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Abstract

Spatial averaging of luminances over a variegated region has been assumed in visual processes such as light adaptation, texture
segmentation, and lightness scaling. Despite the importance of these processes, how mean brightness can be computed remains
largely unknown. We investigated how accurately and precisely mean brightness can be compared for two briefly presented
heterogeneous luminance arrays composed of different numbers of disks. The results demonstrated that mean brightness judg-
ments can be made in a task-dependent and flexible fashion. Mean brightness judgments measured via the point of subjective
equality (PSE) exhibited a consistent bias, suggesting that observers relied strongly on a subset of the disks (e.g., the highest- or
lowest-luminance disks) in making their judgments. Moreover, the direction of the bias flexibly changed with the task require-
ments, even when the stimuli were completely the same. When asked to choose the brighter array, observers relied more on the
highest-luminance disks. However, when asked to choose the darker array, observers relied more on the lowest-luminance disks.
In contrast, when the task was the same, observers’ judgments were almost immune to substantial changes in apparent contrast
caused by changing the background luminance. Despite the bias in PSE, the mean brightness judgments were precise. The just-
noticeable differences measured for multiple disks were similar to or even smaller than those for single disks, which suggested a
benefit of averaging. These findings implicated flexible weighted averaging; that is, mean brightness can be judged efficiently by
flexibly relying more on a few items that are relevant to the task.
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The visual system can summarize complex scenes by rapidly
forming statistical summary descriptions of sets of similar
items. For example, rapid and accurate averaging has been
reported with many visual features, including motion
(Watamaniuk & Duchon, 1992; Watamaniuk, Sekuler, &
Williams, 1989), orientation (Dakin & Watt, 1997; Parkes,
Lund, Angelucci, Solomon, & Morgan, 2001), and size
(Ariely, 2001; Chong & Treisman, 2003, 2005; for reviews,
see Alvarez, 2011; Bauer, 2015; Whitney, Haberman, &
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Sweeny, 2014). Such statistical processing, called ensemble
coding, has also been found for higher-level properties of
images, including the emotion and gender of faces
(Haberman & Whitney, 2007, 2009), the headings of point-
light walkers (Sweeny, Haroz, & Whitney, 2013), or the se-
mantic meaning of symbols (Corbett, Oriet, & Rensink, 2006;
Sakuma, Kimura, & Goryo, 2017; Van Opstal, de Lange, &
Dehaene, 2011). Considering the statistical regularity and re-
dundancy of the natural world, this ability can be critical to
efficiently representing natural scenes.

Understanding how this ensemble coding is implemented
has attracted great interest. Early studies argued that the ex-
traction of ensemble means involves a parallel and holistic
process (Ariely, 2001; Chong & Treisman, 2003, 2005).
Supporting evidence included findings that the mean judg-
ment was very efficient and effortless; it was not affected by
variations in display size (Ariely, 2001), and was relatively
immune to variations in stimulus duration and in item distri-
butions (Chong & Treisman, 2003). Chong and Treisman
(2003) argued for the importance of parallel processes to
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preattentively pool feature information in order to represent
the statistical properties of visual scenes, and they discussed a
link to parallel processing in feature search tasks (Treisman &
Gormican, 1988). However, subsequent studies indicated that
alternative strategies, such as subset sampling, could also ac-
count for the results (e.g., Myczek & Simons, 2008). This
claim has aroused much controversy (Ariely, 2008; Chong,
Joo, Emmanouil, & Treisman, 2008; Simons & Myczek,
2008), but there is now converging evidence for the notion
that not all items are uniformly weighted in the computation of
ensemble mean representations. Subsampling in ensemble
coding has been studied for various perceptual attributes
(Allik, Toom, Raidvee, Averin, & Kreegipuu, 2013; de
Gardelle & Summerfield, 2011; Kanaya, Hayashi, &
Whitney, 2018; Marchant, Simons, & de Fockert, 2013;
Maule & Franklin, 2016; Solomon, Morgan, & Chubb, 2011).
Despite this recent surge in the study of ensemble cod-
ing, there has been little work regarding ensemble means
of brightness. This may reflect the belief that for low-level
visual attributes such as brightness, or color in general,
the mean could be encoded by early visual mechanisms
with large receptive fields; the mechanisms simply pool
local features in order to represent the mean (see also
Myczek & Simons, 2008). In fact, spatial averaging of
luminances over a variegated region has been assumed
in visual processes involved in light adaptation (e.g.,
Buchsbaum, 1980; Shapley & Enroth-Cugell, 1984), tex-
ture segmentation (e.g., Chubb, Econopouly, & Landy,
1994; Chubb, Landy, & Econopouly, 2004), and lightness
scaling (e.g., Bressan, 2006). However, despite the impor-
tance of these visual processes, how ensemble mean
brightness can be computed remains largely unknown.
One exception is Bauer (2009), who investigated mean
brightness for a briefly presented stimulus set of achromatic
disks. Observers judged whether a single probe disk presented
following the stimulus set was brighter or darker than the
mean brightness of the set. The results showed that the point
of subjective equality (PSE) for mean brightness systematical-
ly deviated from the arithmetic mean. The PSE varied with the
luminance level of the set and was found to be between 0.72
and 1.31 times the arithmetic mean of the set. Bauer (2009)
interpreted this systematic deviation of the PSE as supporting
the idea that ensemble mean brightness follows Stevens’s
power law, just as the brightness of single items does.
However, in our opinion, if both the brightness of a single
probe and the ensemble mean brightness follow the power
law, the relation between the PSE (measured with the single
probe) and the arithmetic mean luminance of the ensemble
should have been described by a linear function in a log—log
plot, as has been demonstrated in cross-modality matching (J.
C. Stevens, Mack, & Stevens, 1960; S. S. Stevens, 1975). The
slope of the function would correspond to the ratio of the two
original exponents of the power function. If the exponents
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were similar, the slope would be close to unity. This prediction
did not hold. Thus, the results suggested that some distinctive
processing might underlie the perception of mean brightness.

