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Abstract

In a previous series of studies, we have shown that search for human targets in the context of natural scenes is more efficient than
search for mechanical targets. Here we asked whether this search advantage extends to other categories of biological objects. We
used videos of natural scenes to directly contrast search efficiency for animal and human targets among biological or nonbio-
logical distractors. In visual search arrays consisting of two, four, six, or eight videos, observers searched for animal targets
among machine distractors, and vice versa (Exp. 1). Another group searched for animal targets among human distractors, and
vice versa (Exp. 2). We measured search slope as a proxy for search efficiency, and complemented the slope with eye movement
measurements (fixation duration on the target, as well as the proportion of first fixations landing on the target). In both exper-
iments, we observed no differences in search slopes or proportions of first fixations between any of the target—distractor category
pairs. With respect to fixation durations, we found shorter on-target fixations only for animal targets as compared to machine
targets (Exp. 1). In summary, we did not find that the search advantage for human targets over mechanical targets extends to other
biological objects. We also found no search advantage for detecting humans as compared to other biological objects. Overall, our
pattern of findings suggests that search efficiency in natural scenes, as elsewhere, depends crucially on the specific target—
distractor categories.

Keywords Visual search - Natural scenes - Biological motion - Biological form - Eyetracking - Animal motion

Efficient processing of animate, biological objects is benefi-
cial from an ecological point of view. It allows observers to
find partners for social interactions or to avoid dangerous an-
imals, for example. Recently we provided evidence that visual
scenes containing one specific class of biological object—
human beings—are processed more efficiently than those con-
taining nonbiological, mechanical objects (Mayer, Vuong, &
Thornton, 2015, 2017). Using a standard visual search para-
digm (Treisman & Gelade, 1980; Treisman & Souther, 1985;
Wolfe, 1998; Wolfe & Horowitz, 2004, 2017), we showed that
human targets embedded in natural scenes were located more
efficiently than a range of complex, mechanical targets. This
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human search advantage, observed in terms of shallower
search slopes, occurred in a standard search asymmetry design
(in which humans and machines served as the targets and
distractors for each other; Mayer et al., 2015), and also when
such targets had to be found in the context of a third, common
distractor class of moving natural objects, such as clouds and
fire (Mayer et al., 2017). The shallower slopes in both our
previous studies were complemented by higher proportions
of first fixations landing on a human target and shorter on-
target fixation durations.

The goal of the present work was to examine wheth-
er this search advantage is specific to human targets, or
whether, instead, it extends to other animate, biological
categories. This question can be addressed by using the
same task to directly investigate similarities and differ-
ences in the processing of different categories of biolog-
ical objects, which few studies to date have done.
Therefore, in two experiments we used the visual search
paradigm from our previous studies (Mayer et al., 2015,
2017) to directly compare search efficiencies for animal
targets relative to both mechanical objects (Exp. 1) and
humans (Exp. 2).
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A large body of literature supports perceptual and neural
mechanisms being visually tuned to process human body pose
and movement in an automatic and bottom-up fashion (see
Blake & Shiffrar, 2007, for a review; Giese & Poggio, 2003;
Lange & Lappe, 2006; Thornton & Vuong, 2004; Troje &
Westhoff, 2006). There is also evidence that top-down mech-
anisms can play an important role (Bertenthal, Proffitt, &
Cutting, 1984; Biilthoff, Biilthoff, & Sinha, 1998; Cavanagh,
Labianca, & Thornton, 2001; Thompson & Parasuraman,
2012; Thornton, Rensink, & Shiffrar, 2002). In particular, it
has been suggested that through extensive experiences with
others, observers form attentional sprites that can efficiently
guide search for human motion in a top-down fashion
(Cavanagh et al., 2001).

Much of the evidence for visual tuning to human body pose
and movement is based on degrading either form or motion
information in the visual input (Beintema & Lappe, 2002;
Johansson, 1973). For example, Johannson showed that ob-
servers can infer a human figure from only the movement
pattern generated by point-lights attached to an upright human
walker’s joints. Moreover, even with such highly
impoverished point-light stimuli, observers can infer the
walker’s actions (e.g., Johansson, 1973) or whether the walker
is female or male (Kozlowski & Cutting, 1977; Pollick, Kay,
Heim, & Stringer, 2005). The underlying perceptual and
neural mechanisms may be present from birth or at least
may develop in early infancy. Simion, Regolin, and Bulf
(2008) showed that 2-day-old babies preferentially look at
upright as compared to inverted point-light walkers. Infants
younger than half a year preferentially look at biological mo-
tion patterns (Fox & McDaniel, 1982), are better at memoriz-
ing actions of adults than the faces of the adults (Bahrick,
Gogate, & Ruiz, 2002), and show sensitivity to figural coher-
ence of biological motion (Bertenthal et al., 1984). At the
neural level, some brain regions in the temporal lobe, for ex-
ample, respond selectively to human body pose (e.g., the
extrastriate body area; Downing, Bray, Rogers, & Childs,
2004) and movement (e.g., the superior temporal sulcus,
STS; Grossman et al., 2000; Saygin, 2007).

