-N researcher
might choose to run anywhere between four and a dozen
participants. Because the hypothesis tests are carried out at
the individual participant level, each participant becomes an
independent replication of the experiment and the number
of participants who do and who do not show an interaction
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becomes a rough but useful guide to the replicability of
the result. An experimenter who runs 12 participants and
finds that ten of them show an interaction can reasonably
claim to have identified a fairly, although not perfectly,
replicable phenomenon, but one which would still likely
merit the attention of colleagues. In this instance, the
number of participants showing an interaction could be
declared “significant” by a binomial test, using the test in
a meta-analytic way to aggregate the results of independent
experiments.

An experimenter who runs a small number of participants
probably does so in the expectation of finding a high
degree of interparticipant agreement, as is often found in
sensory science, animal learning studies, and some areas of
cognitive neuroscience. However, in situations like the one
in our simulation in which there is appreciable heterogeneity
in the underlying population, the expected consistency is
unlikely to eventuate, or not completely. If, for example, the
study used four participants and one or two of them failed to
show an interaction, then the experimenter would be forced
to acknowledge that the phenomenon, although it may be
a real one, is influenced by individual differences whose
nature is not properly understood. Nevertheless, the study
would have provided useful evidence about the replicability
of the finding at the level at which is theorized, namely, at
the individual participant level, which would not have been
provided by a large-N study.

At this point, a number of things could occur. In
the absence of fresh insights about the cause of the
individual differences, the area might simply stagnate. This
occurred, briefly, at the end of 1970s with the additive
learning models of criterion-setting in signal detection
(Dorfman & Biderman, 1971; Kac, 1962; Thomas, 1973).
During the 1970s, the one of the goals of research in
this area was to identify models of criterion-setting that
predict probability matching in psychophysical decision
tasks (the relative frequency of signal responses made by
the participant matches the relative frequency of signal
stimuli presented by the experimenter). An influential
small-N study using 12 participants by Dusoir (1980)
showed that participants, individually, did not uniformly
match, overmatch, or undermatch, and that none of several
candidate models under consideration could characterize the
performance of all participants. While the immediate effects
of this study were negative and led to a pause in this line
of research, the end result was not permanent stagnation,
but the development of more sophisticated models that were
better able to capture the fine-grained structure of sequential
effects in decision-making (Treisman & Williams, 1984).
These developments served as antecedents for work on
sequential effects in decision-making that continues actively
up to the present (Jones et al., 2013; Laming, 2014; Little
et al., 2017).

The second thing that might occur is that the individual
differences could become a research question in their own
right. As discussed earlier, sophisticated methods for investi
gating these kinds of questions now exist. Lee and colleagues
(Lee &Webb, 2005; Bartlema et al., 2014) have shown how
cognitive models of individual task performance and popu-
lation models of the distributions of individual-level param-
eters can be combined and jointly estimated using hierarchi-
cal modeling techniques. Their approach allows researchers
to investigate in a principled way whether distributions of
model parameters are better characterized as coming from
a single population with between-participant variability or
from multiple populations. Lee and colleagues use hier-
archical Bayesian methods to develop their models, but
latent-class mixture models of population heterogeneity can
also be investigated using classical (maximum likelihood)
statistical methods using the EM (expectation maximiza-
tion) algorithm (Liang & Bentler, 2004; Van der Heijden
et al., 1996). Unlike the automatic use of such samples in
large-N designs, however, the use of larger samples in these
circumstances arises from the systematic attempt to charac-
terize individual differences that were initially identified in
small-N studies and which would have remained more or
less invisible if viewed through a large-N lens.