In fact, differential weighting of some specific items in a
stimulus set has been implicated in the context of lightness per-
ception. Toscani, Valsecchi, and Gegenfurtner (2013a) found
that, when asked to judge the lightness of objects, observers
tended to direct their eyes to the brightest parts of the objects,
and their lightness matches were biased toward the luminance of
the fixated region. Toscani et al. further showed that this effect
was mediated by attention as well as by eye fixations (see also de
Fockert & Marchant, 2008, for the effects of attention on mean
size). Other previous studies have argued that when judging the
surface color or lightness of an object, the stimulus region of the
highest contrast can be most informative (Anderson & Winawer,
2005, 2008; Wollschliager & Anderson, 2009). Moreover, previ-
ous studies on color averaging of multicolored textures also re-
ported the bias favoring the region of the highest contrast
(saturation) (Kimura, 2018; Kuriki, 2004; Sunaga &
Yamashita, 2007). Recently, Kimura (2018) showed that the bias
depended on stimulus variability around the mean. When the
color variability in the texture was large, the mean color consis-
tently deviated from the colorimetric mean toward the most-
saturated color in the set. These findings accord with the idea
that favoring the highest-luminance or highest-contrast items can
be a good heuristic for the visual system to efficiently represent
the surface properties of objects, particularly when sensory infor-
mation is noisy.

An alternative type of differential weighting strategy—that
is, trimmed or robust averaging—has also been demonstrated
in ensemble coding (de Gardelle & Summerfield, 2011;
Haberman & Whitney, 2010; Myczek & Simons, 2008).
Robust averaging refers to down-weighting or excluding out-
lying items (those that fall far from the mean of the set, such as
of the highest or lowest values) when making mean judg-
ments. It can lead to reliable judgments by reducing the influ-
ences of less trustworthy evidence. De Gardelle and
Summerfield (2011) showed that when asked to classify the
mean hue (e.g., red vs. blue), observers discounted outlying
items and based their decisions principally on the items close
to the mean. Robust averaging may also be used in the com-
putation of ensemble mean brightness, although the weighting
of the extreme values seems to be in the opposite direction
from the one discussed above. De Gardelle and Summerfield
used trial-by-trial feedback, and thus perceptual learning
might be an important factor for robust averaging of color
(see also Fan, Turk-Browne, & Taylor, 2016). Taking these
and previous findings together, investigating how heteroge-
neous luminance signals are summarized into an ensemble
mean brightness could contribute to furthering our under-
standing of ensemble coding and brightness perception, as
well as of the perception of illumination and surface color.
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The objective of the present study was to investigate how
accurately and precisely observers can judge the mean bright-
ness of briefly presented heterogeneous achromatic arrays.
Specifically, we asked the question of whether mean bright-
ness judgments can be done in an efficient and parallel fashion
or whether they involve some “smart” strategy, such as differ-
ential weighting. For this purpose, we introduced a novel en-
semble brightness comparison paradigm in which two stimu-
lus arrays were composed of different numbers of achromatic
disks (e.g., 6 and 12 disks; see Fig. 1). The observer’s task was
to choose the brighter (or darker) array. This paradigm can
allow us to indicate whether observers differentially weighted
the highest (or lowest) luminances, rather than holistically
averaging the brightness of the disks, as we describe below.

If two stimulus arrays are composed of the same number of
disks, the brighter (or darker) array will tend to contain the
highest- (or lowest-)luminance disk. Thus, strongly weighting
the highest (or lowest) luminance in the computation of the en-
semble mean brightness is a good strategy for comparing mean
brightness. Moreover, even if observers cannot integrate umi-
nance signals across the disks, simply finding the highest- (or
lowest-)luminance disk in the entire stimulus display and choos-
ing the array containing that disk can generally lead to the correct
answer. (This can be considered an extreme case of differential
weighting—that is, disk luminances other than the highest one
are weighted at zero.) This shortcut is troublesome, because it is
very difficult to tell whether the observer’s choice relied on the
simple shortcut or on actual averaging of the disk luminances,
when the stimulus arrays are composed of the same number of
disks. The present paradigm, with different numbers of disks,
allowed us to reduce the covariance between the mean and the
highest (or lowest) luminance. We could have pairs of arrays in

(a) 6vs. 12 (b)

Fig. 1 Stimulus configurations (a and b) and the stimulus sequence (c)
used in this study. A dark background was used in Experiment 1 (a),
whereas a white background was used in Experiments 2 and 3 (b). The
top row shows the 6-versus-12 disk configuration, and the bottom row the
9-versus-12 configuration. In the measurement, the left and right posi-
tions of the disk arrays were randomly switched from trial to trial. Note

which the darker array contained the highest-luminance disk, as
will be fully explained in the later section and in Fig. 2. Thus,
simply choosing the array containing the highest-luminance disk
would result in a specific bias (Fig. 2), and this bias could be used
to indicate whether the results were based on the shortcut or on
holistic averaging. Similar control of the covariance can be
achieved while keeping the number of disks constant, if we ma-
nipulate luminance variability around the mean. However, larger
luminance steps might lead to texture segmentation, and the disks
having different luminances might not be perceived as a group
(Maule & Franklin, 2015; Utochkin & Tiurina, 2014).

Another possible strategy that observers could utilize for
mean brightness judgments was choosing the array with the
greater total brightness. When the stimulus arrays are com-
posed of the same number of disks, the array of the greater
total brightness always has the greater mean brightness.
Therefore, it would be impossible to distinguish averaging
from summing the luminance signals. However, the total-
brightness strategy does not work well in the present paradigm
with different numbers of disks. It would always lead to the
wrong answer when the array with less disks had the greater
mean brightness. Overall, the present paradigm can be effec-
tive to indicate the involvement of several strategies other than
holistic rote averaging. Thus, the investigation of mean bright-
ness judgments using the present paradigm can provide criti-
cal insights into whether and how an ensemble mean is com-
puted for brightness.