Apart from human form and motion, observers can also
quickly and accurately detect and interpret visually
impoverished stimuli of other animal species. For example,
they can recognize a wide variety of animals, including
chicks, pigeons, horses, and dogs, from point-light stimuli
(Bellefeuille & Faubert, 1998; Kaiser, Shiffrar, & Pelphrey,
2012; Mather & West, 1993; Troje & Westhoff, 20006).
Human babies as young as 2 days old preferentially look at
point-light stimuli of hens as compared to point-light stimuli
of moving nonbiological objects (Bardi, Regolin, & Simion,
2011). However, there is some evidence for a human advan-
tage when human point-light stimuli are directly contrasted
with animal point-light stimuli. For example, Pinto and
Shiffrar (2009) found higher sensitivity to human than to

horse motion using point-light stimuli. Similarly, Kaiser
et al. (2012) found stronger responses in the STS when ob-
servers viewed point-light humans in contrast to point-light
dogs.

For static images displaying natural scenes, New,
Cosmides, and Tooby (2007) showed that observers detected
changes to both humans and other animals more quickly and
reliably than changes to other types of objects, such as vehi-
cles or tools. These findings argue for preferential processing
of biological as compared to nonbiological objects.
Furthermore, New et al. found higher accuracy for change
detection in scenes displaying humans than in scenes
displaying animals. With respect to reaction times, however,
they found that changes were detected equally quickly for
humans and animals.

Thus, it is not clear to what extent the perceptual and neural
mechanisms visually tuned to humans can also efficiently
process other animals, particularly under more naturalistic
conditions. Previous studies have used impoverished point-
light stimuli, a small number of actions or animals (e.g., walk-
ing human vs. walking horse; Pinto & Shiffrar, 2009), static
images (e.g., New et al., 2007), and simple discrimination
paradigms, which limited their generality to real-world situa-
tions. In the present experiments, we used a visual search
paradigm to compare search efficiencies for animals and
humans in the context of natural scenes.

As already mentioned, we have previously used this para-
digm to investigate search efficiency for human targets rela-
tive to mechanical targets in dynamic natural videos (Mayer
et al., 2015, 2017). Using the same paradigm and measures,
here we asked whether search efficiency differs between ani-
mals and machines (Exp. 1) and whether search efficiency
differs between animals and humans (Exp. 2). We hypothe-
sized that visual tuning to biological motion (e.g., Cavanagh
et al., 2001; Thomton & Vuong, 2004; Troje & Westhoff,
2006) enables more efficient search for animals than for ma-
chines. Furthermore, we hypothesized that the familiarity and
social relevance of human form and movement (Boucart et al.,
2016; Pinto & Shiffrar, 2009) would enable more efficient
search for humans than for animals, via top-down mecha-
nisms (e.g., Cavanagh et al., 2001). Finally, we checked
whether any combination of target and distractor categories
allows for efficient search in the form of pop-out search
(Mayer et al., 2015; Treisman & Souther, 1985; Wolfe, 1998).

Experiment 1: Animals and machines

Methods

Participants Nine participants were recruited from the wider
Newecastle University community (mean age = 19.9 years, SD
= 2 years; eight females, one male). The sample size was

@ Springer



956

Atten Percept Psychophys (2020) 82:954-965

determined prior to data collection, on the basis of our previ-
ous studies (Mayer et al., 2015, 2017); this allowed us to
compare results across studies (see below). To assess the ad-
equacy of this sample size to detect a slope difference between
the two categories of interest (animals vs. machines in Exp. 1,
or animals vs. humans in Exp. 2), we used the effect size
obtained in the closest matching condition of our previous
work (Exp. 1 of Mayer et al., 2015) to conduct a power anal-
ysis. The effect size from the comparison of slopes in this
previous experiment was 1.36 (Cohen’s d; mean difference
divided by the pooled standard deviation), which suggests a
sample size of seven participants for a power of .8 and an
alpha level of .05. This sample size was established using
the G*Power 3.1 software package (Faul, Erdfelder,
Buchner, & Lang, 2009). Participants received course credit
or were reimbursed with £5. They had normal vision or wore
contact lenses. Participants were informed that the experiment
involved category search with eyetracking prior to the exper-
iment, but they were naive to the specific hypothesis. They
gave informed consent. The ethics for this study were ap-
proved by the local ethics committee of Newcastle University.

Stimuli and apparatus The stimuli were 128 x 96 pixel gray-
scale videos displaying animals and machines. The videos
displaying machines were used in our previous studies
(Mayer et al., 2015, 2017). We used eight videos for each
category. The machine videos displayed, for example, a spin-
ning wheel or a sawing machine (Fig. 1, bottom row). The
animal videos displayed a kangaroo sitting in a field and

scratching its belly, a running bear cub, a lemur walking along
a branch, a chimpanzee climbing up a rope, a walking lion,
walking zebras, a running antelope, and a running desert fox
(Fig. 1, top and middle rows). We only included mammals in
the videos so as to exclude detection biases for highly salient
animals like snakes and spiders (Ohman, Flykt, & Esteves,
2001). Each video predominantly showed an object from
one scene, and there were never any objects from the other
category in the video. Videos were acquired from films, doc-
umentaries or recorded with a camcorder. Each video lasted
1.8 s and had a frame rate of 25 frames per second.

Participants were seated at a distance of 50 cm from a Sony
Trinitron CRT monitor (refresh rate 100 Hz; resolution 1,024
x 768 pixels). Thus, the videos subtended 5.4° x 4.1° of visual
angle. Head movements were constrained with a chin rest, and
responses were collected with a standard keyboard. Eye
movements were sampled using a Cambridge Research
Systems eyetracker at a rate of 50 Hz, with a spatial resolution
of0.1°. The experiments were controlled using a Windows PC
running Matlab (Mathworks). We used the Psychtoolbox
(Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli,
1997) extension for Matlab to present the stimuli.

