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Abstract Interval estimates – estimates of parameters that
include an allowance for sampling uncertainty – have long
been touted as a key component of statistical analyses.
There are several kinds of interval estimates, but the most
popular are confidence intervals (CIs): intervals that con-
tain the true parameter value in some known proportion
of repeated samples, on average. The width of confidence
intervals is thought to index the precision of an estimate;
CIs are thought to be a guide to which parameter values are
plausible or reasonable; and the confidence coefficient of
the interval (e.g., 95 %) is thought to index the plausibility
that the true parameter is included in the interval. We show
in a number of examples that CIs do not necessarily have
any of these properties, and can lead to unjustified or arbi-
trary inferences. For this reason, we caution against relying
upon confidence interval theory to justify interval estimates,
and suggest that other theories of interval estimation should
be used instead.
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“You keep using that word. I do not think it means
what you think it means.”

Inigo Montoya, The Princess Bride (1987)

The development of statistics over the past century has
seen the proliferation of methods designed to allow infer-
ences from data. Methods vary widely in their philosophical
foundations, the questions they are supposed to address, and
their frequency of use in practice. One popular and widely-
promoted class of methods comprises interval estimates.
There are a variety of approaches to interval estimation, dif-
fering in their philosophical foundation and computation,
but informally all are supposed to be estimates of a param-
eter that account for measurement or sampling uncertainty
by yielding a range of values for the parameter instead of a
single value.

Of the many kinds of interval estimates, the most popu-
lar is the confidence interval (CI). Confidence intervals are
introduced in almost all introductory statistics texts; they are
recommended or required by the methodological guidelines
of many prominent journals (e.g., Psychonomics Society,
2012; Wilkinson & the Task Force on Statistical Inference,
1999); and they form the foundation of methodological
reformers’ proposed programs (Cumming, 2014; Loftus,
1996). In the current atmosphere of methodological reform,
a firm understanding of what sorts of inferences confi-
dence interval theory does, and does not, allow is critical
to decisions about how science is to be done in the future.

In this paper, we argue that advocacy of CIs is based on
a folk understanding rather than a principled understand-
ing of CI theory. We outline three fallacies underlying the
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folk theory of CIs and place these in the philosophical and
historical context of CI theory proper. Through an accessi-
ble example adapted from the statistical literature, we show
how CI theory differs from the folk theory of CIs. Finally,
we show the fallacies of confidence in the context of a
CI advocated and commonly used for ANOVA and regres-
sion analysis, and discuss the implications of the mismatch
between CI theory and the folk theory of CIs.

Our main point is this: confidence intervals should not
be used as modern proponents suggest because this usage
is not justified by confidence interval theory. The benefits
that modern proponents see CIs as having are considera-
tions outside of confidence interval theory; hence, if used
in the way CI proponents suggest, CIs can provide severely
misleading inferences. For many CIs, proponents have not
actually explored whether the CI supports reasonable infer-
ences or not. For this reason, we believe that appeal to CI
theory is redundant in the best cases, when inferences can
be justified outside CI theory, and unwise in the worst cases,
when they cannot.

The folk theory of confidence intervals

In scientific practice, it is frequently desirable to estimate
some quantity of interest, and to express uncertainty in this
estimate. If our goal were to estimate the true mean μ of a
normal population, we might choose the sample mean x̄ as
an estimate. Informally, we expect x̄ to be close to μ, but
how close depends on the sample size and the observed vari-
ability in the sample. To express uncertainty in the estimate,
CIs are often used.

If there is one thing that everyone who writes about con-
fidence intervals agrees on, it is the basic definition: A
confidence interval for a parameter — which we generi-
cally call θ and might represent a population mean, median,
variance, probability, or any other unknown quantity — is
an interval generated by a procedure that, on repeated sam-
pling, has a fixed probability of containing the parameter. If
the probability that the process generates an interval includ-
ing θ is .5, it is a 50 % CI; likewise, the probability is .95
for a 95 % CI.

Definition 1 (Confidence interval) An X% confidence
interval for a parameter θ is an interval (L, U) generated
by a procedure that in repeated sampling has an X% prob-
ability of containing the true value of θ , for all possible
values of θ (Neyman, 1937).1

1The modern definition of a confidence interval allows the probability
to be at least X%, rather than exactly X%. This detail does not affect
any of the points we will make; we mention it for completeness.

The confidence coefficient of a confidence interval
derives from the procedure which generated it. It is therefore
helpful to differentiate a procedure (CP) from a confidence
interval: an X% confidence procedure is any procedure that
generates intervals cover θ in X% of repeated samples, and
a confidence interval is a specific interval generated by such
a process. A confidence procedure is a random process; a
confidence interval is observed and fixed.

It seems clear how to interpret a confidence procedure:
it is any procedure that generates intervals that will cover
the true value in a fixed proportion of samples. However,
when we compute a specific interval from the data and must
interpret it, we are faced with difficulty. It is not obvious
how to move from our knowledge of the properties of the
confidence procedure to the interpretation of some observed
confidence interval.

Textbook authors and proponents of confidence inter-
vals bridge the gap seamlessly by claiming that confidence
intervals have three desirable properties: first, that the confi-
dence coefficient can be read as a measure of the uncertainty
one should have that the interval contains the parameter;
second, that the CI width is a measure of estimation uncer-
tainty; and third, that the interval contains the “likely” or
“reasonable” values for the parameter. These all involve rea-
soning about the parameter from the observed data: that is,
they are “post-data” inferences.

For instance, with respect to 95 % confidence intervals,
Masson and Loftus (2003) state that “in the absence of
any other information, there is a 95 % probability that the
obtained confidence interval includes the population mean.”
Cumming (2014) writes that “[w]e can be 95 % confident
that our interval includes [the parameter] and can think of
the lower and upper limits as likely lower and upper bounds
for [the parameter].”

These interpretations of confidence intervals are not cor-
rect. We call the mistake these authors have made the
“Fundamental Confidence Fallacy” (FCF) because it seems
to flow naturally from the definition of the confidence
interval:

Fallacy 1 (The Fundamental Confidence Fallacy) If the
probability that a random interval contains the true value
is X%, then the plausibility or probability that a particu-
lar observed interval contains the true value is also X%; or,
alternatively, we can have X% confidence that the observed
interval contains the true value.

The reasoning behind the Fundamental Confidence Fal-
lacy seems plausible: on a given sample, we could get any
one of the possible confidence intervals. If 95 % of the pos-
sible confidence intervals contain the true value, without
any other information it seems reasonable to say that we
have 95 % certainty that we obtained one of the confidence
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intervals that contain the true value. This interpretation is
suggested by the name “confidence interval” itself: the word
“confident”, in lay use, is closely related to concepts of plau-
sibility and belief. The name “confidence interval” — rather
than, for instance, the more accurate “coverage procedure”
— encourages the Fundamental Confidence Fallacy.

The key confusion underlying the FCF is the confusion
of what is known before observing the data — that the CI,
whatever it will be, has a fixed chance of containing the true
value — with what is known after observing the data. Fre-
quentist CI theory says nothing at all about the probability
that a particular, observed confidence interval contains the
true value; it is either 0 (if the interval does not contain the
parameter) or 1 (if the interval does contain the true value).

We offer several examples in this paper to show that what
is known before computing an interval and what is known
after computing it can be different. For now, we give a
simple example, which we call the “trivial interval.” Con-
sider the problem of estimating the mean of a continuous
population with two independent observations, y1 and y2.
If y1 > y2, we construct an confidence interval that con-
tains all real numbers (−∞, ∞); otherwise, we construct an
empty confidence interval. The first interval is guaranteed
to include the true value; the second is guaranteed not to.
It is obvious that before observing the data, there is a 50 %
probability that any sampled interval will contain the true
mean. After observing the data, however, we know defini-
tively whether the interval contains the true value. Applying
the pre-data probability of 50 % to the post-data situation,
where we know for certain whether the interval contains the
true value, would represent a basic reasoning failure.

Post-data assessments of probability have never been
an advertised feature of CI theory. Neyman, for instance,
said “Consider now the case when a sample...is already
drawn and the [confidence interval] given...Can we say
that in this particular case the probability of the true
value of [the parameter] falling between [the limits] is
equal to [X%]? The answer is obviously in the negative”
(Neyman, 1937, p. 349). According to frequentist philoso-
pher Mayo (1981) “[the misunderstanding] seems rooted in
a (not uncommon) desire for [...] confidence intervals to
provide something which they cannot legitimately provide;
namely, a measure of the degree of probability, belief, or
support that an unknown parameter value lies in a specific
interval.” Recent work has shown that this misunderstanding
is pervasive among researchers, who likely learned it from
textbooks, instructors, and confidence interval proponents
(Hoekstra et al., 2014).

If confidence intervals cannot be used to assess the cer-
tainty with which a parameter is in a particular range, what
can they be used for? Proponents of confidence intervals
often claim that confidence intervals are useful for assess-
ing the precision with which a parameter can be estimated.