Our example of an additive factors study with a
bimodally distributed interaction parameter was a hypothet-
ical one, intended to illuminate the relationship between
small-N and large-N designs, but it is nevertheless interest-
ing to reflect on what would be the implications for scien-
tific inference of a result like the one in Fig. 1—that some
participants demonstrate an interaction whereas others do
not—should it have been obtained experimentally. The addi-
tive factors method purports to aid in identifying the pro-
cessing architecture of the cognitive system, which would
be expected to be stable across individuals, so the existence
of individual differences in the interaction would call this
inference into question. One possibility might be that there
are individual differences in the effectiveness of the experi-
mental manipulations of Factors x and y. However, in appli-
cations of the additive factors method the x × y interaction
term is usually only tested for significance once the main
effects of x and y have both been shown to be significant.
The tests of the main effects serve as checks that the exper-
imental manipulations of x and y separately affect response
time, and the test of the interaction is theoretically meaning-
ful only once this has been shown to be the case. We omitted
the tests of the main effects from the report of our simula-
tion study but, following the logic of small-N designs, they
would ordinarily be performed at the individual participant
level to provide a manipulation check for each participant
individually.

If significant differences among participants in the
interaction were found under these circumstances, this
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in itself, irrespective of any other experimental finding,
would probably lead researchers to investigate other models
of the cognitive architecture. Other models of cognitive
architecture, such as McClelland’s (1979) cascade model
and Schweickert’s (1978, 1980) PERT networks, relaxed
the restrictive assumptions made by the additive factors
method and can predict a richer variety of interactions
that might be more consistent with significant individual
differences. Sternberg’s (1969) model assumes serial, stage-
dependent processing; that is, processing at any stage only
commences once its predecessor has finished. McClelland’s
model relaxes the stage-dependent processing assumption,
and allows partial activation to flow across processing
stages, leading to a more general class of continuous flow
models (Ashby, 1982; Heath, 1992; Sanders, 1990; Miller
1988; Schweickert & Mounts, 1998, Smith, 1995, Smith
& Ratcliff, 2009). Schweickert’s PERT network models
relax the assumption of serially organized stages and allow
for the possibility that the processing system could be
comprised of a network of stages, some of which are
arranged in parallel and some in series. In these models, two
experimental factors affecting different processing stages
have additive effects on response times only if the stages
both lie on a critical path through the network, that is, a
sequence of stages, the sum of whose durations determines
the overall response time. Otherwise, interactions of some
kind are predicted, even when two factors affect different
stages. Because the occurrence, sign, and magnitude of
such interactions depend on the durations of all of the
stages comprising the network, interactions are more
common and individual differences in interaction become
more plausible than they are in a pure additive factors
framework.

This example is a hypothetical one, based on extrapo-
lating from the results of our simulation study as if they
were real data, but we offer it in order to illustrate that
individual differences in experimental effects need not be
inimical to scientific inference. This is especially so when
those effects are tested with high power and the associated
effect parameters are estimated with high precision. Rather,
as the example illustrates, the individual differences them-
selves give us a strong hint about the kind of explanation
we should be seeking — namely, a psychological process
or mechanism that is somewhat flexible or malleable, and
not an invariant feature of the underlying cognitive archi-
tecture. The corresponding large-N design provides no such
guidance.

Our simulation study has served to highlight one
specific advantage of the small-N design: the ability
to test experimental effects with high power at the
individual participant level. However, as our earlier
discussion emphasized, in applications these advantages
are often accompanied by other features of good scientific

practice, namely, strong measurement and the use of
explicit mathematical or computational models. In the
case of cognitive architectures and the question of serial
versus parallel processing, there exist strong inference
methods for investigating these questions, and related
questions about capacity limitations and exhaustive versus
self-terminating processing, based on systems factorial
technology (Townsend & Nozawa, 1995; Little et al., 2017).
Systems-factorial methods identify distinct qualitative
signatures of serial and parallel processing, limited-capacity
and unlimited-capacity processing, and exhaustive and self-
terminating processing, which are expressed empirically
at the response time distribution level. Because these
inferences are at the level of the distribution, the associated
inferences are stronger than are inferences about the means
(Sternberg, 1969; Townsend, 1990). These qualitative tests
can be augmented by significance tests, which are also
carried out at the distribution level (Houpt & Townsend
2010, 2012). As with our simulation study, the scientific
logic of these tests is such that they make most sense
when applied to individual participants in a small-N
design.