Design Participants searched for a target (i.e., a video
displaying an animal or a video displaying a machine) amidst
distractor videos from the other category. The target could be
present or absent in the search array. The search array
consisted of two, four, six, or eight videos. The experiment
was set up as a 2 x 2 x 4 design, with the within-subjects

Fig. 1 Frames from the animal (top and middle rows) and machine (bottom row) videos used in the present study.
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factors target type (animal target, machine target), trial type
(present trial, absent trial), and set size (search array consisting
of two, four, six, or eight videos).

Procedure To ensure that participants were familiar with the
specific videos in the experiment, all eight videos of each
category were presented prior to the experiment. The videos
were arranged on the screen in two rows and four columns and
were played as loops. Participants wrote a short description of
the content of each video. There was no time limit. Once a
participant had written the descriptions of one category, the
other category was presented.

After the familiarization phase, the actual experiment be-
gan. Participants were now asked to search for videos contain-
ing the target category and to respond whether the target was
present or absent as quickly and accurately as possible. A few
practice trials were presented in order to ensure that partici-
pants understood the task.

Search arrays were rendered against a gray background. In
the search arrays, the videos were distributed evenly on an
invisible circle. The circle had a radius of 12.5° (300 pixels),
and its center was placed at the center of the screen. The actual
locations of the videos were randomly assigned on every trial.

Each trial started with a white fixation cross, rendered
against a gray background, that was shown for 1 s before the
search array was displayed. Participants were required to look
at the fixation cross and they could then move their eyes freely
when the search array was presented. The fixation cross
remained visible throughout the trial. The videos shown on a
given trial started at a randomly selected frame and looped
continuously until the participant responded. Present and ab-
sent responses were collected using the “c” and the “m” key.
The response mapping was counterbalanced across partici-
pants. When participants responded incorrectly a 1500 Hz
tone was played for 80 ms as feedback. After the response
the search array disappeared and a gray screen was shown
for 500 ms before the fixation cross for the next trial appeared.
Eyetracking of the right eye started when participants looked
at the fixation cross at the beginning of a trial.

Each of the 16 conditions was presented 32 times, leading
to 512 trials (256 for each target type). For each target type, we
presented four blocks of 64 trials each. The two target types
were run in alternating blocks, with the starting category
counterbalanced across participants. At the beginning of each
block, a written text indicated what the target category was for
that block. On target-present trials, each of the eight videos
was shown equally often at each set size (i.e., four times). As
distractor videos on both the absent and present trials, the eight
videos from the other category (i.e., machine videos on
animal-target blocks or animal videos on machine-target
blocks) were randomly selected, with the constraints that no
videos were repeated within a given trial and that the videos
were used approximately equally often across trials. Within

each block, the order of the trials was randomized. There were
self-timed breaks after each block. We calibrated the
eyetracker before each block. In total, the experiment lasted
approximately 40 min.

Data analysis Accuracies were high across all conditions (>
90%) and thus will not be discussed further (Mayer et al.,
2017). Search times were measured from the onset of the
search array until a response was made. We analyzed search
slopes, which were computed by linear regressions of median
search times onto set size. Only search times from trials in
which participants responded correctly were included.

With respect to the eye movement data, we computed fix-
ation duration and the proportion of first fixations that landed
on the target, by analyzing the first fixation following onset of
the search array, and only included trials in which participants
responded correctly (Eckstein, 2011; Mayer et al., 2015,
2017). For fixation durations, we analyzed only the first fixa-
tion that landed on a target video, on present trials, and the first
fixation that landed on any video, on absent trials. To be con-
sidered as being on a video, a fixation had to be within 100
pixels (4.1°) of the center of a video. Fixations within 0.6°
spatially and 120 ms temporally of each other were considered
a single fixation. For present trials, we also calculated the
proportion of first fixations that landed on the target video
by dividing the number of first fixations on the target by the
number of fixations that landed on any video in the search
array for each condition. Custom software was used to extract
the fixations on every trial. The raw eyetracking data were
smoothed using a median filter within a moving 60-ms tem-
poral window. Blinks were removed. Only trials in which 70%
or more of the trial duration was tracked successfully were
included in the analyses. This criterion removed between
0.8% and 22.1% of the fixation data across participants.

The search slopes and fixation duration data were submit-
ted to separate 2 trial type (present, absent) x 2 target type
(Exp. 1: animal, machine; Exp. 2: animal, human) repeated
measures analyses of variance (ANOVAs). The proportions of
first fixations that landed on a target were submitted to a 2
target type (Exp. 1: animal, machine; Exp. 2: animal, human)
x 4 set size (two, four, six, and eight videos) repeated mea-
sures ANOVA. One-sample ¢ tests were used to test for “pop-
out” (i.e., slope = 0; Treisman & Souther, 1985; Wolfe, 1998).
Additional post-hoc paired and independent-samples ¢ tests
were used for pairwise comparisons (as appropriate). An alpha
of .05 was used as the significance level for all statistical tests.

Additionally, we included Bayes factor analyses, to adjudi-
cate between the hypothesis that slopes were consistent across
target types and the hypothesis that slopes differed across
target types for our two main experiments. We used the re-
peated measures Bayes analyses (2 trial type X 2 target type)
implemented in the JASP software package (JASP Team,
2018). Because a prior is required for Bayes analyses and
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we did not know the exact prior for our data, we tested a range
of priors between .1 and .9 (in steps of .1) for each analysis.
We followed the interpretation of Bayes factors of Jeffreys
(1961), as adopted by Wagenmakers, Wetzels, Borsboom,
and van der Maas (2011), and accepted Bayes factors of > 3
as an indication for differences in performance, and Bayes
factors of < 1/3 as an indication of consistent performance.