This is cited as one of the primary reasons confidence
procedures should be used over null hypothesis significance
tests (e.g., Cumming and Finch, 2005; Cumming, 2014;
Fidler & Loftus, 2009; Loftus, 1993, 1996). For instance,
Cumming (2014) writes that “[l]ong confidence intervals
(CIs) will soon let us know if our experiment is weak and
can give only imprecise estimates” (p. 10). Young and Lewis
(1997) state that “[i]t is important to know how precisely
the point estimate represents the true difference between the
groups. The width of the CI gives us information on the pre-
cision of the point estimate” (p. 309). This is the second
fallacy of confidence intervals, the “precision fallacy”:

Fallacy 2 (The Precision fallacy) The width of a confidence
interval indicates the precision of our knowledge about the
parameter. Narrow confidence intervals correspond to pre-
cise knowledge, while wide confidence errors correspond to
imprecise knowledge.

There is no necessary connection between the precision
of an estimate and the size of a confidence interval. One
way to see this is to imagine that two researchers — a senior
researcher and a PhD student — are analyzing the data of
50 participants from an experiment. As an exercise for the
PhD student’s benefit, the senior researcher decides to ran-
domly divide the participants into two sets of 25 so that
they can separately analyze half the data set. In a subsequent
meeting, the two share with one another their Student’s t

confidence intervals for the mean. The PhD student’s 95 %
CI is 52 ± 2, and the senior researcher’s 95 % CI is 53 ± 4.
The senior researcher notes that their results are broadly
consistent, and that they could use the equally-weighted
mean of their two respective point estimates, 52.5, as an
overall estimate of the true mean.

The PhD student, however, argues that their two means
should not be evenly weighted: she notes that her CI is
half as wide and argues that her estimate is more precise
and should thus be weighted more heavily. Her advisor
notes that this cannot be correct, because the estimate from
unevenly weighting the two means would be different from
the estimate from analyzing the complete data set, which
must be 52.5. The PhD student’s mistake is assuming that
CIs directly indicate post-data precision. Later, we will
provide several examples where the width of a CI and
the uncertainty with which a parameter is estimated are
in one case inversely related, and in another not related
at all.

We cannot interpret observed confidence intervals as
containing the true value with some probability; we also
cannot interpret confidence intervals as indicating the pre-
cision of our estimate. There is a third common interpre-
tation of confidence intervals: Loftus (1996), for instance,
says that the CI gives an “indication of how seriously the
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observed pattern of means should be taken as a reflec-
tion of the underlying pattern of population means.” This
logic is used when confidence intervals are used to test
theory (Velicer et al., 2008) or to argue for the null (or
practically null) hypothesis (Loftus, 1996). This is another
fallacy of confidence interval that we call the “likelihood
fallacy”.

Fallacy 3 (The Likelihood fallacy) A confidence interval
contains the likely values for the parameter. Values inside
the confidence interval are more likely than those outside.
This fallacy exists in several varieties, sometimes involving
plausibility, credibility, or reasonableness of beliefs about
the parameter.

A confidence procedure may have a fixed average prob-
ability of including the true value, but whether on any
given sample it includes the “reasonable” values is a dif-
ferent question. As we will show, confidence intervals —
even “good” confidence intervals, from a CI-theory perspec-
tive — can exclude almost all reasonable values, and can
be empty or infinitesimally narrow, excluding all possible
values (Blaker and Spjøtvoll, 2000; Dufour, 1997; Steiger,
2004; Steiger & Fouladi, 1997; Stock & Wright, 2000). But
Neyman (1941) writes,

“it is not suggested that we can ‘conclude’ that [the
interval contains θ ], nor that we should ‘believe’ that
[the interval contains θ ]...[we] decide to behave as if
we actually knew that the true value [is in the interval].
This is done as a result of our decision and has nothing
to do with ‘reasoning’ or ‘conclusion’. The reasoning
ended when the [confidence procedure was derived].
The above process [of using CIs] is also devoid of any
‘belief’ concerning the value [...] of [θ ].” (Neyman,
1941, pp. 133–134)

It may seem strange to the modern user of CIs, but Neyman
is quite clear that CIs do not support any sort of reasonable
belief about the parameter. Even from a frequentist testing
perspective where one accepts and rejects specific parame-
ter values, Mayo and Spanos (2006) note that just because
a specific value is in an interval does not mean it is war-
ranted to accept it; they call this the “fallacy of acceptance.”
This fallacy is analogous to accepting the null hypothesis in
a classical significance test merely because it has not been
rejected.

If confidence procedures do not allow an assessment of
the probability that an interval contains the true value, if they
do not yield measures of precision, and if they do not yield
assessments of the likelihood or plausibility of parameter
values, then what are they?

The theory of confidence intervals

In a classic paper, Neyman (1937) laid the formal foun-
dation for confidence intervals. It is easy to describe the
practical problem that Neyman saw CIs as solving. Suppose
a researcher is interested in estimating a parameter θ . Ney-
man suggests that researchers perform the following three
steps:

a. Perform an experiment, collecting the relevant data.
b. Compute two numbers – the smaller of which we can

call L, the greater U – forming an interval (L, U)

according to a specified procedure.
c. State that L < θ < U – that is, that θ is in the interval.

This recommendation is justified by choosing an procedure
for step (b) such that in the long run, the researcher’s claim
in step (c) will be correct, on average, X% of the time. A
confidence interval is any interval computed using such a
procedure.

We first focus on the meaning of the statement that θ is
in the interval, in step (c). As we have seen, according to CI
theory, what happens in step (c) is not a belief, a conclusion,
or any sort of reasoning from the data. Furthermore, it is not
associated with any level of uncertainty about whether θ is,
actually, in the interval. It is merely a dichotomous state-
ment that is meant to have a specified probability of being
true in the long run.

Frequentist evaluation of confidence procedures is based
on what can be called the “power” of the procedures, which
is the frequency with which false values of a parameter are
excluded. Better intervals are shorter on average, excluding
false values more often (Lehmann, 1959; Neyman, 1937;
1941; Welch, 1939). Consider a particular false value of
the parameter, θ ′ �= θ . Different confidence procedures
will exclude that false value at different rates. If some con-
fidence procedure CP A excludes θ ′, on average, more
often than some CP B, then CP A is better than CP B for
that value.

Sometimes we find that one CP excludes every false
value at a rate greater than some other CP; in this case,
the first CP is uniformly more powerful than the second.
There may even be a “best” CP: one that excludes every
false θ ′ value at a rate greater than any other possible CP.
This is analogous to a most-powerful test. Although a best
confidence procedure does not always exist, we can always
compare one procedure to another to decide whether one is
better in this way (Neyman, 1952). Confidence procedures
are therefore closely related to hypothesis tests: confidence
procedures control the rate of including the true value, and
better confidence procedures have more power to exclude
false values.
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Early skepticism

Skepticism about the usefulness of confidence intervals
arose as soon as Neyman first articulated the theory
(Neyman, 1934).2 In the discussion of Neyman (1934),
Bowley, pointing out what we call the fundamental con-
fidence fallacy, expressed skepticism that the confidence
interval answers the right question:

“I am not at all sure that the ‘confidence’ is not a ‘con-
fidence trick.’ Does it really lead us towards what we
need – the chance that in the universe which we are
sampling the [parameter] is within these certain lim-
its? I think it does not. I think we are in the position of
knowing that either an improbable event has occurred
or the [parameter] in the population is within the
limits. To balance these things we must make an esti-
mate and form a judgment as to the likelihood of the
[parameter] in the universe [that is, a prior probabil-
ity] – the very thing that is supposed to be eliminated.”
(discussion of Neyman, 1934, p. 609)

In the same discussion, Fisher critiqued the theory for pos-
sibly leading to mutually contradictory inferences: “The
[theory of confidence intervals] was a wide and very hand-
some one, but it had been erected at considerable expense,
and it was perhaps as well to count the cost. The first
item to which he [Fisher] would call attention was the
loss of uniqueness in the result, and the consequent dan-
ger of apparently contradictory inferences.” (discussion of
Neyman, 1934, p. 618; see also Fisher, 1935). Though,
as we will see, the critiques are accurate, in a broader
sense they missed the mark. Like modern proponents of
confidence intervals, the critics failed to understand that
Neyman’s goal was different from theirs: Neyman had
developed a behavioral theory designed to control error
rates, not a theory for reasoning from data (Neyman, 1941).

In spite of the critiques, confidence intervals have grown
in popularity to be the most widely used interval estima-
tors. Alternatives — such as Bayesian credible intervals and
Fisher’s fiducial intervals — are not as commonly used. We
suggest that this is largely because people do not understand
the differences between confidence interval, Bayesian, and
fiducial theories, and how the resulting intervals cannot be
interpreted in the same way. In the next section, we will
demonstrate the logic of confidence interval theory by build-
ing several confidence procedures and comparing them to
one another. We will also show how the three fallacies affect
inferences with these intervals.

2Neyman first articulated the theory in another paper before his major
theoretical paper in 1937.

Example 1: The lost submarine

In this section, we present an example taken from the
confidence interval literature (Berger and Wolpert, 1988;
Lehmann, 1959; Pratt, 1961;Welch, 1939) designed to bring
into focus how CI theory works. This example is inten-
tionally simple; unlike many demonstrations of CIs, no
simulations are needed, and almost all results can be derived
by readers with some training in probability and geome-
try. We have also created interactive versions of our figures
to aid readers in understanding the example; see the figure
captions for details.