Using the present paradigm, we showed that mean brightness
judgments were precise, in the sense that the just-noticeable dif-
ference (JND) was small, but they were also mildly biased. On a
dark background, the bias could be accounted for by observers
heavily relying on either the highest-luminance or the highest-

6vs. 12 (c)
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that, in these examples, the disk luminances on the dark (a) are the same
as those on the white (b) background. Nonetheless, the apparent contrast
of the disks greatly changes with the background luminance. The back-
ground of the stimulus examples was trimmed to reduce the size of the
drawings, and the drawings are not to scale
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Fig. 2 (a and b) Transformed luminance (TLum) of the disks for each
comparison stimulus in the Std6—Cmp12 (a) and Std12—Cmp6 (b) con-
ditions. Here, TLum is defined by luminance transformed according to
the power function with an exponent of 1/3—that is, TLum = lumi-
nance®. The TLums of the disks in the standard stimulus are shown by
solid symbols. Two horizontal dotted lines indicate the highest and lowest
TLums of the standard stimulus. (¢ and d) Predictions of the results in
Experiment 1: (¢) Accurate brightness averaging. (d) Choosing the stim-
ulus array containing the highest-luminance disk (highest-luminance
shortcut). Proportions of responses indicating that the comparison

contrast disk (Exp. 1). In Experiment 2 we used a white back-
ground, to differentiate the predictions based on the two strate-
gies, and found that the bias resulted from favoring the highest-
luminance disk. In Experiment 3 the task was changed from
choosing the brighter to the darker array, and the results revealed
that the bias was task-dependent. These findings implicate effi-
cient and flexible weighted averaging of luminance signals for
ensemble mean brightness judgments.

Experiment 1: Choosing the brighter array
on a dark background

To investigate how accurately and precisely observers can
judge the mean brightness of achromatic disks, we measured
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stimulus was brighter are plotted as a function of the relative comparison
TLum. In each panel, black squares represent the prediction in the Std6—
Cmp12 condition, whereas gray circles show the prediction in the Std12—
Cmp6 condition. In the Std6—~Cmp12 condition, for the relative compar-
ison TLum of 0.95, the highest luminances in the standard and compar-
ison stimuli were very similar (Std = 3.409 vs. Cmp = 3.410; see panel a),
and thus the proportion of responses was set to .50 (black squares in panel
d). A similar situation occurred in the Std12—Cmp6 condition for the
relative comparison TLum of 1.05 (Std = 3.574 vs. Cmp = 3.572)

the PSE and the JND for mean brightness using two stimulus
arrays with different numbers of disks. Observers’ task was to
choose the brighter array on a dark background. To evaluate
the precision of the mean brightness judgments, the JND for
mean brightness was compared with that measured using sin-
gle disks. This comparison could indicate how precise mean
brightness judgments are, relative to single-disk brightness
judgments.

According to Stevens’s law, brightness is a nonlinear func-
tion of luminance (but see also Nam & Chubb, 2000).
Attempting to compensate for the nonlinearity and make the
spacing of disk luminance perceptually linear, we transformed
disk luminances according to Stevens’s power law with an
exponent of 1/3 (S. S. Stevens, 1975). The selection of per-
ceptual metric would influence the interpretation of any
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possible bias. This issue will be discussed in General
Discussion, after we present all the experimental results.

Method

Observers Eleven observers in total, who had normal or
corrected-to-normal visual acuity, participated in Experiment
1. All the observers except for the first author (S;) were naive
with regard to the purpose of the experiments. Six of them
participated in the main experiment, seven of them took part in
the random-mean experiment, and a different subset of seven
performed in the single-disk experiment. The observers who
participated in this and the following experiments gave in-
formed consent after thorough explanation of the procedures
before the experiment, and a specific number was assigned to
each of them (e.g., S;). The experiments were conducted in
accordance with the Declaration of Helsinki and were ap-
proved by the university’s Human Research Ethics
Committee.

In this study, the number of observers was small. We
attempted to analyze mean brightness judgments as they were
manifested at the individual-observer level, as well as at the
group-mean level. Because we collected a lot of data for each
observer, as will be described in Procedure section, statistical
power was sufficient within observers and did not much rely
on averaging across observers.

Apparatus and stimuli The stimuli were generated using
Matlab (The MathWorks Inc.) in conjunction with the
Psychophysics Toolbox 3 (Brainard, 1997; Kleiner,
Brainard, & Pelli, 2007; Pelli, 1997). They were displayed
on a 22-in. Mitsubishi color monitor (RDF223H), driven by
an NVIDIA video card with a pixel resolution of 1,600 x
1,200 and a frame rate of 85 Hz. The intensity of each phos-
phor could be varied with 10-bit resolution. A Minolta CS-
1000 spectroradiometer and an LS-100 luminance meter were
used to measure the spectral radiance characteristics of the
monitor’s three phosphors and the gamma function for each
phosphor. Then these calibration data were used to produce
stimuli with desired tristimulus coordinates. The CIE xy chro-
maticity coordinates of all stimuli were set to those of CIE
illuminant D65 (x = 0.313, y = 0.329), and only their lumi-
nance was varied. A chin and forehead rest was used to main-
tain a viewing distance of 57 cm.

Each stimulus display was composed of the standard and
comparison stimuli, which were presented on the left and right
sides of a fixation cross presented in the center of the screen
(Fig. 1). The sides of the standard and comparison stimuli
were randomly changed from trial to trial. Two different stim-
ulus configurations were used for multiple disks: 6 versus 12
disks or 9 versus 12 disks (Fig. 1a). The 6-, 9-, and 12-disk
arrays were composed of 3 x 2, 3 x 3, and 3 x 4 arrays of
disks, respectively. The disks were immediately adjacent to

each other in order to facilitate grouping of the heterogeneous
disks. The stimulus condition will be specified in the form
“Std6—Cmp12,” meaning that the standard stimulus was a 6-
disk array and the comparison stimulus was a 12-disk array.
The four configuration conditions were Std6—Cmp12, Std12—
Cmp6, Std9—Cmp12, and Std12—-Cmp9. The stimulus condi-
tions using the 6-versus-12 configuration (Std6—Cmp12 and
Std12-Cmp6) might be sufficient to discourage observers
from using other luminance clues (e.g., the highest or lowest
luminance) rather than the mean luminance. Nonetheless, the
9-versus-12 configuration was included in the measurement
mainly to discourage observers from focusing their attention
on a small part of the stimulus. As is shown in Fig. 1a, the 6-
disk array corresponds to the two central rows of the 12-disk
array. Thus, limiting the configuration only to 6 versus 12
disks might have promoted observers’ focusing their attention
on the common two central rows. In addition, including the 9-
versus-12 configuration increased the variety of the stimulus
display, which could discourage observers from memorizing
the stimulus. (See the Possible Effects of Heavily Weighting
the Highest Disk Luminance section below for further discus-
sion about the 9-versus-12 configuration.) Although a 6-
versus-9 configuration was also possible, it was not used in
the experiment.