Conclusions

The replication crisis marks a crossroads for scientific
psychology, and one that is likely to lead to a change
in how the discipline carries out its work in future.
Some of the recent recommendations for remedying the
crisis are based on the premise that we should continue
to cleave to the large-N design, but beef it up with
larger samples and more stringent thresholds for discovery.
These proposals, although they are not unreasonable, may
nevertheless have fairly severe negative implications for the
health of the discipline as whole. Collectively, the discipline
has finite resources for running experiments and if these
kinds of recommendations become mandated research
practice, then they are likely to result in fewer, larger
experiments being carried out, fewer research questions
being investigated, and an unavoidable impoverishment of
psychological knowledge. In view of our finite individual
and collective resources for collecting data, we suggest that
small-N designs are often a better and more informative
way to allocate them.

In proposing this, we are not arguing that small-N
designs are appropriate for every situation. Some of the
methods we have discussed in the preceding paragraphs
are tools that were developed specifically for the analysis
of cognitive architectures and are not applicable to other
research areas. We have discussed them in order to
illustrate the power that these kinds of methods offer when
they are available. Collectively, these methods represent



Psychon Bull Rev (2018) 25:2083–2101 2097

an established and sophisticated way of doing scientific
psychology that is very different in style and substance
to the one targeted by the OSC’s replication study and
characterized as inherently flawed by the scientific and
popular press. When the goal is to estimate population
parameters, when the phenomenon of interest is highly
reactive (i.e., changed by observation), and when only
limited data can be collected from individuals, then the
recommendation to increase sample size at the participant
level is an appropriate one.

As we noted earlier, many researchers, particularly
in cognitive and mathematical psychology, now favor
hierarchical models as providing the best compromise
between the number of participants and the number of
observations per participant — although as we noted
earlier, effective use of such models requires careful
specification of population-level submodels. While we fully
understand the arguments in favor of such models, to us,
many of the published examples of their use have tended
to obscure rather than to emphasize the quality of the
fits at the individual level. However, our ultimate goal
throughout this article is not to criticize these or any other
particular methods, but to highlight that psychology is not
a homogeneous discipline. In environments that can be
explored at the individual level and when the phenomenon
of interest is expressed as an individual-level mechanism,
small-N studies have enormous inferential power and are
preferable to group-level inference precisely because they
place the burden of sampling at the appropriate level, that
of the individual. The lesson is that a common feature of
small-N methods, and the increased power and precision
of inference they offer, is only realizable in data-rich
environments. It is much more difficult to develop effective
methods of strong inference in sparse environments, in
which inference depends on significance tests of point
hypotheses about means in one or two conditions. In sparse
environment, increasing the number participants allows for
more precise estimation of the between-participants error
terms used to test hypotheses and reduces the likelihood
of type I errors. Conversely, the combination of data-rich
environments and the availability of methods that allow
strong inference will often lead researchers to prefer small-
N designs.
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Appendix: Details of the additive factors
simulation

Consider a 2 × 2 factorial design in which the first factor, x,
and the second factor, y, are varied in two levels. A useful
summary statistic, which expresses the cognitive model for
the task, is the mean interaction contrast, MIC, defined as
the double difference at each level of the factors:

MIC = �2E (RT ) = [E (RT11) − E (RT12)]

− [E (RT21) − E (RT22)] (A1)

where E
(
RTij

)
is the mean response time for levels i and

j . This, of course, is the well-known interaction effect in a
standard 2 × 2 ANOVA. The theoretical link to processing
arises because one can assess whether the MIC is equal to
zero, indicating additivity and, hence, serial processing, or
different from zero.