A 10-meter-long research submersible with several peo-
ple on board has lost contact with its surface support vessel.
The submersible has a rescue hatch exactly halfway along
its length, to which the support vessel will drop a rescue
line. Because the rescuers only get one rescue attempt, it
is crucial that when the line is dropped to the craft in the
deep water that the line be as close as possible to this hatch.
The researchers on the support vessel do not know where
the submersible is, but they do know that it forms two dis-
tinctive bubbles. These bubbles could form anywhere along
the craft’s length, independently, with equal probability, and
float to the surface where they can be seen by the support
vessel.

The situation is shown in Fig. 1a. The rescue hatch is
the unknown location θ , and the bubbles can rise from any-
where with uniform probability between θ − 5 meters (the
bow of the submersible) to θ+5 meters (the stern of the sub-
mersible). The rescuers want to use these bubbles to infer
where the hatch is located. We will denote the first and
second bubble observed by y1 and y2, respectively; for con-
venience, we will often use x1 and x2 to denote the bubbles
ordered by location, with x1 always denoting the smaller
location of the two. Note that ȳ = x̄, because order is irrele-
vant when computing means, and that the distance between
the two bubbles is |y1 − y2| = x2 − x1. We denote this
difference as d.

The rescuers first note that from observing two bub-
bles, it is easy to rule out all values except those within
five meters of both bubbles because no bubble can occur
further than 5 meters from the hatch. If the two bubble
locations were y1 = 4 and y2 = 6, then the possible loca-
tions of the hatch are between 1 and 9, because only these
locations are within 5 meters of both bubbles. This con-
straint is formally captured in the likelihood, which is the
joint probability density of the observed data for all possi-
ble values of θ . In this case, because the observations are
independent, the joint probability density is:

p(y1, y2; θ) = py(y1; θ) × py(y2; θ).
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Bubbles

Likelihood

Samp. Dist.

Nonpara.

UMP

Bayes

Location

θ − 10 θ − 5 θ θ + 5 θ + 10

A

Location

θ − 10 θ − 5 θ θ + 5 θ + 10

B

Fig. 1 Submersible rescue attempts. Note that likelihood and CIs are depicted from bottom to top in the order in which they are described in the
text. See text for details. An interactive version of this figure is available at http://learnbayes.org/redirects/CIshiny1.html

The density for each bubble py is uniform across the sub-
mersible’s 10 meter length, which means the joint density
must be 1/10 × 1/10 = 1/100. If the lesser of y1 and y2
(which we denote x1) is greater than θ − 5, then obviously
both y1 and y2 must be greater than θ − 5. This means that
the density, written in terms of constraints on x1 and x2, is:

p(y1, y2; θ) =
{
1/100, if x1 > θ − 5 and x2 < θ + 5,
0 otherwise.

(1)

If we write Eq. 1 as a function of the unknown parame-
ter θ for fixed, observed data, we get the likelihood, which
indexes the information provided by the data about the
parameter. In this case, it is positive only when a value θ is
possible given the observed bubbles (see also Figs. 1 and 5):

p(θ; y1, y2) =
{
1, θ > x2 − 5 and θ ≤ x1 + 5,
0 otherwise.

We replaced 1/100 with 1 because the particular values of
the likelihood do not matter, only their relative values. Writ-
ing the likelihood in terms of x̄ and the difference between
the bubbles d = x2 − x1, we get an interval:

p(θ; y1, y2) =
{
1, x̄ − (5 − d/2) < θ ≤ x̄ + (5 − d/2),
0 otherwise.

(2)

If the likelihood is positive, the value θ is possible; if it is 0,
that value of θ is impossible. Expressing the likelihood as
in Eq. 2 allows us to see several important things. First, the
likelihood is centered around a reasonable point estimate for
θ , x̄. Second, the width of the likelihood 10− d, which here
is an index of the uncertainty of the estimate, is larger when
the difference between the bubbles d is smaller. When the
bubbles are close together, we have little information about
θ compared to when the bubbles are far apart. Keeping in
mind the likelihood as the information in the data, we can
define our confidence procedures.

Five confidence procedures

A group of four statisticians3 happen to be on board, and
the rescuers decide to ask them for help improving their
judgments using statistics. The four statisticians suggest
four different 50 % confidence procedures. We will outline
the four confidence procedures; first, we describe a trivial
procedure that no one would ever suggest. An applet allow-
ing readers to sample from these confidence procedures is
available at the link in the caption for Fig. 1.

0. A trivial procedure A trivial 50 % confidence procedure
can be constructed by using the ordering of the bubbles. If
y1 > y2, we construct an interval that contains the whole
ocean, (−∞, ∞). If y2 > y1, we construct an interval that
contains only the single, exact point directly under the mid-
dle of the rescue boat. This procedure is obviously a 50 %
confidence procedure; exactly half of the time — when
y1 > y2 — the rescue hatch will be within the interval. We
describe this interval merely to show that by itself, a proce-
dure including the true valueX % of the time means nothing
(see also Basu, 1981). We must obviously consider some-
thing more than the confidence property, which we discuss
subsequently.

1. A procedure based on the sampling distribution of the
mean The first statistician suggests building a confidence
procedure using the sampling distribution of the mean x̄.
The sampling distribution of x̄ has a known triangular distri-
bution with θ as the mean. With this sampling distribution,
there is a 50 % probability that x̄ will differ from θ by less
than 5 − 5/

√
2, or about 1.46m. We can thus use x̄ − θ as a

so-called “pivotal quantity” (Casella & Berger, 2002; see the

3John Tukey has said that the collective noun for a group of statisti-
cians is “quarrel” (McGrayne, 2011).

http://learnbayes.org/redirects/CIshiny1.html


Psychon Bull Rev (2016) 23:103–123 109

supplement to this manuscript for more details) by noting
that there is a 50 % probability that θ is within this same dis-
tance of x̄ in repeated samples. This leads to the confidence
procedure

x̄ ±
(
5 − 5/

√
2
)

,

which we call the “sampling distribution” procedure. This
procedure also has the familiar form x̄ ± C × SE, where
here the standard error (that is, the standard deviation of the
estimate x̄) is known to be 2.04.

2. A nonparametric procedure The second statistician
notes that θ is both the mean and median bubble location.
Olive (2008) and Rusu and Dobra (2008) suggest a nonpara-
metric confidence procedure for the median that in this case
is simply the interval between the two observations:

x̄ ± d/2.

It is easy to see that this must be a 50 % confidence proce-
dure; the probability that both observations fall below θ is
.5 × .5 = .25, and likewise for both falling above. There
is thus a 50 % chance that the two observations encompass
θ . Coincidentally, this is the same as the 50 % Student’s t

procedure for n = 2.

3. The uniformly most-powerful procedure The third
statistician, citing Welch (1939), describes a procedure that
can be thought of as a slight modification of the nonpara-
metric procedure. Suppose we obtain a particular confi-
dence interval using the nonparametric procedure. If the
nonparametric interval is more than 5 meters wide, then it
must contain the hatch, because the only possible values are
less than 5 meters from both bubbles. Moreover, in this case
the interval will contain impossible values, because it will be
wider than the likelihood. We can exclude these impossible
values by truncating the interval to the likelihood whenever
the width of the interval is greater than 5 meters:

x̄ ±
{

d
2 if d < 5 (nonparametric procedure)
5 − d

2 if d ≥ 5 (likelihood)

This will not change the probability that the interval con-
tains the hatch, because it is simply replacing one interval
that is sure to contain it with another. Pratt (1961) noted that
this interval can be justified as an inversion of the uniformly
most-powerful (UMP) test.

4. An objective Bayesian procedure The fourth statisti-
cian suggests an objective Bayesian procedure. Using this
procedure, we simply take the central 50 % of the likelihood
as our interval:

x̄ ± 1

2

(
5 − d

2

)
.

From the objective Bayesian viewpoint, this can be justified
by assuming a prior distribution that assigns equal probabil-
ity to each possible hatch location. In Bayesian terms, this
procedure generates “credible intervals” for this prior. It can
also be justified under Fisher’s fiducial theory; see Welch
(1939).

Properties of the procedures

The four statisticians report their four confidence proce-
dures to the rescue team, who are understandably bewil-
dered by the fact that there appear to be at least four ways
to infer the hatch location from two bubbles. Just after the
statisticians present their confidence procedures to the res-
cuers, two bubbles appear at locations x1 = 1 and x2 = 1.5.
The resulting likelihood and the four confidence intervals
are shown in Fig. 1a.

The fundamental confidence fallacy After using the
observed bubbles to compute the four confidence inter-
vals, the rescuers wonder how to interpret them. It is
clear, first of all, why the fundamental confidence fal-
lacy is a fallacy. As Fisher pointed out in the discussion
of CI theory mentioned above, for any given problem —
as for this one — there are many possible confidence
procedures. These confidence procedures will lead to dif-
ferent confidence intervals. In the case of our submersible
confidence procedures, all confidence intervals are cen-
tered around x̄, and so the intervals will be nested within
one another.