Each of the disks in the stimulus array subtended
1.5°. The arrays were vertically centered on the screen,
and the horizontal center of the arrays was shifted from
the fixation point by 4.5°. The background subtended
35.3° (horizontally) by 26.9° (vertically) and had a lu-
minance of 5 cd/m® (Fig. la). The standard and com-
parison stimuli were presented simultaneously for
200 ms (Fig. 1c). The stimuli were followed by a dy-
namic pattern mask for 200 ms, to disrupt visual pro-
cessing of the stimulus after the offset and minimize
possible effects of afterimages of the stimulus. The
mask was a 14° x 8° random mosaic composed of 1°
squares, and its mean luminance was set to 5 cd/m?
(i.e., the background luminance). A blank screen was
presented until the observer’s response.

Stimulus luminance was transformed according to the
power function, with an exponent of 1/3 (Bauer, 2009; S. S.
Stevens, 1975). For the sake of simplicity, let us call the trans-
formed luminance TLum—that is, TLum = luminance'”. The
mean TLum of the standard stimulus was fixed at 3.271 (35
cd/m?). The mean TLum of the comparison stimulus was de-
fined relative to the mean standard TLum (relative comparison
TLum, hereafter), and varied from 0.89 to 1.11 in steps 0of 0.02
(the mean luminance ranged from 25 to 48 cd/m?). More
precisely, let Rerp, be the relative comparison TLum, and
TLumy,g and TLumy,c be the mean standard and comparison
TLums, respectively. Then, TLumy,c can be described as

TLumMC = RCTL X TLul’l’lMs.
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For example, the lowest mean TLum of the comparison
stimulus was 0.89 x 3.271 = 2.911, which is equal to 29113
=24.67 cd/m>. The N TLums, TLumy (k=1,2,...,N),ina
given comparison array with a mean TLum (TLumy,c) were
calculated as

N+1
TLum; = TLumyc + (k— T+> x 0.055.

That is, the TLums of all disks in a given stimulus array
were distinct (Fig. 2a and b) and equally spaced in 0.055 steps,
centered on TLumy,c. With this definition, the range of TLum
was smaller for the array of the smaller number of disks. The
spatial position of disks within the array was shuffled random-
ly between trials.

Because the mean standard TLum was constant (3.271) in
the measurement, two additional luminance conditions were
also included to discourage observers from memorizing the
stimulus luminances and basing their judgments on the mem-
ory of the stimulus rather than sensory inputs. In one condi-
tion, the mean TLums of the two stimulus arrays were 3.500
and 3.631 (1.07 and 1.11 in relative units, respectively), and in
the other condition, the mean TLums were 2.911 and 3.042
(0.89 and 0.93, respectively).

We also conducted an auxiliary random-mean experiment
in which the mean standard TLum was varied randomly from
trial to trial in a range from 3.042 to 3.500 (0.93 to 1.07 in
relative units). The other aspects were kept the same as in the
main experiment.

Procedure The method of constant stimuli was used in this and
the following experiments. The experiment was run in a dark
room. At the beginning of each daily session, observers dark-
adapted for at least 5 min, and then preadapted to the back-
ground for 2 min. On each trial, the observer’s key press
initiated the stimulus sequence (Fig. 1c). Observers were
asked to compare the mean brightness of each array of disks
and to indicate which array, left or right, was brighter. All
observers except for the first author did not know how the
stimuli were constructed. Auditory feedback was given on
every trial, indicating whether the observer’s response was
correct or wrong. The brighter array was defined as the one
that had a higher mean TLum. Although TLum was used for
comparison, we confirmed that calculation based on linear
luminance (in candelas per square meter) would have provid-
ed the same answer. Observers were instructed that they could
have as many practice trials as they wanted in order to famil-
iarize themselves with the task. Each observer had ten to a few
dozen practice trials before the main experiment.

A randomized block design was used, and all 56 stimulus
conditions for multiple disks [4 configuration conditions
(Std6—Cmp12, Std12—Cmp6, Std9—Cmp12, Std12-Cmp9) x
14 luminance conditions (12 comparison luminance steps and
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two additional luminance conditions)] were repeated 10 times
in a daily session. For each observer, each session was repeat-
ed three times on different days to obtain reliable data. The
total number of trials for each stimulus condition was 30. In
the analysis of the results, the proportion of responses indicat-
ing that the comparison stimulus was brighter was plotted as a
function of the relative comparison TLum in each configura-
tion condition for each observer. The PSE (i.e., the relative
comparison TLum producing 50% performance) and the JND
(i.e., the difference between the relative comparison TLum
producing 75% performance and that corresponding to the
PSE) were determined by fitting a cumulative normal distri-
bution function to the psychometric function using psignifit 4
(Schiitt, Harmeling, Macke, & Wichmann, 2016). The results
in the additional conditions using different mean TLums were
excluded from the PSE and JND analysis but are described in
the supplementary results.

To investigate the precision of mean brightness judgments,
the JND for mean brightness was compared with that mea-
sured using single disks. In the measurement, both the stan-
dard and comparison stimuli were composed of a single disk.
Each disk was centered vertically on the screen and was po-
sitioned horizontally 4.5° away from the fixation point, so that
the center of the disk corresponded to the position of the mul-
tiple disks in the main experiment. The relative comparison
TLum was varied from 1.01 to 1.11 (in 0.02 steps). Other
aspects were the same as in the main experiments.