Results

Animals versus machines: Search slope Search times and
search slopes are plotted in Fig. 2a and b, respectively. All
search slopes were > 0, indicating that search times increased
with set size (ps < .001). We found only a main effect of trial
type, indicating steeper slopes on target-absent trials [F(1, 8) =
61.30, p <.001, partial 77; =.89; absent: M = 132 ms/video, SE
= 16 ms/video; present: M = 38 ms/video, SE = 5 ms/video].
No other main effect or interaction was significant (ps > .63,
n.s.).

Animals versus machines: Bayes factor The Bayes factor anal-
ysis showed evidence for differences in performance between
present and absent trials (the Bayes factors ranged from 1.02 x
10% and 8.04 x 10®, depending on the prior setting). The Bayes
factor analysis was in favor of consistent performance across
animal and machine targets (the Bayes factors ranged from
0.20 to 0.73, depending on the prior setting). There was no
evidence for an interaction (the Bayes factors ranged from
0.24 to 0.85, depending on the prior setting).
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Animals versus machines: Fixation duration The fixation du-
rations are plotted in Fig. 2c and displayed in Table 1. We
found a significant interaction between target type and trial
type [F(1, 8) = 13.72, p = .006, partial nj = .63]. On present
trials, the fixation duration on animal targets (M = 225 ms, SE
= 8 ms) was shorter than the one on machine targets (M = 260
ms, SE = 17 ms) [#(8) = 3.07, p = .015]. By comparison, on
absent trials, the fixation durations did not differ between an-
imal (M =159 ms, SE = 5 ms) and machine (M = 162 ms, SE =
5 ms) distractor videos (p = .45, n.s.). There were also main
effects of trial type, indicating quicker fixation durations on
distractor videos than on targets [F(1, 8) = 92.35, p < .001,
partial 77; =.92; target absent: M = 106 ms, SE = 5 ms; target
present: M = 242 ms, SE = 12 ms], and target type, indicating
quicker fixation durations on animal than on machine targets
[F(1, 8) =5.74, p = .043, partial 771% = .42; animal target: M =
193 ms, SE = 6 ms; machine target: M =209 ms, SE = 11 ms].

Animals versus machines: Proportion of first fixations on the
target We observed a main effect of set size [F(3, 24) = 19.50,
p <.001, partial 7]12, =.71], showing that the proportion of first
fixations on the target decreased linearly with set size [linear
contrast: F(1, 8) =27.81, p =.001, partial 77}2, =.78; Table 1].
There was no main effect of target type, and no interaction
between target type and set size (ps > .80, n.s.).

Saliency model observers To investigate the extent to which
participants used low-level salient features to find targets
(Mayer et al., 2015), we tested model observers who searched
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Fig. 2 Results for search times, slopes of the search functions, and fixation durations. (a—c) Search categories: Animals and machines (Exp. 1). (d—f)
Search categories: Humans and animals (Exp. 2). Error bars indicate + 1 standard error of the mean.
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Table 1  Fixation parameters in Experiment 1 (animals and machines)
Fixation Duration Proportion First
Set Size M [ms] SE [ms] M SE
Animal Target
2 237 13 18 .03
4 229 11 .62 .06
6 220 10 .55 .06
8 215 12 .54 .07
Machine Target
2 267 19 .80 .07
4 269 20 .65 .05
6 256 17 .57 .08
8 246 17 .50 .06

for targets based on orientation, brightness, and motion-
energy saliency maps (Koch & Ullman, 1985; Parkhurst,
Law, & Niebur, 2002). Briefly, eight model observers
searched arrays for animal targets among machine distractors,
and eight searched for machine targets among animal
distractors. There were only target-present trials. On a given
trial, each model observer progressively “fixated”” on locations
of decreasing saliency based on the computed saliency maps.
Search was terminated when a target was fixated. This proce-
dure allowed us to count the number of cycles to “detect” a
target for each set size and compute the slope for each target
category (i.e., the cycles can be used as a proxy for search
times). We used the Saliency Toolbox for Matlab (version
2.1; Walther & Koch, 2006) and Piotr Dollar’s image-
processing toolbox (https://pdollar.github.io/toolbox/; see
Mayer et al., 2015, for full details). We found that searching
for animal targets among machine distractors yielded steeper
slopes (M = 20 cycles/video, SE = 2 cycles/video) than
searching for machines among animal distractors (M = 11
cycles/video, SE = 1 cycle/video) [#(7) = 4.66, p = .002].

Discussion

As with human targets in our previous studies (Mayer et al.,
2015, 2017), searching for animal targets was effortful—that
is, there was no “pop-out” (Treisman & Souther, 1985; Wolfe,
1998), as indicated by search slopes > 0. In contrast to our
previous studies, we found no significant search slope differ-
ence between searching for animal and searching for machine
targets. Participants also made equal proportions of first on-
target fixations to both categories, and they fixated on animal
targets more briefly than on machine targets.

Although humans and animals have different forms, with
respect to movements, they share more similar kinematics
with each other (e.g., pendular motion of joints) than do ani-
mals and machines. This motion similarity may confer some

processing advantage for animals relative to machines, as cap-
tured by the shorter fixation duration found for animal targets
in this experiment. This advantage is in line with the biolog-
ical advantage found using impoverished point-light stimuli of
humans and animals, in which predominantly motion infor-
mation is available (e.g., Pavlova, Krageloh-Mann, Sokolov,
& Birbaumer, 2001; Ruffieux et al., 2016; Shi, Weng, He, &
Jiang, 2010; Troje & Westhoff, 2006). As we previously sug-
gested (Mayer et al., 2015, 2017), the shorter fixation duration
may reflect faster processing of animal than of machine tar-
gets. However, unlike the human targets in our previous stud-
ies, this advantage did not lead to more efficient search, as
measured by search slopes.