If we mistakenly interpret these observed intervals as
having a 50 % probability of containing the true value, a
logical problem arises. First, there must always be a 50 %
probability that the shortest interval contains the parame-
ter. The reason is basic probability theory: the narrowest
interval would have probability 50 % of including the true
value, and the widest interval would have probability 50 %
of excluding the true value. According to this reasoning,
there must be a 0 % probability that the true value is outside
the narrower, nested interval yet inside the wider interval.
If we believed the FCF, we would always come to the con-
clusion that the shortest of a set of nested X% intervals has
an X% probability of containing the true value. Of course,
the confidence procedure “always choose the shortest of the
nested intervals” will tend to have a lower than X% prob-
ability of including the true value. If we believed the FCF,
then we must come to the conclusion that the shortest inter-
val simultaneously has an X% probability of containing the
true value, and a less than X% probability. Believing the
FCF results in contradiction.

This point regarding the problem of interpreting nested
CIs is not, by itself, a critique of confidence interval theory
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proper; it is rather a critique of the folk theory of confi-
dence. Neyman himself was very clear that this interpreta-
tion was not permissible, using similarly nested confidence
intervals to demonstrate the fallacy (Neyman, 1941, pp.
213–215). It is a warning that the improper interpretations
of confidence intervals used throughout the scientific lit-
erature leads to mutually contradictory inferences, just as
Fisher warned.

Even without nested confidence procedures, one can see
that the FCF must be a fallacy. Consider Fig. 1b, which
shows the resulting likelihood and confidence intervals
when x1 = 0.5 and x2 = 9.5. When the bubbles are
far apart, as in this case, the hatch can be localized very
precisely: the bubbles are far enough apart that they must
have come from the bow and stern of the submersible. The
sampling distribution, nonparametric, and UMP confidence
intervals all encompass the likelihood, meaning that there is
100 % certainty that these 50 % confidence intervals con-
tain the hatch. Reporting 50 % certainty, 50 % probability,
or 50 % confidence in a specific interval that surely contains
the parameter would clearly be a mistake.

Relevant subsets

The fact that we can have 100 % certainty that a 50 % CI
contains the true value is a specific case of a more gen-
eral problem flowing from the FCF. The shaded regions in
Fig. 2, left column, show when the true value is contained in
the various confidence procedures for all possible pairs of
observations. The top, middle, and bottom row correspond
to the sampling distribution, nonparametric/UMP, and the
Bayes procedures, respectively. Because each procedure is
a 50 % confidence procedure, in each plot the shaded area
occupies 50 % of the larger square delimiting the possible
observations. The points ‘a’ and ‘b’ are the bubble patterns
in Fig. 1a and b, respectively; point ‘b’ is in the shaded
region for each intervals because the true value is included
in every kind of interval, as shown in Fig. 1b; likewise, ‘a’
is outside every shaded region because all CIs exclude the
true value for this observed bubble pair.

Instead of considering the bubbles themselves, we might
also translate their locations into the mean location ȳ and the
difference between them, b = y2 − y1. We can do this with-
out loss of any information: ȳ contains the point estimate of
the hatch location, and b contains the information about the
precision of that estimate. Figure 2, right column, shows the
same information as in the left column, except as a function
of ȳ and b. The figures in the right column are 45◦ clock-
wise rotations of those in the left. Although the two columns
show the same information, the rotated right column reveals
a critical fact: the various confidence procedures have
different probabilities of containing the true value when the
distance between the bubbles varies.

To see this, examine the horizontal line under point ‘a’ in
Fig. 2b. The horizontal line is the subset of all bubble pairs
that show the same difference between the bubbles as those
in Fig. 1a: 0.5 meters. About 31 % of this line falls under the
shaded region, meaning that in the long run, 31 % of sam-
pling distributions intervals will contain the true value, when
the bubbles are 0.5 meters apart. For the nonparametric and
UMP intervals (middle row), this percentage is only about
5 %. For the Bayes interval (bottom row), it is exactly 50 %.

Believing the FCF implies believing that we can use
the long-run probability that a procedure contains the true
value as an index of our post-data certainty that a partic-
ular interval contains the true value. But in this case, we
have identified two long-run probabilities for each interval:
the average long-run probability not taking into account the
observed difference — that is, 50 % — and the long-run
probability taking into account b which, for the sampling
distribution interval is 31 % and for the nonparametric/UMP
intervals is 5 %. Both are valid long-run probabilities; which
do we use for our inference? Under FCF, both are valid.
Hence the FCF leads to contradiction.

The existence of multiple, contradictory long-run proba-
bilities brings back into focus the confusion between what
we know before the experiment with what we know after
the experiment. For any of these confidence procedures, we
know before the experiment that 50 % of future CIs will
contain the true value. After observing the results, condi-
tioning on a known property of the data — such as, in this
case, the variance of the bubbles — can radically alter our
assessment of the probability.

The problem of contradictory inferences arising from
multiple applicable long-run probabilities is an example of
the “reference class” problem (Venn, 1888; Reichenbach,
1949), where a single observed event (e.g., a CI) can
be seen as part of several long-run sequences, each with
a different long-run probability. Fisher noted that when
there are identifiable subsets of the data that have differ-
ent probabilities of containing the true value — such as
those subsets with a particular value of d, in our confi-
dence interval example — those subsets are relevant to
the inference (Fisher, 1959). The existence of relevant sub-
sets means that one can assign more than one probability
to an interval. Relevant subsets are identifiable in many
confidence procedures, including the common classical Stu-
dent’s t interval, where wider CIs have a greater probability
of containing the true value (Buehler, 1959; Buehler &
Feddersen, 1963; Casella, 1992; Robinson, 1979). There
are, as far as we know, only two general strategies for elim-
inating the threat of contradiction from relevant subsets:
Neyman’s strategy of avoiding any assignment of proba-
bilities to particular intervals, and the Bayesian strategy of
always conditioning on the observed data, to be discussed
subsequently.



Psychon Bull Rev (2016) 23:103–123 111

y1

y 2

θ − 5 θ θ + 5

θ − 5

θ

θ + 5
A

a

b

y

y 2
−

y 1

−10

−5

0

5

10

θ − 5 θ θ + 5

B

a

b

Sa
m

p.
 D

is
t.

y1

y 2

θ − 5 θ θ + 5

θ − 5

θ

θ + 5
C

a

b

y

y 2
−

y 1

−10

−5

0

5

10

θ − 5 θ θ + 5

D

a

b

N
on

pa
ra

./U
M

P

y1

y 2

θ − 5 θ θ + 5

θ − 5

θ

θ + 5
E

a

b

y

y 2
−

y 1

−10

−5

0

5

10

θ − 5 θ θ + 5

F

a

b

Ba
ye

s

Fig. 2 Left: Possible locations of the first (y1) and second (y2) bub-
bles. Right: y2 − y1 plotted against the mean of y1 and y2. Shaded
regions show the areas where the respective 50 % confidence inter-
val contains the true value. The figures in the top row (a, b) show
the sampling distribution interval; the middle row (c, d) shows the NP

and UMP intervals; the bottom row (e, f) shows the Bayes interval.
Points ‘a’ and ‘b’ represent the pairs of bubbles from Fig. 1a and b,
respectively. An interactive version of this figure is available at http://
learnbayes.org/redirects/CIshiny1.html

The precision and likelihood fallacies

This set of confidence procedures also makes clear the
precision fallacy. Consider Fig. 3, which shows how the

width of each of the intervals produced by the four con-
fidence procedures changes as a function of the width
of the likelihood. The Bayes procedure tracks the uncer-
tainty in the data: when the likelihood is wide, the Bayes

http://learnbayes.org/redirects/CIshiny1.html
http://learnbayes.org/redirects/CIshiny1.html
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Fig. 3 The relationship between CI width and the uncertainty in the
estimation of the hatch location for the four confidence procedures.
SD: Sampling distribution procedure; NP: Nonparametric procedure;
UMP: UMP procedure; B: Bayes procedure. Note that the NP and
UMP procedures overlap when the width of the likelihood is > 5. An
interactive version of this figure is available at http://learnbayes.org/
redirects/CIshiny1.html

CI is wide. The reason for this necessary correspondence
between the likelihood and the Bayes interval will be
discussed later.

Intervals from the sampling distribution procedure, in
contrast, have a fixed width, and so cannot reveal any infor-
mation about the precision of the estimate. The sampling
distribution interval is of the commonly-seen CI form

x̄ ± C × SE,

Like the CI for a normal population mean with known popu-
lation variance, the standard error — defined as the standard
deviation of the sampling distribution of x̄ — is known and
fixed; here, it is approximately 2.04 (see the supplement for
details). This indicates that the long-run standard error —
and hence, confidence intervals based on the standard error
— cannot always be used as a guide to the uncertainty we
should have in a parameter estimate.

Strangely, the nonparametric procedure generates inter-
vals whose widths are inversely related to the uncertainty
in the parameter estimates. Even more strangely, intervals
from the UMP procedure initially increase in width with the
uncertainty in the data, but when the width of the likeli-
hood is greater than 5 meters, the width of the UMP interval
is inversely related to the uncertainty in the data, like the
nonparametric interval. This can lead to bizarre situations.
Consider observing the UMP 50 % interval [1, 1.5]. This is
consistent with two possible sets of observations: (1, 1.5),
and (−3.5, 6). Both of these sets of bubbles will lead to the
same CI. Yet the second data set indicates high precision,
and the first very low precision! The UMP and sampling dis-
tribution procedures share the dubious distinction that their
CIs cannot be used to work backwards to the observations.