Possible effects of heavily weighting the highest disk lumi-
nance To better understand the results of the experiment, it
would be helpful to preexamine possible effects of heavily
weighting the highest disk luminance (highest-luminance
strategy) in mean brightness judgments. As a basis for com-
parison, if the brightness of multiple disks were averaged ac-
curately, regardless of the difference in the numbers of disks,
the PSE would be expected to be 1.0 in relative TLums (i.e.,
the point of objective equality) in both the Std6—Cmp12 and
Std12—Cmp6 conditions (Fig. 2¢). Additionally, if the bright-
ness of multiple disks were summarized with robust averag-
ing, the PSE would also be expected to be 1.0, because, in the
present stimulus, the distribution of TLum is symmetric to the
mean, and thus, down-weighting the extreme values does not
shift the PSE. Here, in Fig. 2c and d we assume that observers’
responses are based on ideally precise luminance discrimina-
tion, but the actual response should be more stochastic.

In contrast to accurate averaging, heavily weighting the
highest disk luminance in the computation of the mean would
increase the mean brightness of the stimulus array containing
the disk. Thus, that array would be chosen more as the brighter
of the two, even when the mean TLums were physically the
same between the standard and comparison stimuli. Although
the present paradigm with different numbers of disks would
discourage observers from using the highest-luminance
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strategy, through the trial-by-trial feedback, observers might
still use it, particularly when the task was difficult. How biased
the observers’ choices would be would depend on how heavi-
ly the highest luminance was weighted. Here, for the sake of
simplicity, we assume an extreme case of the highest-
luminance strategy—that is, that observers would simply
choose the array containing the highest-luminance disk as
the brighter one (Fig. 2d). We call this strategy the highest-
luminance shortcut. This shortcut predicts that the 12-disk
array would be chosen as the brighter one even when it had
a lower mean TLum, because it had the wider TLum range,
and thus the highest-luminance disk would be included in this
array (Fig. 2a and b). In the Std6—Cmp12 condition, this
would happen when the mean comparison TLum was in the
range of 0.95 to 0.99 (Fig. 2a). Choosing the 12-disk array
(i.e., the comparison stimulus) as the brighter one would lead
to a leftward shift of the psychometric function (black squares
in Fig. 2d), and thus produce a biased lower PSE. A similar
situation can be found when the mean comparison TLum was
in the range of 1.01 to 1.05 in the Std12—Cmp6 condition (Fig.
2b). Choosing the 12-disk array (i.e., the standard stimulus) as
the brighter one would produce a biased higher PSE (gray
circles in Fig. 2d). An important prediction is that the
highest-luminance shortcut, and the highest-luminance strate-
gy in general, predicts that the biases would be in the opposite
directions in the Std6—Cmp12 and Std12—Cmp6 conditions.

More specifically, if observers simply chose the array con-
taining the highest-luminance disk (i.e., took the highest-
luminance shortcut) and the observers’ discrimination were
ideally precise, we would expect to see a shift of PSE by +
0.05 units of TLum, as is shown in Fig. 2d (abouta— 14% or +
16% luminance difference, respectively, in candelas per
square meter). The size of the shift would be smaller if ob-
servers relied and averaged more than one disk luminance and
if internal and external noises were taken into consideration.
Nonetheless, because the highest-luminance strategy would
be expected to shift the PSE in opposite directions in the
Std6—Cmp12 and Std12—Cmp6 conditions, a within-subjects
analysis of the PSE difference between the two conditions
could allow us to detect the small bias in mean brightness
judgments.

The same pre-examination for the 9-versus-12 configura-
tion indicated that the shift of PSE would be + 0.02 units of
TLum (about a — 5.9% or + 6.1% luminance difference, re-
spectively, in candelas per square meter), and could be smaller
in the actual measurement. Consequently, detecting the PSE
shift in the 9-versus-12 configuration was expected to be very
difficult. Nonetheless, the 9-versus-12 configuration was in-
cluded in the measurement mainly to increase the variety of
the stimulus displays, as is described in Apparatus and Stimuli
section. Our main analysis focused on the results in the 6-
versus-12 configuration, and the results in the 9-versus-12
configuration are described in the supplementary results.

Note that the present prediction based on the highest-
luminance shortcut is the same as that based on the highest-
contrast shortcut—that is, the strategy of simply choosing the
array containing the highest-contrast disk. Because the back-
ground was dark in Experiment 1, the highest-luminance disk
also had the highest contrast to the background.
Differentiating the predictions based on highest contrast from
those based on the highest-luminance shortcut would require
using a brighter background (see Exp. 2).

For the sake of completeness, if observers could only uti-
lize the total brightness of the arrays, instead of the mean
brightness, their performance would be very poor, particularly
when the relative comparison TLum was close to 1.0.

Results and discussion

The results of Experiment 1 (the 6-versus-12 disk configura-
tion) revealed that observers could carry out mean brightness
judgments fairly well, but their judgments exhibited consistent
and moderate bias (Fig. 3). The size of the bias was different
for different observers. The psychometric functions for some
observers (e.g., S4) exhibited a very small shift in the horizon-
tal position (Fig. 3a), and their results might be considered
accurate averaging. However, the functions for other ob-
servers (e.g., S;) showed a mild bias (Fig. 3b). The results
for PSE (Fig. 4a) revealed a small to medium bias for all
observers. The shift of 0.02 in relative TLum corresponded
to about a 6% difference in mean luminance expressed in
candelas per square meter. The difference in PSE averaged
across different observers was statistically significant between
the Std6—Cmp12 and Std12—Cmp6 conditions [#(5) = 3.77, p
=.013, Cohen’s d = 3.03]. Although the size of the PSE shift
was relatively small, the effect size (d) of the mean PSE dif-
ference was large. We also show the 95% confidence interval
for each mean PSE (the rightmost data points in Fig. 4a). The
intervals for both the Std6—-Cmp12 and Std12-Cmp6 condi-
tions did not include 1.0 (the point of objective equality). The
biases were smaller than those predicted on the basis of the
assumption that observers choose the array containing the
highest-luminance disk (the second leftmost data points in
Fig. 4a; see also Fig. 2d). These findings indicated that accu-
rate averaging, robust averaging, or linear spatial pooling of
local luminances cannot explain the results well. The results
are more consistent with differential weighting of the highest
luminance in averaging the disk luminances. Smaller biases
are consistent with the accounts that observers relied on more
than one disk luminance and/or that some noise contributed to
the judgments. The results in the 9-versus-12 disk configura-
tion exhibited smaller biases (see the supplementary materials
for results from the 9-versus-12 disk configuration in this and
subsequent experiments).