To ensure that the results across the two experiments were
not driven solely by low-level visual features of the videos we
used, we simulated model observers that used salient lumi-
nance, orientation, and motion-energy information to find tar-
gets (Mayer et al., 2015). In contrast to the human search
performance, the model observers’ search slopes were steeper
for animal than for machine targets. The difference found
between model and human observers suggests that the partic-
ipants in our studies did not exclusively base their search on
low-level visual features of the videos.

Experiment 2: Humans and animals

In Experiment 1, search slopes were the same for animals and
machines. Previously we found that searching for humans was
more efficient (shallower slope) than searching for machines
(Mayer et al., 2015). Given these findings, searching for
humans might be more efficient than search for animals if
these two biological categories were directly contrasted.
There is further evidence that observers may search for other
humans efficiently: People have extensive exposure to other
people, and often in socially relevant situations (e.g., Pinto &
Shiffrar, 2009). For example, the rich interaction between
humans may lead to the formation of attentional sprites that
may efficiently guide search for human targets (Cavanagh
et al., 2001) but not for animal targets. In Experiment 2, we
directly compared search efficiency for animals and humans,
using each biological category as both target and distractor.
We also presented model observers with the search displays,
to test whether and how low-level visual features affect search
behaviors (Mayer et al., 2015).

Method

Participants Nine participants were recruited from the wider
Newcastle University community for Experiment 2 (mean age
= 19.4 years, SD = 0.9 years; all females). They participated
for course credit or were reimbursed with £5. One female
participant took part in both experiments. All participants
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had normal vision or wore contact lenses. The participants
were informed prior to participating that the experiment in-
volved category search with eyetracking, but they were naive
to the specific hypotheses. They gave informed consent. The
study ethics were approved by the local ethics committee of
Newecastle University.

Design, procedure, and analyses The same design and proce-
dure were used as we reported for Experiment 1, except that
the videos displaying humans used in our previous studies
were included instead of the videos displaying machines.
The same analyses were conducted as we reported for
Experiment 1.

Results

Animals versus humans: Search slope The search times and
search slopes are plotted in Fig. 2d and e, respectively. All
search slopes were > 0, indicating that search times increased
with set size (ps < .001). In contrast to Experiment 1, we
observed a significant interaction between trial type and target
type [F(1, 8) = 6.41, p = .04, partial 1712, = .45]. For present
trials, there were no differences between the two target types
[animal present: M = 67 ms/video, SE = 6 ms/video; human
present: M =78 ms/video, SE = 10 ms/video; #8) = 1.16, p =
.28, n.s.]. By comparison, for absent trials, the slope was
steeper on animal-target than on human-target blocks [animal
absent: M = 198 ms/video, SE = 21 ms/video; human absent:
M = 166 ms/video, SE = 19 ms/video; #«(8) = 3.05, p = .016].
That is, participants were less efficient at correctly terminating
the search when the search array consisted of only human
distractor videos (animal-target block) than when the array
consisted of only animal distractor videos (human-target
blocks). There was also a main effect of trial type, indicating
steeper search slopes on target-absent than on target-present
trials [F(1, 8) = 63.33, p <.001, partial 7712, =72 ms/video, SE =
7 ms/video; absent: M = 182 ms/video, SE = 19 ms/video], but
only a marginal effect of target type [F(1, 8) = 4.11, p = .08,
partial 771% =.34; human target: M = 122 ms/video, SE = 13 ms/
video; animal target: M = 132 ms/video, SE = 12 ms/video].

Animals versus humans: Bayes factor The Bayes factor anal-
ysis showed evidence for differences in performance between
present and absent trials (the Bayes factors ranged from 4.82 x
107 and 3.77 x 10, depending on the prior setting). The Bayes
factor was in favor of consistent performance across target
types (the Bayes factors ranged from 0.22 to 0.75, depending
on the prior setting). There was only anecdotal evidence for an
interaction (the Bayes factors ranged from 1.44 to 1.91, de-
pending on the prior setting).

Animals versus humans: Fixation duration The fixation dura-
tions are plotted in Fig. 2f and displayed in Table 2. We
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Table 2  Fixation parameters in Experiment 2 (animals and humans)

Fixation Duration Proportion First

Set Size M [ms] SE [ms] M SE
Animal Target

2 253 17 .65 .04
4 249 14 A7 .04
6 246 14 33 .03
8 238 8 .30 .05
Human Target

2 277 18 .68 .03
4 253 14 .50 .05
6 251 12 35 .05
8 270 17 23 .03

observed a marginal interaction between target type and trial
type [F(1, 8) = 5.18, p = .052, partial n,f =.39]. A main effect
of trial type indicated shorter fixation durations on target-
absent than on target-present trials [F(1, 8) = 126.39, p <
.001, partial nj =.94; absent: M = 167 ms, SE = 5 ms; present:
M =255 ms, SE = 11 ms], but we found no main effect of
target type (p = .35, n.s.).

Animals versus humans: Proportion first fixations on the tar-
get The results for this eye movement measurement were
consistent with those in Experiment 1: There was only a main
effect of set size [F(3, 24) = 38.81, p < .001, partial 772 =.83;
all other ps > .37, n.s.]. The proportion of first fixations that
landed on a target linearly decreased with set size [linear con-
trast: F(1, 8) = 70.49, p < .001, partial n; =.90; Table 2].