In spite of being the “most powerful” procedure, the UMP
procedure clearly throws away important information.

To see how the likelihood fallacy is manifest in this
example, consider again Fig. 3. When the uncertainty is
high, the likelihood is wide; yet the nonparametric and UMP
intervals are extremely narrow, indicating both false preci-
sion and excluding almost all likely values. Furthermore,
the sampling distribution procedure and the nonparametric
procedure can contain impossible values.4

Evaluating the confidence procedures

The rescuers who have been offered the four intervals above
have a choice to make: which confidence procedure to
choose? We have shown that several of the confidence pro-
cedures have counter-intuitive properties, but thus far, we
have not made any firm commitments about which confi-
dence procedures should be preferred to the others. For the
sake of our rescue team, who have a decision to make about
which interval to use, we now compare the four procedures
directly. We begin with the evaluation of the procedures
from the perspective of confidence interval theory, then
evaluate them according to Bayesian theory.

As previously mentioned, confidence interval theory
specifies that better intervals will include false values less
often. Figure 4 shows the probability that each of the pro-
cedures include a value θ ′ at a specified distance from
the hatch θ . All procedures are 50 % confidence proce-
dures, and so they include the true value θ 50 % of the
time. Importantly, however, the procedures include particu-
lar false values θ ′ �= θ at different rates. See the interactive
versions of Figs. 1 and 4 linked in the figure captions for a
hands-on demonstration.

The trivial procedure (T; gray horizontal line) is obvi-
ously a bad interval because it includes every false value
with the same frequency as the true value. This is analo-
gous to a hypothesis test with power equal to its Type I error
rate. The trivial procedure will be worse than any other pro-
cedure, unless the procedure is specifically constructed to
be pathological. The UMP procedure (UMP), on the other
hand, is better than every other procedure for every value of
θ ′. This is due to the fact that it was created by inverting a
most-powerful test.

4In order to construct a better interval, a frequentist would typically
truncate the interval to only the possible values, as was done in gen-
erating the UMP procedure from the nonparametric procedure (e.g.,
Spanos, 2011). This is guaranteed to lead to a better procedure. Our
point here is that it is a mistake to naively assume that a procedure has
good properties on the basis that it is a confidence procedure. However,
see Velicer et al. (2008) for an example of CI proponents including
impossible values in confidence intervals, and Fidler and Thompson
(2001) for a defense of this practice.

http://learnbayes.org/redirects/CIshiny1.html
http://learnbayes.org/redirects/CIshiny1.html
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The ordering among the three remaining procedures can
be seen by comparing their curves. The sampling distri-
bution procedure (SD) is always superior to the Bayes
procedure (B), but not to the nonparametric procedure
(NP). The nonparametric procedure and the Bayes proce-
dure curves overlap, so one is not preferred to the other.
Welch (1939) remarked that the Bayes procedure is “not the
best way of constructing confidence limits” using precisely
the frequentist comparison shown in Fig. 4 with the UMP
interval.5

The frequentist comparison between the procedures is
instructive, because we have arrived at an ordering of the
procedures employing the criteria suggested by Neyman
and used by the modern developers of new confidence pro-
cedures: coverage and power. The UMP procedure is the
best, followed by the sampling distribution procedure. The
sampling distribution procedure is better than the Bayes pro-
cedure. The nonparametric procedure is not preferred to any
interval, but neither is it the worst.

We can also examine the procedures from a Bayesian
perspective, which is primarily concerned with whether the
inferences are reasonable in light of the data and what
was known before the data were observed (Howson and
Urbach, 2006). We have already seen that interpreting the
non-Bayesian procedures in this way leads to trouble, and
that the Bayesian procedure, unsurprisingly, has better prop-
erties in this regard. We will show how the Bayesian interval
was derived in order to provide insight into why it has good
properties.

Consider the left column of Fig. 5, which shows Bayesian
reasoning from prior and likelihood to posterior and so-
called credible interval. The prior distribution in the top
panel shows that before observing the data, all the loca-
tions in this region are equally probable. Upon observing
the bubbles shown in Fig. 1a — also shown in the top of
the “likelihood” panel — the likelihood is a function that is
1 for all possible locations for the hatch, and 0 otherwise.
To combine our prior knowledge with the new information
from the two bubbles, we condition what we knew before on
the information in the data by multiplying by the likelihood
— or, equivalently, excluding values we know to be impos-
sible — which results in the posterior distribution in the
bottom row. The central 50 % credible interval contains all
values in the central 50 % of the area of the posterior, shown
as the shaded region. The right column of Fig. 5 shows a
similar computation using an informative prior distribution
that does not assume that all locations are equally likely, as

5Several readers of a previous draft of this manuscript noted that fre-
quentists use the likelihood as well, and so may prefer the Bayesian
procedure in this example. However, as Neyman (1977) points out, the
likelihood has no special status to a frequentist; what matters is the
frequentist properties of the procedure, not how it was constructed.
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cedure. The line for the sampling distribution procedure (dashed line)
is between the lines for the Bayes procedure and the UMP procedure.
An interactive version of this figure is available at http://learnbayes.
org/redirects/CIshiny1.html

might occur if some other information about the location of
the submersible were available.

It is now obvious why the Bayesian credible interval has
the properties typically ascribed to confidence intervals. The
credible interval can be interpreted as having a 50 % proba-
bility of containing the true value, because the values within
it account for 50 % of the posterior probability. It reveals
the precision of our knowledge of the parameter, in light of
the data and prior, through its relationship with the posterior
and likelihood.

Of the five procedures considered, intervals from the
Bayesian procedure are the only ones that can be said to
have 50 % probability of containing the true value, upon
observing the data. Importantly, the ability to interpret the
interval in this way arises from Bayesian theory and not
from confidence interval theory. Also importantly, it was
necessary to stipulate a prior to obtain the desired interval;
the interval should be interpreted in light of the stipulated
prior. Of the other four intervals, none can be justified as
providing a “reasonable” inference or conclusion from the
data, because of their strange properties and that there is
no possible prior distribution that could lead to these pro-
cedures. In this light, it is clear why Neyman’s rejection of
“conclusions” and “reasoning” from data naturally flowed
from his theory: the theory, after all, does not support such
ideas. It is also clear that if they care about making rea-
sonable inferences from data, scientists might want want to
reject confidence interval theory as a basis for evaluating
procedures.

We can now review what we know concerning the four
procedures. Only the Bayesian procedure — when its inter-
vals are interpreted as credible intervals — allows the
interpretation that there is a 50 % probability that the hatch

http://learnbayes.org/redirects/CIshiny1.html
http://learnbayes.org/redirects/CIshiny1.html
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figure is available at http://learnbayes.org/redirects/CIshiny1.html

is located in the interval. Only the Bayesian procedure prop-
erly tracks the precision of the estimate. Only the Bayesian
procedure covers the plausible values in the expected way:
the other procedures produce intervals that are known with
certainty — by simple logic — to contain the true value, but
still are “50 %” intervals. The non-Bayesian intervals have
undesirable, even bizarre properties, which would lead any
reasonable analyst to reject them as a means to draw infer-
ences. Yet the Bayesian procedure is judged by frequentist
CI theory as inferior.

The disconnect between frequentist theory and Bayesian
theory arises from the different goals of the two theories.
Frequentist theory is a “pre-data” theory. It looks forward,
devising procedures that will have particular average prop-
erties in repeated sampling (Jaynes, 2003; Mayo, 1981;
1982) in the future (see also Neyman, 1937, p. 349). This
thinking can be clearly seen in Neyman (1941) as quoted
above: reasoning ends once the procedure is derived. Con-
fidence interval theory is vested in the average frequency
of including or excluding true and false parameter values,
respectively. Any given inference may — or may not — be
reasonable in light of the observed data, but this is not Ney-
man’s concern; he disclaims any conclusions or beliefs on
the basis of data. Bayesian theory, on the other hand, is a
post-data theory: a Bayesian analyst uses the information in
the data to determine what is reasonable to believe, in light
of the model assumptions and prior information.

Using an interval justified by a pre-data theory to make
post-data inferences can lead to unjustified, and possibly
arbitrary, inferences. This problem is not limited to the ped-
agogical submersible example (Berger and Wolpert, 1988;
Wagenmakers et al., 2014) though this simple example is
instructive for identifying these issues. In the next section
we show how a commonly-used confidence interval leads to
similarly flawed post-data inferences.

Example 2: A confidence interval in the wild

The previous example was designed to show, in an accessi-
ble example, the logic of confidence interval theory. Further,
it showed that confidence procedures cannot be assumed to
have the properties that analysts desire.