Similar results were found in the auxiliary experiment, in
which the mean luminance of the standard stimulus was
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Fig.3 Psychometric functions for representative observers in Experiment
1: (a) observer S, and (b) observer S;. The proportion of comparison-
was-brighter response was plotted as a function of the relative comparison
TLum. In each panel, black squares represent the results in the Std6—

varied randomly from trial to trial (Fig. 4b). The difference in
PSEs was statistically significant between the Std6—Cmp12
and Std12-Cmp6 conditions [#(6) = 3.61, p = 011, d =
2.53]. Thus, the findings in the main experiment are not spe-
cific to situations in which the standard mean TLum was fixed
on most of the trials. Moreover, the results were also similar in
the additional luminance conditions of the main experiment,
in which the mean TLums of the two arrays were different
from the constant standard TLum (i.e., 3.271, which is 35 cd/
m?); the proportions of responses selecting the brighter array
were similar to those found in the conditions with comparable
TLum differences (see the supplementary material for the
results from the additional luminance conditions in this and
subsequent experiments).

Another important finding is that JNDs measured with
multiple disks for mean brightness judgments appear to be
smaller than JNDs measured with single disks (Fig. 5). The
difference in JNDs between single disks and the main exper-
iment was not statistically significant [/(11)=0.94, p=.37,d=
0.57], but the difference between single disks and the random-
mean experiment was statistically significant [#(9) =2.50, p =
.034, d = 1.44]. Smaller JNDs with multiple disks are consis-
tent with a benefit of averaging—that is, averaging canceled
out random noises in the individual signals and thus increased
the precision of judgments. The size of the benefit might not
have been very large when observers averaged (or highly
weighted) only a few disk luminances.

Overall, the present results demonstrated that mean
brightness judgments were efficient and precise.
However, they were biased and not free from the effects
of different array sizes. The bias was in the same direc-
tion as that predicted by the highest-luminance shortcut.
However, as has already been discussed, similar biases
can also be predicted by the highest-contrast shortcut. In
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Cmp12 condition, whereas gray circles show those in the Std12—Cmp6
condition. The solid and dashed lines illustrate cumulative normal distri-
bution functions fitted to the data

Experiment 2, the predictions by the two shortcuts were
differentiated by using a white background.

Experiment 2: Choosing the brighter array
on a white background

In Experiment 2 we investigated the effects of changing the
background luminance while keeping the disk luminance and
the task the same as in Experiment 1. Making the background
white greatly changed the luminance contrast of each disk
with the background (Fig. 1b), so that the lowest-luminance
disk became the highest-contrast disk. Therefore, if the biased
judgments in Experiment 1 resulted from the observers relying
more on the highest-contrast (or most salient) disk, the bias
would be reversed in Experiment 2. However, if the highest-
luminance disk by itself was important, the direction of the
bias would be the same.

Method

In Experiment 2, the PSE measurement was conducted using a
white background (75 cd/m?) (Fig. 1b). The background had
the highest luminance in the stimulus display throughout the
measurement. The other aspects were kept the same as in
Experiment 1. Eight observers, who had normal or
corrected-to-normal visual acuity, participated in Experiment
2.

Results and discussion
The results for PSE (Fig. 6a) were similar to those in

Experiment 1 (Fig. 4a), even though the apparent contrast of
the disks was greatly changed against the white background
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Fig.4 Results of Experiment 1. (a) Predictions and results for the point of
subjective equality (PSE). The data points shown on the left side are the
predictions (see Fig. 2¢ and d). The symbols marked as “Average” repre-
sent the prediction for accurate brightness averaging; the PSEs are ex-
pected to be 1.0 (Fig. 2¢). The symbols marked as “Highest” represent the
prediction based on the highest-luminance shortcut. The PSEs are expect-
ed to be highly biased (Fig. 2d). The data points on the right side are the
results for six observers. Error bars represent the 95% credible intervals
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Fig. 5 Just-noticeable differences (JNDs) for mean brightness judgments
measured with multiple disks in the main and random-mean experiments
(dark- and light-gray bars, respectively), and INDs measured with single
disks (black bar). Error bars designate + 1 SEM across observers

Single
disk

Exp.1

(Schiitt et al., 2016). The rightmost symbols show the averages across the
different observers. Error bars designate the 95% confidence intervals.
Note that this confidence interval can be used for inferring whether each
mean PSE is different from 1.0 (the point of objective equality), but not
for inferring the difference in mean PSEs between the Std6-Cmp12 and
Std12—-Cmp6 conditions. (b) Results for the PSE in the auxiliary random-
mean experiment, in which the standard mean TLum was varied random-
ly from trial to trial

(cf. Fig. 1a and b). The PSE was mildly biased for most ob-
servers, and the direction of the bias was the same as in
Experiment 1. The difference in PSEs was statistically signif-
icant between the Std6—Cmp12 and the Std12—Cmp6 condi-
tions [#8) = 3.60, p = .009, d = 2.57]. The effect size in
Experiment 2 (2.57) was also very similar to that in
Experiment 1 (2.51). This result could be explained if the
observers who had participated in Experiment 1 adhered to
the same strategy in Experiment 2, ignoring the change in the
stimulus. However, this possibility is not likely, because at
least one (S;;) of the three new observers (S;p—S;,) exhibited
a similarly biased PSE. Thus, the bias does not seem to be
associated with observers’ persistent responses.