Saliency model observers Search slopes for animal targets
among human distractors (M = 18 cycles/video, SE = 2 cy-
cles/video) were steeper than search slopes for human targets
among animal distractors [M = 12 cycles/video, SE = 2 cycles/
video; #(7) = 4.19, p = .004].

Discussion

Participants were equally efficient at searching for animal and
human targets when both types of stimuli were present in the
search array: There were no significant differences between
the two categories for search slopes. Furthermore, we did not
find any differences for the two eye movement measurements
when the target was present. These findings are somewhat
surprising. Previous research with point-light stimuli sug-
gested an advantage for human as compared to animal targets
(Boucart et al., 2016; Pinto & Shiffrar, 2009). The discrepancy
between the present and the previous findings might originate
from the nature of the visual search paradigm. In the previous
studies, observers were presented with human and animal
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stimuli on separate trials. In our Experiment 2, however, ob-
servers processed animals and humans in the same search
display. To detect the target, the observers in Experiment 2
potentially had to also rely on form information, as the kine-
matics of human and animal motion are similar. This motion
similarity may have been detrimental to search efficiency for
human targets when animals were the distractors (e.g.,
Duncan & Humphreys, 1989). By comparison, the observers
in Mayer et al. (2015) could rely on both form and motion
information, leading to more efficient search for humans than
for machines in dynamic natural scenes.

With respect to search slopes on target-absent trials, we
found that searching arrays in which an animal target was
absent (i.e., an array of human distractors only) was less effi-
cient than searching arrays in which a human target was absent
(i.e., an array of animal distractors only). Similarly, in Mayer
et al. (2015) we found that search was less efficient when a
machine target was absent and the search array consisted of
human distractors than vice versa. Less efficient processing of
arrays displaying human distractor videos may reflect atten-
tional capture by a human body and motion (Mayer et al.,
2017).

Consistent with Experiment 1, saliency model observers’
search patterns differed from the patterns of human observers.
This indicates that human observers did not solely rely on
low-level visual features when performing the search tasks,
but most likely used other features, such as experience with
human form and motion (Cavanagh et al., 2001).

Comparing search performance for animal
and human targets across different distractors

Our previous results (Mayer et al., 2015) combined with our
present ones suggest that the nature of the distractor may affect
search efficiency (e.g., Duncan & Humphreys, 1989) in the cur-
rent studies. To investigate this possibility further, we directly
compared search performance on target-present trials for the dif-
ferent target—distractor category pairs in all experiments across
this study and our previous one. First, we compared performance
for animal targets among either machine or human distractors in
Experiments 1 and 2 of this study. We found that search slopes
were steeper with human than with machine distractors [human
distractors: M = 67 ms/video, SE = 6 ms/video; machine
distractors: M = 38 ms/video, SE = 6 ms/video; #16) = 3.24, p
=.005], indicating less efficient search for animal targets in the
context of human distractors. Consistent with this, a higher pro-
portion of first fixations landed on an animal target when the
distractors were machines than when the distractors were humans
[human distractors: M = .44; SE = .03; machine distractors: M =
.62; SE = .04; /(16) = 3.83, p = .001]. Fixation durations on
animal targets did not differ depending on whether the search
array consisted of human or machine distractors [human

distractors: M = 246 ms, SE = 10 ms; machine distractors: M =
225 ms, SE = 8 ms; #(16) = 1.63, p = .12, ns.].

Second, we compared search performance for human tar-
gets among machine or animal distractors from Mayer et al.
(2015) and from Experiment 2 of the present study. We found
that search slopes were significantly steeper with animal than
with machine distractors [animal distractors: M = 78 ms/video,
SE =10 ms/video; machine distractors: M = 35 ms/video, SE =
5 ms/video; #(11.13) = 3.84, p = .003, degrees of freedom
corrected for unequal variances], indicating less efficient
search for humans in the context of animal distractors.
Consistent with this finding, the proportion of first fixations
that landed on a human targets was higher when the distractors
were machines than when the distractors were animals [ma-
chine distractors: M = .67, SE = .04; animal distractors: M =
44, SE = .03; #(15) = 4.74, p < .001]. Fixation durations on
human targets did not differ depending on whether the search
array consisted of animal or machine distractors [animal
distractors: M = 263 ms, SE = 13 ms; machine distractors: M
=270 ms, SE =9 ms; #(15) = 0.46, p = .65, n.s.].

Finally, we tested whether there were any search behavior
differences between animal and human targets when they were
searched for among the same machine distractors in, respectively,
Experiment 1 of this study and Experiment 1 from Mayer et al.
(2015). We found that search slopes did not differ for animal and
human targets [animal targets: M = 38 ms/video, SE = 6 ms/
video; human targets: M = 35 ms/video, SE = 5 ms/video; #15)
=0.44, p = .67, n.s.]. Consistent with this finding, the proportions
of first fixations on a target were the same for both animal and
human targets [animal targets: M = .62, SE = .04; human targets:
M = .67, SE = .04; p = .43, n.s.]. By comparison, fixation dura-
tions were shorter for animal than for human targets [animal
targets: M = 225 ms, SE = 8 ms; human targets: M = 270 ms,
SE =9 ms; «(15) = 3.73, p = .002].