When presenting the confidence intervals, CI proponents
almost always focus on estimation of the mean of a normal
distribution. In this simple case, frequentist and Bayesian
(with a “non-informative” prior) answers numerically coin-
cide.6 However, the proponents of confidence intervals
suggest the use of confidence intervals for many other
quantities: for instance, standardized effect size Cohen’s

6This should not be taken to mean that inference by confidence inter-
vals is not problematic even in this simple case; see e.g., Brown (1967)
and Buehler & Feddersen (1963).

http://learnbayes.org/redirects/CIshiny1.html
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d (Cumming and Finch, 2001), medians (Bonett & Price,
2002; Olive, 2008), correlations (Zou, 2007), ordinal associ-
ation (Woods, 2007), and many others. Quite often authors
of such articles provide no analysis of the properties of
the proposed confidence procedures beyond showing that
they contain the true value in the correct proportion of
samples: that is, that they are confidence procedures. Some-
times the authors provide an analysis of the frequentist
properties of the procedures, such as average width. The
developers of new confidence procedures do not, as a rule,
examine whether their procedures allow for valid post-data
reasoning.

As the first example showed, a sole focus on frequen-
tist properties of procedures is potentially disastrous for
users of these confidence procedures because a confidence
procedure has no guarantee of supporting reasonable infer-
ences about the parameter of interest. Casella (1992) under-
scores this point with confidence intervals, saying that “we
must remember that practitioners are going to make con-
ditional (post-data) inferences. Thus, we must be able to
assure the user that any inference made, either pre-data
or post-data, possesses some definite measure of validity”
(p. 10). Any development of an interval procedure that
does not, at least in part, focus on its post-data properties
is incomplete at best and extremely misleading at worst:
caveat emptor.

Can such misleading inferences occur using procedures
suggested by proponents of confidence intervals, and in use
by researchers? The answer is yes, which we will show by
examining a confidence interval for ω2, the proportion of
variance accounted for in ANOVA designs. The parame-
ter ω2 serves as a measure of effect size when there are
more than two levels in a one-way design. This interval
was suggested by Steiger (2004, see also Steiger & Fouladi,
1997), cited approvingly by Cumming (2014), implemented
in software for social scientists (e.g., Kelley, 2007a, b), and
evaluated, solely for its frequentist properties, by Finch and
French (2012). The problems we discuss here are shared by
other related confidence intervals, such as confidence inter-
vals for η2, partial η2, the noncentrality parameter of the
F distribution, the signal-to-noise ratio f , RMSSE �, and
others discussed by Steiger (2004).

Steiger (2004) introduces confidence intervals by empha-
sizing a desire to avoid significance tests, and to focus more
on the precision of estimates. Steiger says that “the scien-
tist is more interested in knowing how large the difference
between the two groups is (and how precisely it has been
determined) than whether the difference between the groups
is 0” (pp. 164-165). Steiger and Fouladi (1997) say that
“[t]he advantage of a confidence interval is that the width
of the interval provides a ready indication of the precision
of measurement...” (p. 231). Given our knowledge of the
precision fallacy these statements should raise a red flag.

Steiger then offers a confidence procedure for ω2 by
inverting a significance test. Given the strange behavior of
the UMP procedure in the submersible example, this too
should raise a red flag. A confidence procedure based on a
test — even a good, high-powered test — will not in general
yield a procedure that provides for reasonable inferences.
We will outline the logic of building a confidence interval by
inverting a significance test before showing how Steiger’s
confidence interval behaves with data.

To understand how a confidence interval can be built by
inverting a significance test, consider that a two-sided sig-
nificance test of size α can be thought of as a combination of
two one-sided tests at size α/2: one for each tail. The two-
sided test rejects when one of the one-tailed tests rejects. To
build a 68 % confidence interval (i.e., an interval that covers
the true value as often as the commonly-used standard error
for the normal mean), we can use two one-sided tests of size
(1− .68)/2 = .16. Suppose we have a one-way design with
three groups and N = 10 participants in each group. The
effect size ω2 in such a design indexes how large F will be:
larger ω2 values tend to yield larger F values. The distribu-
tion of F given the effect size ω2 is called the noncentral F
distribution. When ω2 = 0 — that is, there is no effect —
the familiar central F distribution is obtained.

Consider first a one-sided test that rejects when F is
large. Figure 6a shows that a test of the null hypothesis
that ω2 = .1 would yield p = .16 when F(2, 27) = 5.
If we tested larger values of ω2, the F value would not
lead to a rejection; if we tested smaller values of ω2, they
would be rejected because their p values would be below
.16. The gray dashed line in Fig. 6a shows the noncen-
tral F(2, 27) distribution for ω2 = .2; it is apparent that
the p value for this test would be greater than .16, and
hence ω2 = .2 would not be rejected by the upper-tailed
test of size .16. Now consider the one-sided test that rejects
when F is small. Figure 6b shows that a test of the null
hypothesis that ω2 = .36 would yield p = .16 when
F(2, 27) = 5; any ω2 value greater than .36 would be
rejected with p < .16, and any ω2 value less than .36
would not.

Considering the two one-tailed tests together, for any ω2

value in [.1, .36], the p value for both one-sided tests will
be greater than p > .16 and hence will not lead to a rejec-
tion. A 68 % confidence interval for when F(2, 27) = 5 can
be defined as all ω2 values that are not rejected by either of
the two-tailed tests, and so [.1, .36] is taken as a 68 % con-
fidence interval. A complication arises, however, when the
p value from the ANOVA F test is greater than α/2; by def-
inition, the p value is computed under the hypothesis that
there is no effect, that is ω2 = 0. Values of ω2 cannot be any
lower than 0, and hence there are no ω2 values that would be
rejected by the upper tailed test. In this case the lower bound
on the CI does not exist. A second complication arises when
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Fig. 6 Building a confidence interval by inverting a significance test.
A: Two noncentral F distributions, with true ω2 = .1 (blue solid line)
and true ω2 = .2 (dashed gray line). When F(2, 27) = 5, the upper-
tailed p value for these tests are .16 and .42, respectively. B: Two
noncentral F distributions, with true ω2 = .36 (red solid line) and true
ω2 = .2 (dashed gray line). When F(2, 27) = 5, the lower-tailed p

value for these tests are .16 and .58, respectively

the p value is greater than 1−α/2: all lower-tailed tests will
reject, and hence the upper bound of the CI does not exist. If
a bound does not exist, Steiger (2004) arbitrarily sets it at 0.

To see how this CI works in practice, suppose we design a
three-group, between-subjects experiment withN = 10 par-
ticipants in each group and obtain an F(2, 27) = 0.18, p =
0.84. Following recommendations for good analysis prac-
tices (e.g., Psychonomics society 2012; Wilkinson & the
Task Force on Statistical Inference, 1999, we would like to
compute a confidence interval on the standardized effects
size ω2. Using software to compute Steiger’s CI, we obtain
the 68 % confidence interval [0, 0.01].

Figure 7a (top interval) shows the resulting 68 % interval.
If we were not aware of the fallacies of confidence intervals,
we might publish this confidence interval thinking it pro-
vides a good measure of the precision of the estimate of ω2.
Note that the lower limit of the confidence interval is exactly
0, because the lower bound did not exist. In discussing this
situation Steiger and Fouladi (1997) say

“[Arbitrarily setting the confidence limit at 0] main-
tains the correct coverage probability for the confi-
dence interval, but the width of the confidence interval

may be suspect as an index of the precision of mea-
surement when either or both ends of the confidence
interval are at 0. In such cases, one might consider
obtaining alternative indications of precision of mea-
surement, such as an estimate of the standard error of
the statistic.” (Steiger and Fouladi, 1997, p. 255)

Steiger (2004) further notes that “relationship [between
CI width and precision] is less than perfect and is seri-
ously compromised in some situations for several reasons”
(p. 177). This is a rather startling admission: a major part
of the justification for confidence intervals, including the
one computed here, is that confidence intervals supposedly
allow an assessment of the precision with which the param-
eter is estimated. The confidence interval fails to meet the
purpose for which it was advocated in the first place, but
Steiger does not indicate why, nor under what conditions the
CI will successfully track precision.

We can confirm the need for Steiger’s caution — essen-
tially, a warning about the precision fallacy — by looking
at the likelihood, which is the probability density of the
observed F statistic computed for all possible true values of
ω2. Notice how narrow the confidence interval is compared
to the likelihood of ω2. The likelihood falls much more
slowly as ω2 gets larger than the confidence interval would
appear to imply, if we believed the precision fallacy. We can
also compare the confidence interval to a 68 % Bayesian
credible interval, computed assuming standard “noninfor-
mative” priors on the means and the error variance.7 The
Bayesian credible interval is substantially wider, revealing
the imprecision with which ω2 is estimated.

Figure 7b shows the same case, but for a slightly smaller
F value. The precision with which ω2 is estimated has not
changed to any substantial degree; yet now the confidence
interval contains only the value ω2 = 0: or, more accurately,
the confidence interval is empty because this F value would
always be rejected by one of the pairs of one-sided tests that
led to the construction of the confidence interval. As Steiger
points out, a “zero-width confidence interval obviously does
not imply that effect size was determined with perfect pre-
cision,” (p. 177), nor can it imply that there is a 68 %
probability that ω2 is exactly 0. This can be clearly seen by
examining the likelihood and Bayesian credible interval.