RTs for each simulated participant, i, were sampled
from a log-normal distribution for each factorial level j

of x and k of y with mean parameter, μijk , and standard
deviation parameter, σijk (Gelman et al., 2003). The log-
normal parameters were determined by the mean, mijk , and
standard deviation, s, of the non-log-transformed samples
as follows:

μijk = log

⎛

⎜
⎝

m2
ijk√

s2 + m2
ijk

⎞

⎟
⎠ (A2)

σijk =
√√√√log

(

1 + s2

m2
ijk

)

. (A3)

The link to the additive factors method is determined by
the dependency of m on the experimental variables, which
is given by the following linear equation:

mijk = β0 + βxxj + βyyk + βxyxjyk, (A4)

where xj and yk take on the values 0 and 1 reflecting
the stimulus condition (i.e., they function like regression
dummy variables). The standard deviation of the log normal
distribution was set to s = 100 ms. We set the intercept, β0

equal to 400 ms, and the main effects of x and y equal to
βx = 150 ms and βy = 200 ms, respectively. These values
were chosen somewhat arbitrarily but produce distributions
of RT that resemble those that are found experimentally.

For each simulated participant, we allocated a variable,
δ ∈ {0, 1}, which determined the presence or absence of
an interaction for that participant. If δ = 1, then βxy was a
draw from a normal distribution with a mean of 50 ms and a
standard deviation of 5 ms (i.e., an overadditive interaction

https://github.com/knowlabUnimelb/SMALLN
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between x and y). By contrast, if δ = 0, then βxy was a
draw from a normal distribution with a mean of 0 ms and a
standard deviation of 5 ms (i.e., an additive relationship with
no interaction between x and y). The standard deviation for
the null effect was non-zero to reflect the potential for error
from other sources (e.g., measurement error due to finite
sampling of the RTs).

Group-Level Analyses We first simulated a set of N

participants with the number of RTs, nrts equal to 400 in
each factorial condition for each factorial condition (i.e.,
each item) presented to each participant. To generate the
RTs, we initially simulated a sample of 500 which was
downsampled with replacement to nrts = 400.

For each bootstrapped set of N simulated participants,
we averaged the data for each participant in each of the
factorial conditions and conducted a 2 × 2 ANOVA. We
resimulated the set of N participants 100 times allowing
δ to equal 1 with a probability of [.10, .25, .50, .75, .90].
That is, 20 new simulated data sets were taken at each level
of δ and then bootstrapped with the individual and group
level analyses applied to each bootstrapped sample. Figure 3
shows the sampling distributions for each level of delta. The
bootstrapping procedure was repeated 1000 times per set of
simulated participants.

Individual-Level Analyses For each bootstrapped individ-
ual, we conducted two individual-level analyses. First, we
used a weighted general linear model analysis using a nor-
mal distribution with an identity link function, and weights
for each RT given as w = 1

[X(X\y)]2
, where X\y is the least

squares solution of the matrix equation bX = y.
For the second analysis, we estimated the parameters

of the linear mean equation (see Eq. A4) and arithmetic
standard deviation by maximizing the likelihood of the log
RTs using a lognormal likelihood function (Gelman et al.,
2003):

L
(
xijk·

)= 1

xijk·
1

√
2πσ 2

ijk

exp

[

− 1

2σ 2
ijk

(
log

(
xijk·

)−μijk

)
]

,

(A5)

where xijk· indicates each individual trial for participant
i in condition xj and yk and μijk and σijk are given
above. We used a Nelder–Mead algorithm (Nelder & Mead,
1965) to minimize the negative log of likelihood in Eq.
A5 summed across all of the trials in each of the item
conditions. We fit two models: a full model with five
parameters,

(
β0, βx, βy, βxy, s

)
and a constrained model in

which βxy = 0. We then used a nested model comparison
test, G2, to determine the preferred model, where G2 =
−2

[
log

(
L̂full

)
− log

(
L̂constrained

)]
and L̂ is the maximum
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Fig. 3 Sampling distributions for each level of δ. The vertical dotted
line indicates the average value for the group. The panels show
heterogeneous nonnormal populations in which some proportion of the
participants exhibit an interaction and some proportion do not. The
proportion progressively increases from top to bottom

likelihood estimate (Myung & Pitt, 2004). G2 is distributed
as a χ2 random variable with degrees of freedom equal to
the difference in the number of parameters between the full
and constrained model (i.e., df = 1). Power was estimated
for this analysis by counting the number of boostrapped
samples which had a significant G2 value.
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