The results from the comparisons between different target—
distractor category pairs suggest that search efficiency is affected
by the similarity of the distractors to the targets. For both animal
and human targets, search efficiency was reduced by distractors
that had similar biological motion, relative to distractors that had
more dissimilar mechanical motion and form (Duncan &
Humphreys, 1989). Interestingly, we found that participants fix-
ated on animal targets more briefly than on human targets when
the same machines were the distractors, which suggests faster
processing of animal than of human targets. However, this pro-
cessing advantage for animals did not lead to more efficient
search than for humans (or for machines, in Exp. 1) at the be-
havioral level (i.e., search slopes).

General discussion

In the present study, we asked whether search advantages for
humans extend to other animate, biological categories, such as
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animals. Using a visual search paradigm, we measured search
slopes as a proxy for search efficiency, and complemented the
search slope with eye fixation measurements (fixation
durations on targets and proportions of first fixations on
targets; Bindemann, Scheepers, Ferguson, & Burton, 2010;
Mayer et al., 2015, 2017). Searching for animals was effortful
(i.e., no “pop-out”; Treisman & Souther, 1985; Wolfe, 1998).
In contrast to our hypotheses, search efficiency was the same
for animals and machines (Exp. 1), as well as for animals and
humans (Exp. 2). The only advantage we found for animals in
this study was a shorter processing time—as indexed by fix-
ation duration—both relative to machines (Exp. 1) and rela-
tive to humans contrasted against the same machine-distractor
category (Exp. 1 in this study and Exp. 1 from Mayer et al.,
2015). Finally, model observers showed search patterns dif-
ferent from those of human observers, suggesting that human
observers do not exclusively rely on low-level visual features
of the videos during visual search.

There is evidence that human observers can quickly and
accurately perceive other humans and animals, even from vi-
sually impoverished point-light stimuli (Beintema & Lappe,
2002; Bellefeuille & Faubert, 1998; Johansson, 1973; Kaiser
et al., 2012; Mather & West, 1993; Troje & Westhoff, 2006).
This implies that under more naturalistic conditions searching
for biological targets would be more efficient than searching
for mechanical targets, as we demonstrated previously for
humans (Mayer et al., 2015, 2017). However, the results of
Experiment 1 do not support this hypothesis, in that search
efficiency was the same for both categories (i.e., animals and
machines). There were shorter fixations on animals. Although
this may reflect faster processing of individual items, it may
not necessarily contribute to more efficient search. One pos-
sible explanation is that search efficiency may depend on both
low-level visual features that allow for quick processing and
top-down mechanisms. This is consistent with what we found
for human targets in our previous studies (Mayer et al., 2015,
2017). In summary, the findings from Experiment 1 suggest
that perceptual and neural mechanisms tuned for human form
and motion (e.g., Cavanagh et al., 2001; Troje & Westhoff,
2006) may not generalize to other biological categories.

The next question was whether top-down and bottom-up
mechanisms would lead to more efficient search for humans
relative to animals. Observers generally have more experience
and richer interactions with humans than with animals (Pinto
& Shiffrar, 2009), which could potentially lead to additional
top-down mechanisms tuned to humans (e.g., attentional
sprites; Cavanagh et al., 2001). In line with this proposal,
studies using point-light stimuli provide evidence that ob-
servers process human stimuli quicker and more accurately
than nonhuman animal stimuli (Boucart et al., 2016; Han
et al., 2013; Pinto & Shiffrar, 2009). For example, Pinto and
Shiffrar found that observers processed human gait more ac-
curately over horse gait. These previous findings comparing

@ Springer

point-light humans and animals imply that under more
naturalistic conditions searching for human targets would be
more efficient than searching for animal targets. New et al.
(2007) found higher accuracy in a change detection task for
changes in humans than for changes in animals (but not in
reaction times). The results from Experiment 2 did not support
this hypothesis either, as search efficiency was the same for
both biological categories. This was the case even when we
compared search efficiency for the same machine distractors.

Different factors may contribute to why we did not find
search efficiency differences between human and animal tar-
gets in the present study. First and foremost, this pattern of
results may relate to the similarity of both the form and motion
between humans and animals, which may increase the diffi-
culty to discriminate between videos from these categories
(e.g., Duncan & Humphreys, 1989). This assumption is in line
with evidence from neuroimaging. Papeo, Wurm, Oosterhof,
and Caramazza (2017) recently showed that regions in the
right posterior STS discriminated between bipedal and qua-
drupedal motion in point-light stimuli across biological cate-
gories (e.g., upright walking human and walking chick vs.
crawling human baby and walking cat), and that regions in
the left posterior STS reliably decoded humans (adult walker
and crawling baby) and animals (walking chick and walking
cat). Animals and humans may be represented in similar brain
regions, which may account for the similar search efficiencies
for animals and humans in our study. Second, the familiarity
of the actions may be important. Previous studies had used a
limited number of common actions, such as running versus
walking (Cavanagh et al., 2001; Papeo et al., 2017; Pinto &
Shiffrar, 2009; Ruffieux et al., 2016; Troje & Westhoff, 2006).
We used videos of humans and animals that performed a wider
variety of both familiar and less familiar actions—for exam-
ple, a person rolling on the ground, a person doing jumping
jacks, a kangaroo moving its arms, and a chimpanzee
climbing a tree. It might be that searching for human targets
can be more efficient than searching for animals if familiar or
typical actions are used, as these are the ones that are most
likely encountered in everyday life and therefore may, for
example, match attentional sprites developed during experi-
ence with human movements (Cavanagh et al., 2001).