Some authors (e.g., Dufour, 1997) interpret empty confi-
dence intervals as indicative of model misfit. In the case of
this one sample design, if the confidence interval is empty
then the means are more similar than would be expected

7See the supplement for details. We do not generally advocate non-
informative priors on parameters of interest (Rouder et al., 2012;
Wetzels et al., 2012); in this instance we use them as a comparison
because many people believe, incorrectly, that confidence intervals
numerically correspond to Bayesian credible intervals with noninfor-
mative priors.
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Fig. 7 Likelihoods, confidence intervals, and Bayesian credible inter-
vals (highest posterior density, or HPD, intervals) for four hypothetical
experimental results. In each figure, the top interval is Steiger’s (2004)
confidence interval for ω2; the bottom interval is the Bayesian HPD.
See text for details

even under the null hypothesis α/2 of the time; that is,
p > 1 − α/2, and hence F is small. If this model rejection
significance test logic is used, the confidence interval itself
becomes uninterpretable as the model gets close to rejec-
tion, because it appears to indicate false precision (Gelman,
2011). Moreover, in this case the p value is certainly more
informative than the CI; the p value provides graded infor-
mation that does not depend on the arbitrary choice of α,
while the CI is simply empty for all values of p > 1− α/2.

Panel C shows what happens when we increase the confi-
dence coefficient slightly to 70 %. Again, the precision with
which the parameter is estimated has not changed, yet the
confidence interval now again has nonzero width.

Figure 7d shows the results of an analysis with
F(2, 27) = 4.24, p = 0.03, and using a 95 % confidence
interval. Steiger’s interval has now encompassed most of the
likelihood, but the lower bound is still “stuck” at 0. In this
situation, Steiger and Fouladi advise us that the width of the
CI is “suspect” as an indication of precision, and that we
should “obtain[] [an] alternative indication[] of precision of
measurement.” As it turns out, here the confidence interval
is not too different from the credible interval, though the
confidence interval is longer and is unbalanced. However,
we would not know this if we did not examine the likeli-
hood and the Bayesian credible interval; the only reason we
know the confidence interval has a reasonable width in this

particular case is its agreement with the actual measures of
precision offered by the likelihood and the credible interval.

How often will Steiger’s confidence procedure yield a
“suspect” confidence interval? This will occur whenever
the p value for the corresponding F test is p > α/2;
for a 95 % confidence interval, this means that whenever
p > 0.025, Steiger and Fouladi recommend against using
the confidence interval for precisely the purpose that they—
and other proponents of confidence intervals — recommend
it for. This is not a mere theoretical issue; moderately-
sized p values often occur. In a cursory review of
papers citing Steiger (2004), we found many that obtained
and reported, without note, suspect confidence intervals
bounded at 0 (e.g., Cumming, Sherar, Gammon, Standage,
& Malina, 2012; Gilroy & Pearce 2014; Hamerman
& Morewedge,2015; Lahiri, Maloney, Rogers, & Ge, 2013;
Hamerman & Morewedge, 2015; Todd, Vurbic, & Bouton,
2014; Winter et al., 2014). The others did not use confi-
dence intervals, instead relying on point estimates of effect
size and p values (e.g., Hollingdale & Greitemeyer, 2014);
but from the p values it could be inferred that if they had
followed “good practice” and computed such confidence
intervals, they would have obtained intervals that accord-
ing to Steiger could not be interpreted as anything but an
inverted F test.

It makes sense, however, that authors using confidence
intervals would not note that the interpretation of their con-
fidence intervals is problematic. If confidence intervals truly
contained the most likely values, or if they were indices of
the precision, or if the confidence coefficient indexed the
uncertainty we should have that the parameter is in an inter-
val, then it would seem that a CI is a CI: what you learn from
one is the same as what you learn from another. The idea
that the p value can determine whether the interpretation of
a confidence interval is possible is not intuitive in light of
the way CIs are typically presented.

We see no reason why our ability to interpret an inter-
val should be compromised simply because we obtained a
p value that was not low enough. Certainly, the confidence
coefficient is arbitrary; if the width is suspect for one con-
fidence coefficient, it makes little sense that the CI width
would become acceptable just because we changed the con-
fidence coefficient so the interval bounds did not include
0. Also, if the width is too narrow with moderate p val-
ues, such that it is not an index of precision, it seems that
the interval will be too wide in other circumstances, possi-
bly threatening the interpretation as well. This was evident
with the UMP procedure in the submersible example: the
UMP interval was too narrow when the data provided lit-
tle information, and was too wide when the data provided
substantial information.

Steiger and Fouladi (1997) summarize the central prob-
lem with confidence intervals when they say that in order
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to maintain the correct coverage probability — a frequentist
pre-data concern — they sacrifice the very thing researchers
want confidence intervals to be: a post-data index of the
precision of measurement. If our goal is to move away
from significance testing, we should not use methods which
cannot be interpreted except as inversions of significance
tests. We agree with Steiger and Fouladi that researchers
should consider obtaining alternative indications of preci-
sion of measurement; luckily, Bayesian credible intervals
fit the bill rather nicely, rendering confidence intervals
unnecessary.

Discussion

Using the theory of confidence intervals and the support
of two examples, we have shown that CIs do not have the
properties that are often claimed on their behalf. Confidence
interval theory was developed to solve a very constrained
problem: how can one construct a procedure that produces
intervals containing the true parameter a fixed proportion
of the time? Claims that confidence intervals yield an
index of precision, that the values within them are plau-
sible, and that the confidence coefficient can be read as
a measure of certainty that the interval contains the true
value, are all fallacies and unjustified by confidence interval
theory.

Good intentions underlie the advocacy of confidence
intervals: it would be desirable to have procedures with the
properties claimed. The FCF is driven by a desire to assess
the plausibility that an interval contains the true value; the
likelihood fallacy is driven by a desire to determine which
values of the parameter should be taken seriously; and the
precision fallacy is driven by a desire to quantify the preci-
sion of the estimates. We support these goals (Morey et al.,
2014), but confidence interval theory is not the way to
achieve them.

Guidelines for interpreting and reporting intervals

Frequentist theory can be counter-intuitive at times; as
Fisher was fond of pointing out, frequentist theorists often
seemed disconnected with the concerns of scientists, devel-
oping methods that did not suit their needs (e.g., Fisher,
1955, p. 70). This has lead to confusion where practi-
tioners assume that methods designed for one purpose
were really meant for another. In order to help miti-
gate such confusion, here we would like to offer read-
ers a clear guide to interpreting and reporting confidence
intervals.

Once one has collected data and computed a confidence
interval, how does one then interpret the interval? The
answer is quite straightforward: one does not – at least not

within confidence interval theory.8 As Neyman and others
pointed out repeatedly, and as we have shown, confidence
limits cannot be interpreted as anything besides the result of
a procedure that will contain the true value in a fixed pro-
portion of samples. Unless an interpretation of the interval
can be specifically justified by some other theory of infer-
ence, confidence intervals must remain uninterpreted, lest
one make arbitrary inferences or inferences that are contra-
dicted by the data. This applies even to “good” confidence
intervals, as these are often built by inverting significance
tests and may have strange properties (e.g., Steiger, 2004).

In order to help mitigate confusion in the scientific liter-
ature, we suggest the following guidelines for reporting of
intervals informed by our discussion in this manuscript.

Report credible intervals instead of confidence inter-
vals We believe any author who chooses to use confidence
intervals should ensure that the intervals correspond numer-
ically with credible intervals under some reasonable prior.
Many confidence intervals cannot be so interpreted, but if
the authors know they can be, they should be called “credi-
ble intervals”. This signals to readers that they can interpret
the interval as they have been (incorrectly) told they can
interpret confidence intervals. Of course, the corresponding
prior must also be reported. This is not to say that one can-
not also refer to credible intervals as confidence intervals,
if indeed they are; however, readers are likely more inter-
ested in knowing that the procedure allows valid post-data
inference — not pre-data inference — if they are inter-
ested arriving at substantive conclusions from the computed
interval.

Do not use confidence procedures whose Bayesian prop-
erties are not known As Casella (1992) pointed out, the
post-data properties of a procedure are necessary for under-
standing what can be inferred from an interval. Any proce-
dure whose Bayesian properties have not been explored may
have properties that make it unsuitable for post-data infer-
ence. Procedures whose properties have not been adequately
studied are inappropriate for general use.

Warn readers if the confidence procedure does not cor-
respond to a Bayesian procedure If it is known that a
confidence interval does not correspond to a Bayesian pro-
cedure, warn readers that the confidence interval cannot be

8Some recent writers have suggested the replacement of Neyman’s
behavioral view on confidence intervals with a frequentist view
focused on tests at various levels of “stringency” (see, e.g., Mayo &
Cox, 2006; Mayo & Spanos, 2006). Readers who prefer a frequentist
paradigm may wish to explore this approach; however, we are unaware
of any comprehensive account of CIs within this paradigm, and regard-
less, it does not offer the properties desired by CI proponents. This is
not to be read as an argument against it, but rather a warning that one
must make a choice.
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interpreted as having an X% probability of containing the
parameter, that cannot be interpreted in terms of the preci-
sion of measurement, and that cannot be said to contain the
values that should be taken seriously: the interval is merely
an interval that, prior to sampling, had an X% probability
of containing the true value. Authors choosing to report CIs
have a responsibility to keep their readers from invalid infer-
ences, because it is almost certain that without a warning
readers will misinterpret them (Hoekstra et al., 2014).