The result that the direction of the bias for mean brightness
judgments remained the same with both dark and white back-
grounds was consistent with the highest-luminance, but not
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Fig. 6 Results for the point of subjective equality (PSE) in Experiments 2 (a) and 3 (b), respectively. Other aspects are the same as those in Fig. 4

with the highest-contrast, shortcut. This finding raises the
question of why observers relied more on the highest-
luminance disk even when it was not the most salient feature
in the stimulus display. This might be because observers were
asked to choose the brighter array of the stimulus. That is,
observers might have relied on the information more relevant
to the task—that is, on brighter rather than darker disks—
particularly when the task was difficult. This account predicts
that if we changed the task from choosing the brighter to
choosing the darker array, the direction of the bias would be
reversed. This prediction was tested in Experiment 3.

Experiment 3: Choosing the darker array
on a white background

In Experiment 3, we investigated the effects of changing the

task instructions, and observers were asked to choose the
darker array. Because the stimuli remained unchanged, the
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accounts based on the stimulus properties predicted the same
bias as in Experiment 2.

Method

In Experiment 3, only the instructions were changed from the
settings in Experiment 2. Seven observers, who had normal or
corrected-to-normal visual acuity, participated in Experiment
3.

Results and discussion

The results showed that, although the stimuli were completely
the same as in Experiment 2, the opposite bias, favoring the
lowest-luminance disk, was now found in most of the ob-
servers (Fig. 6b). The difference in PSEs was statistically sig-
nificant between the Std6—Cmpl2 and Std12—-Cmp6 condi-
tions [#(7) = 2.94, p = .026, d = 2.38]. The results in
Experiment 3 strongly suggest that the bias was not
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stimulus-dependent, but task-dependent. The task instructions
changed how the different disk luminances were weighted,
and now the lowest disk luminance was weighted more
strongly than the others.

Interestingly, the observers who had also participated in
Experiment 2 reported that they did not intentionally change
their strategy in response to the instruction change. Thus, the
reversal of the bias might not be a conscious response.

General discussion

The present study demonstrated that observers can efficiently
and flexibly select a set of disks that is particularly informative
in view of the task requirement, and that they rely strongly on
that subset of disks in making mean brightness judgments
(Figs. 3, 4, and 6). These findings cannot be accounted for
by assuming that the most salient disk attracted the observers’
attention and that the allocation of attention biased the bright-
ness judgments (see de Fockert & Marchant, 2008). The sub-
set selection for weighted averaging seemed more deliberate.
The mean judgments were accomplished efficiently even
though observers had only 200 ms to view two heterogeneous
arrays composed of 6 and 12 disks of different luminances.
The judgments were also precise, in the sense that the JNDs
measured with multiple disks were similar to, or even smaller
than, the JND for simple brightness comparison with single
disks (Fig. 5).

A bias similar to the one reported in this study could be
observed even if the actual perceptual transformation of the
luminance signals was greatly different from that assumed for
setting up the stimulus luminances. Following Stevens’s law
(S. S. Stevens, 1975), we used a power function with an ex-
ponent of 1/3 to perceptually linearize luminance, but this
might not have been effective enough to eliminate the bias.
Additionally, the exponent of the function might not have
been the same between the ensemble mean judgments with
multiple disks and judgments with single disks (Bauer, 2009).
Moreover, Nam and Chubb (2000) even reported that texture
luminance judgments are not mediated by a compressive non-
linearity such as the ones both Stevens’s law and Fechner’s
law assume for brightness perception. They showed that,
when observers were asked to choose one of two texture
patches that had greater total luminance, their judgments
depended approximately linearly on the luminance of the tex-
ture elements. Thus, in retrospect, there is ambiguity
concerning how luminance should be perceptually linearized.
However, a possible incompleteness of perceptual lineariza-
tion cannot account for the present findings. In Experiments 2
and 3, the stimuli were completely the same, but the direction
of' the bias was reversed, depending on the task. This is strong
evidence for task-driven flexible brightness judgments.

Previously in the ensemble-coding literature, effects of task
instructions have been reported. Im, Park, and Chong (2015)
showed that mean size judgments were improved by matching
task instructions. That is, when the task instructions favored
larger mean sizes, mean size judgments were more accurate
for the sets with larger mean sizes, whereas when the instruc-
tions favored smaller mean sizes, judgments were more accu-
rate for the sets with smaller mean sizes. These findings indi-
cated “ensemble-based” attention—that is, that ensembles can
be flexibly selected by top-down (instruction-driven) atten-
tional mechanisms (their other results also indicated the in-
volvement of bottom-up attention). However, the present find-
ing is distinct from the previous one, in that we showed that
how observers computed mean brightness changed, depend-
ing on the task instructions.

Although we cannot rule out the possibility that observers
only relied on the highest or lowest luminance of the disks
[i.e., the highest- (or lowest-)luminance shortcut], several
findings are more consistent with the notion that the observers
actually integrated multiple luminance signals across different
disks. One finding is that the observed biases were smaller in
size than those predicted by the highest-luminance shortcut
(Fig. 4a). If observers relied only on the highest-luminance
or lowest-luminance disk, the bias would have been larger
than the one we observed. However, the prediction was based
on ideally precise luminance discrimination (Fig. 2d), and
some judgment noise might need to be incorporated into sim-
ulations for more realistic predictions. Another finding is that
the JND for mean brightness judgments can be smaller than
the JND measured with single disks, which was obtained as a
reference measure of the precision in judgments (Fig. 5). This
finding presumably reflects the power of averaging (Alvarez,
2011), that averaging multiple noisy measures provides a
more precise estimate of the mean than do the individual mea-
sures themselves, because random noise in one measure tends
to cancel out the noise in another measure. The improvement
in JND may not be very large (as is shown in Fig. 5), but that
can be accounted for if observers average (or highly weight) a
few disk luminances. Together, the biased but precise mean
brightness judgments may be better understood in view of
differentially weighted averaging.