Our previous studies (Mayer et al., 2015, 2017) revealed a
search advantage for humans over machines. The present
study showed similar search behavior when searching for an-
imal targets among human distractors and vice versa. If search
performance across categories were transitive, we would ex-
pect a search advantage for animals over machines. Our data
did not confirm this transitivity as search behavior was not
significantly different when searching for animal targets
among machine distractors and vice versa (Exp. 1). This in-
transitivity supports the notion that search performance de-
pends on the similarity between targets and distractors in a
given search array (e.g., Duncan & Humphreys, 1989).
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We note that the availability of motion information may
contribute to the pattern of results in the present study. In
our previous study (Mayer et al., 2015), we found a behavioral
search advantage for human targets among machine
distractors, as measured by search slope, irrespective of
whether we presented videos or static images. However, we
found that fixations on human targets were shorter than on
machine targets for search arrays consisting of videos but
not for arrays consisting of images. Based on these findings,
we suggested that biological motion may facilitate target pro-
cessing, as measured by fixation duration. In the present study,
we did not find a behavioral search advantage for animal tar-
gets over machine targets even though biological motion was
present in the videos. Other studies have shown that the de-
tection of animals is more efficient than the detection of inan-
imate objects when static images are shown (e.g., New et al.,
2007; Ohman et al., 2001). Thus, it may be possible that non-
human biological motion can interfere with search efficiency.
Future research will be needed to clarify whether and how
different types of biological motion facilitates or interferes
with search behaviors and how that relates to eye fixation
patterns.

It is also worth noting that low-level features might have
affected the pattern of results in the present Experiments 1 and
2 (see also Mayer et al., 2015). We showed that model ob-
servers needed more search cycles to detect an animal target
for both human and machine distractors than vice versa. This
finding suggests that the animal videos used in the present
study were less salient than the ones containing humans or
machines. This could lead to a potential disadvantage in de-
tecting the animal videos, regardless of the distractor category.
In our studies, the model observers searched for targets on the
basis of the saliency of contrast, orientation, and motion fea-
tures (Koch & Ullman, 1985; Parkhurst et al., 2002). Using
these relatively simple low-level features, we found that the
search behavior of the model observers differed from that of
our human observers. Zhang et al. (2018) recently developed
advanced computational models that searched for targets on
the basis of more complex features that can better tolerate
changes in object appearance; therefore, such models are more
likely to capture the features used by human observers. Future
research will be necessary to investigate whether these models
can approximate human search behavior in dynamic natural
scenes to increase our understanding of the underlying per-
ceptual and neural processes during visual search. For in-
stance, we could use the Zhang et al. computational models
with our search paradigm and naturalistic videos.

Much of the evidence for specialized perceptual and neural
mechanisms for human form and motion is based on studies
that have used visually impoverished point-light stimuli (e.g.,
Cavanagh et al., 2001; Pinto & Shiffrar, 2009; Troje &
Westhoff, 2006). Overall, the results of the present study, to-
gether with those of our previous studies (Mayer et al., 2015,

2017), highlight important limitations in generalizing from
visually impoverished stimuli to more naturalistic ones.
Perhaps more importantly, our results point to additional fac-
tors that may be important for processing ecologically relevant
stimuli like humans and animals. Learning may be one factor
that affects search efficiency. Human observers may learn the
specific features of human body pose and movement, and this
may contribute to the advantage in processing humans over
other moving objects (e.g., Mayer et al., 2015, 2017). There is
evidence that observers can learn to efficiently process the
form and motion of specific animal species, which leads to
measurable behavioral and neural changes (e.g., Kujala,
Kujala, Carlson, & Hari, 2012; Wan, Bolger, & Champagne,
2012). Learning is not restricted to real animals; indeed, ob-
servers can also quickly learn novel “biological” stimuli with-
in a single experimental session (Jastorff, Kourtzi, & Giese,
2006; Pyles, Garcia, Hoffman, & Grossman, 2007). Searching
for animals may become more efficient than searching for
machines after substantial learning. We included a familiari-
zation phase, but this may not have been sufficient. On the
other hand, any learning during the familiarization phase
might also improve the detection of nonbiological motions,
such as the ones performed by the machines in the videos used
in our study. For example, Hiris (2007) found that detecting
structured nonbiological motion was as good as detecting bi-
ological motion after a brief familiarization phase. The eco-
logical saliency of humans and animals is a second factor that
might affect search efficiency. For example, some studies have
used static images of animals that have evolutionary relevance
(e.g., snakes and spiders) and found increased search efficien-
cy for these animals, relative to distractors such as plants, for
both adults and children (Lobue & DeLoache, 2008; Ohman
et al., 2001). It may be possible that searching for animal
targets in natural dynamic scenes is more efficient than
searching for machine targets if the animal targets are danger-
ous or threatening. Similarly, searching for humans
performing threatening actions in natural scenes may be more
efficient than searching for animals, as has been indicated by
studies investigating detection efficiency using point-light
stimuli (e.g., van Boxtel & Lu, 2012).

Conclusion

Previously we demonstrated that humans are detected more
efficiently than machines in natural videos (Mayer et al., 2015,
2017), but here we found that this advantage did not extend to
nonhuman animals. In combination with our previous find-
ings, the present study thus highlights the importance of the
similarity of form and motion between targets and distractors
(e.g., Duncan & Humphreys, 1989) for search efficiency in
natural scenes. Our findings also highlight other important
factors to be systematically investigated in future research,
including the variety and familiarity of actions performed by
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the targets, learning, and the potential (evolutionary) threat
value of biological stimuli. The visual search paradigm pro-
vides a simple yet powerful way to investigate these factors.
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