Never report a confidence interval without noting the
procedure and the corresponding statistics As we have
described, there are many different ways to construct con-
fidence intervals, and they will have different properties.
Some will have better frequentist properties than others;
some will correspond to credible intervals, and others will
not. It is unfortunately common for authors to report con-
fidence intervals without noting how they were constructed
or even citing a source. As can be seen from the exam-
ples we have presented, this is a terrible practice: without
knowing which confidence procedure was used, it is unclear
what can be inferred. In the submersible example, consider
a 50 % confidence interval .5 meters wide. This could cor-
respond to very precise information (Bayesian interval) or
very imprecise information (UMP and nonparametric inter-
val). Not knowing which procedure was used could lead to
absurd inferences. In addition, enough information should
be presented so that any reader can compute a different con-
fidence interval or credible interval. In many cases, this is
covered by standard reporting practices, but in other cases
more information may need to be given.

Consider reporting likelihoods or posteriors instead An
interval provides fairly impoverished information. Just as
proponents of confidence intervals argue that CIs pro-
vide more information than a significance test (although
this is debatable for many CIs), a likelihood or a pos-
terior provides much more information than an interval.
Recently, Cumming (2014) has proposed so-called “cat’s
eye” intervals which correspond to Bayesian posteriors
under a “non-informative” prior for normally distributed
data. With modern scientific graphics so easy to create,
we see no reason why likelihoods and posteriors cannot
augment or even replace intervals in most circumstances
(e.g., Kruschke, 2010). With a likelihood or a posterior, the
arbitrariness of the confidence or credibility coefficient is
avoided altogether.

A complete account of Bayesian statistics is beyond the
scope of this paper (and indeed, can fill entire courses).
In recent years, a number of good resources have been
developed for readers wishing to learn more about applied
Bayesian statistics, including estimation of posterior distri-
butions and credible intervals: on the less technical side,

there are texts by Bolstad (2007), Lee and Wagenmakers
(2013), and Lynch (2007); on the more technical side are
texts by Jackman (2009), Ntzoufras (2009), and Gelman
et al. (2004). There are also numerous resources on the
world wide web to help beginners. For readers wishing to try
some simple examples, the supplement to this article con-
tains R code to estimate posterior distributions and credible
intervals for the examples in this paper.

Confidence intervals versus credible intervals

One of the misconceptions regarding the relationship
between Bayesian inference and frequentist inference is that
they will lead to the same inferences, and hence all con-
fidence intervals can simply be interpreted in a Bayesian
way. In the case where data are normally distributed, for
instance, there is a particular prior that will lead to a con-
fidence interval that is numerically identical to Bayesian
credible intervals computed using the Bayesian posterior
(Jeffreys, 1961; Lindley, 1965). This might lead one to sus-
pect that it does not matter whether one uses confidence
procedures or Bayesian procedures. We showed, however,
that confidence intervals and credible intervals can disagree
markedly. The only way to know that a confidence inter-
val is numerically identical to some credible interval is to
prove it. The correspondence cannot — and should not —
be assumed.

More broadly, the defense of confidence procedures by
noting that, in some restricted cases, they numerically cor-
respond to Bayesian procedures is actually no defense at
all. One must first choose which confidence procedure, of
many, to use; if one is committed to the procedure that
allows a Bayesian interpretation, then one’s time is much
better spent simply applying Bayesian theory. If the bene-
fits of Bayesian theory are desired — and they clearly are,
by proponents of confidence intervals — then there is no
reason why Bayesian inference should not be applied in its
full generality, rather than using the occasional correspon-
dence with credible intervals as a hand-waving defense of
confidence intervals.

It is important to emphasize, however, that for many of
the confidence procedures presented in the applied statis-
tical literature, no effort has been made to show that the
intervals have the properties that proponents of confidence
intervals desire. We should expect, as a matter of course,
that developers of new confidence intervals show that their
intervals have the desired inferential properties, instead of
just nominal coverage of the true value and “short” width.
Because developers of confidence intervals have not done
this, the push for confidence intervals rests on uncertain
ground. Adopting Bayesian inference, where all inferences
arise within a logical, unified framework, would render the
problems of assessing the properties of these confidence
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procedures moot. If desired, coverage of a Bayesian proce-
dure can also be assessed; but if one is interested primarily
in reasonable post-data inference, then Bayesian properties
should be the priority, not frequentist coverage (cf. Gelman,
2008; Wasserman, 2008).

For advocates of reasoning by intervals, adopting
Bayesian inference would have other benefits. The end-
points of a confidence interval are always set by the data.
Suppose, however, we are interested in determining the
plausibility that a parameter is in a particular range; for
instance, in the United States, it is against the law to execute
criminals who are intellectually disabled. The criterion used
for intellectual disability in the US state of Florida is having
a true IQ less than 70. Since IQ is measured with error, one
might ask what confidence we have that a particular crimi-
nal’s true IQ is less than 70 (see Anastasi and Urbina (1997),
or Cronbach (1990), for an overview of confidence intervals
for IQ). In this case, the interval we would like to assess for
plausibility is no longer a function of the sample. The long-
run probability that the true value is inside a fixed interval
is unknown and is either 0 or 1, and hence no confidence
procedure can be constructed, even though such information
may be critically important to a researcher, policy maker, or
criminal defendant (Pratt et al., 1995).

Even in seemingly simple cases where a fixed inter-
val is nested inside a CI, or vice versa, one cannot draw
conclusions about the plausibility of a fixed interval. One
might assume that an interval nested within a CI must have
lower confidence than the CI, given that it is shorter; how-
ever, as shown in Fig. 1b, a 100 % confidence interval (the
likelihood) is nested within some of the 50 % confidence
intervals. Likewise, one might believe that if a CI is nested
within a fixed interval, then the fixed interval must have
greater probability than the interval. But in Fig. 1a, one can
imagine a fixed interval just larger than the 50 % UMP
interval; this will have much lower than 50 % probability
of containing the true value, due to the fact that it occupies
a small proportion of the likelihood. Knowledge that the
FCF is a fallacy prohibits one from using confidence inter-
vals to assess the probability of fixed intervals. Bayesian
procedures, on the other hand, offer the ability to compute
the plausibility of any given range of values. Because all
such inferences must be made from the posterior distribu-
tion, inferences must remain mutually consistent (Lindley,
1985; see also Fisher, 1935, for a similar argument).

Moving to credible intervals from confidence intervals
would necessitate a shift in thinking, however, away from
a test-centric view with respect to intervals (e.g., “is 0
in the interval?”). Although every confidence interval can
be interpreted as a test, credible intervals cannot be so
interpreted. Assessing the Bayesian credibility of a spe-
cific parameter value by checking whether it is included
in a credible interval is, as Berger (2006) puts it, “simply

wrong.” When testing a specific value is of interest (such as
a null hypothesis), that specific value must be assigned non-
zero probability a priori. While not conceptually difficult, it
is beyond the scope of this paper; see Rouder et al. (2009),
Wagenmakers et al. (2008), or Dienes (2011) for accessible
accounts.

Finally, we believe that in science, the meaning of our
inferences are important. Bayesian credible intervals sup-
port an interpretation of probability in terms of plausibility,
thanks to the explicit use of a prior. Confidence intervals, on
the other hand, are based on a philosophy that does not allow
inferences about plausibility, and does not utilize prior infor-
mation. Using confidence intervals as if they were credible
intervals is an attempt to smuggle Bayesian meaning into
frequentist statistics, without proper consideration of a prior.
As they say, there is no such thing as a free lunch; one must
choose.We suspect that researchers, given the choice, would
rather specify priors and get the benefits that come from
Bayesian theory. We should not pretend, however, that the
choice need not be made. Confidence interval theory and
Bayesian theory are not interchangeable, and should not be
treated as so.

Conclusion

We have suggested that confidence intervals do not support
the inferences that their advocates believe they do. It is an
interesting question how the theory of confidence intervals
began with Neyman as a method of avoiding the problem
of reasoning from data by making dichotomous statements
(Neyman 1937, 1941), eventually becoming a method that
many believe is the best way to reason from data (e.g.
Cumming & Finch, 2005; Cumming & Fidler, 2009) and a
way to avoid dichotomous statements (e.g. Cumming, 2014;
Hoekstra, Finch, Kiers, & Johnson, 2006; Wilkinson & the
Task Force on Statistical Inference, 1999). Regardless of
how this confusion started, we believe it should be recog-
nized that confidence interval theory offers only the shal-
lowest of interpretations, and is not well-suited to the needs
of scientists.

We do not believe that the theory of confidence intervals
provides a viable foundation for the future of psychological
methods. Confidence procedures that do not have Bayesian
properties have other undesirable properties; confidence
procedures that do have Bayesian properties can be justi-
fied using Bayesian theory. If we were to give up the use
of confidence procedures, what would we lose? Abandon-
ing the use of confidence procedures means abandoning a
method that merely allows us to create intervals that include
the true value with a fixed long-run probability. We sus-
pect that if researchers understand that this is the only thing
they will be losing, they will not consider it a great loss. By
adopting Bayesian inference, they will gain a way of making
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principled statements about precision and plausibility. Ulti-
mately, this is exactly what the advocates of CIs have
wanted all along.
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