It is remarkable that observers accomplished deliberate se-
lection of a task-relevant subset of disks within a short dura-
tion of 200 ms, given that attentional dwell time is estimated to
be in the range of 200 to 500 ms (Duncan, Ward, & Shapiro,
1994; Wolfe, 2003). Moreover, this selection was done even
when different spatial configurations (i.e., 6-versus-12 and 9-
versus-12 configurations; Fig. 1a and b) were randomly pre-
sented in the measurement. In this situation, exhaustive visual
search for the task-relevant items over the stimulus display
might not be possible, and thus observers might have primar-
ily focused on the disks near fixation. Previous studies also
showed that luminance signals at or near fixation significantly
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affect both lightness (Toscani et al., 2013a; Toscani,
Valsecchi, & Gegenfurtner, 2013b) and brightness (Toscani,
Gegenfurtner, & Valsecchi, 2017) judgments. In the
ensemble-coding literature, a previous study showed that ob-
servers did not rely on the size of items presented near fixation
to compute the average size (Chong, Joo, Emmmanouil, &
Treisman, 2008), whereas another study on size variability
discrimination showed that observers mostly sampled items
close to fixation (Lau & Brady, 2018). Future studies will be
needed to explore how observers select the task-relevant items
during a short presentation time when making their mean
brightness judgments.

The present study revealed evidence for strongly weighting
extreme samples rather than inlying ones (i.e., those falling
near the mean) in stimulus arrays. Thus, the results are con-
tradictory to the robust or trimmed averaging that has been
demonstrated in several types of ensemble mean judgments
(de Gardelle & Summerfield, 2011; Fan et al., 2016). As the
trial-by-trial feedback was given in the present experiments,
the observers’ biased responses were corrected during the
measurement. Nonetheless, observers kept relying more on
the extreme samples. One possible interpretation of this result
is that learning robust averaging is considerably difficult for
mean brightness judgments. But another, more intriguing in-
terpretation is that the observers’ weighting strategy itself was
also task-dependent. When observers are asked to compare
the means of two stimuli, as in the present study, strongly
weighting extreme samples might be preferential, because
they can be more informative about the difference in means.
In contrast, when observers are asked to classify the means
into different categories, as in de Gardelle and Summerfield
(2011), strongly weighting inlying samples (robust averaging)
might be preferential, because these samples can be more
informative about the location of the mean.! Thus, observers
may have sensibly selected the optimal strategy depending on
task requirements. This interpretation may also help under-
stand other apparently contradictory findings in previous stud-
ies on lightness and color. Some studies have shown that ob-
servers chose the strategy of heavily relying on extreme sam-
ples, such as the most saturated or highest-contrast items,
when they needed to integrate variegated signals (Anderson
& Winawer, 2005, 2008; Kimura, 2018; Kuriki, 2004; Sunaga
& Yamashita, 2007; Wollschldger & Anderson, 2009). In con-
trast, Milojevic, Ennis, Toscani, and Gegenfurtner (2018)
showed that, when asked to classify the color of natural stim-
uli (leaves), observers’ judgments were predicted better by the
mean chromaticity of the stimuli than by the most saturated
color. These differences may be reconciled by considering

! One of the reviewers suggested that another relevant difference, rather than
difference versus location, can be the nature of the perceptual dimension, in
that the dimension—that is, hue—tested by de Gardelle and Summerfield
(2011) is a qualitative dimension, whereas brightness, which we tested in this
study, is a quantitative dimension.

@ Springer

flexible selection of the strategy or flexible weighting of some
particular samples, depending on the nature of the task. In
addition, previous studies have reported that stimulus variabil-
ity around the mean can be a key factor in the effects of
extreme samples (Kimura, 2018; Kuriki, 2004).

The present finding that observers displayed biased judg-
ments even with trial-by-trial feedback made automatic ex-
traction of the mean for ensemble brightness less likely. In
fact, we used the feedback in the measurement, because we
found in preliminary experiments that otherwise some ob-
servers exhibited a strong bias to choose a specific stimulus
array (e.g., either the 6- or the 12-disk array) when mean
brightness judgments were difficult. Previous studies also re-
ported that several observers responded in a nonsystematic
fashion in the mean brightness judgment task (Bauer, 2009).
The present finding indicated that although spatial averaging
of local luminances has been assumed in early visual process-
ing (e.g., Bressan, 2006; Buchsbaum, 1980; Chubb et al.,
1994; Chubb et al., 2004; Shapley & Enroth-Cugell, 1984),
an explicit representation of mean brightness may not be im-
mediately available to observers, even if it exists (see also
Webster, Kay, & Webster, 2014, and Maule & Franklin,
2016, for similar discussions for the mean hue of multiple
color patches).

Although the present results themselves did not identify
what kind of visual mechanisms may underlie flexible mean
brightness processing, some relevant findings have been re-
ported. Investigating the discrimination of achromatic textures
composed of small square elements, Silva and Chubb (2014)
reported results supporting the existence of four channels dif-
ferentially sensitive to grayscale textures. Two of the four
channels, which are complementary to each other, are most
relevant to this study: “up-ramped” and “down-ramped” chan-
nels. The sensitivity of the up-ramped (or down-ramped)
channel increases (or decreases) linearly with increasing lumi-
nance and reaches its maximum (or minimum) near the high
end. Silva and Chubb assumed that the outputs from the four
channels are linearly combined in order to produce grayscale
filters and that the weights of the channels are optimized for
the task at hand. Their model describes the results for texture
discrimination quite well. Although the spatial composition of
the stimuli is different between the present and Silva and
Chubb’s studies, flexible mean brightness processing may be
accounted for if we assume that observers selectively recruited
the up-ramped and down-ramped channels in a task-
dependent fashion.

Overall, the present findings suggest that the mean bright-
ness of heterogeneous achromatic disks can be processed ef-
ficiently and precisely. This processing is presumably neither
automatic nor based on rote averaging. Rather, it can be char-
acterized as being flexible and task-dependent; some items
that are important for the task at hand are processed preferen-
tially. This kind of flexibility can be general and might be
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observed in ensemble processing of other perceptual
attributes.
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