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Abstract
Lind et al. (Journal of Experimental Psychology: Human Perception and Performance, 40 (1), 83, 2014) proposed a
bootstrap process that used right angles on 3D relief structure, viewed over sufficiently large continuous perspective
change, to recover the scaling factor for metric shape. Wang, Lind, and Bingham (Journal of Experimental Psychology:
Human Perception and Performance, 44(10), 1508-1522, 2018) replicated these results in the case of 3D slant perception.
However, subsequent work by the same authors (Wang et al., 2019) suggested that the original solution could be ineffec-
tive for 3D slant and presented an alternative that used two equidistant points (a portion of the original right angle). We
now describe a three-step stratified process to recover 3D slant using this new solution. Starting with 2D inputs, we (1)
used an existing structure-from-motion (SFM) algorithm to derive the object’s 3D relief structure and (2) applied the
bootstrap process to it to recover the unknown scaling factor, which (3) was then used to produce a slant estimate. We
presented simulations of results from four previous experiments (Wang et al., 2018, 2019) to compare model and human
performance. We showed that the stratified process has great predictive power, reproducing a surprising number of
phenomena found in human experiments. The modeling results also confirmed arguments made in Wang et al. (2019)
that an axis of mirror symmetry in an object allows observers to use the recovered scaling factor to produce an accurate
slant estimate. Thus, poor estimates in the context of a lack of symmetry do not mean that the scaling factor has not been
recovered, but merely that the direction of slant was ambiguous.
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Introduction

Three-dimensional (3D) shape perception is an essential
focus for investigations of human visually guided inter-
actions with the environment. Many studies in 3D shape

perception have reported inaccuracy in judgment of 3D
shape, where the perceived shape tends to be compressed
or expanded in depth (e.g., Domini & Caudek, 2013;
Koenderink & van Doorn, 1991; Todd & Bressan,
1990 ; Todd & Norman , 1991 ; Todd , Oomes ,
Koenderink, & Kappers, 2001; Wagner, 1985). This phe-
nomenon prompted researchers to argue that the percep-
tual space should be affine or of relief.1 However, if this
were the case, daily tasks such as reaches-to-grasp ob-
jects would be seriously impaired, as they require accu-
rate perception of metric shape to scale the grasp formed
on approach to an object, which is most typically grasped
back-to-front more than side-to-side. This was shown by

1 The perceptual phenomenon is that distance is scaled by an unknown scaling
factor along the depth dimension while being metrically specified in the pro-
jection plane. The conventional term used to describe this has been “affine” but
more operations are allowed by the perceptual phenomenon than those defined
by an affine mapping only. Wang, Lind, and Bingham (2018) adopted the
word relief to better describe the phenomenon. See Appendix A in Wang
et al. (2018) for an extended discussion of this issue.
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Lee, Crabtree, Norman, and Bingham (2008) to be the
case for feed-forward reaches-to-grasp, where the authors
argued that poor shape perception resulted in poor
reaches-to-grasp when the hand was not visible during
the reach and became accurate when it was, allowing
the use of online guidance. Ultimately, the fact that most
studies report poor 3D shape perception is at odds with
the common functionally effective and efficient perfor-
mance of reaches-to-grasp, whether the hand is visible
or not. Indeed, Lee and Bingham (2010) subsequently
revealed conditions that yielded good levels of
performance.

Bingham, Lind, and colleagues suggested that the discrep-
ancy might be the result of experimental design because most
studies that report such results presented their stimuli either
statically or with a small amount of relative motion, while
people in their daily activities are moving substantially rela-
tive to their surroundings (Lee & Bingham, 2010; Lee, Lind,
Bingham, & Bingham, 2012; Lind et al., 2014). To address
this issue, their initial idea was as follows: Because distance
can be perceived accurately in a frontoparallel plane, but not in
the depth direction, one can simply exchange depth and width
by rotating the object, or moving the observer relative to the
object, by 90°, so that the depth, now placed in a frontoparallel
plane, can be perceived accurately. Upon investigation, this
worked! They then tested a series of smaller amounts of rela-
tive motion and found that with continuous perspective
change of approximately 45° or greater, people could perceive
metric depth, and thus shape, accurately.

Lind et al. (2014) proposed a bootstrap process to account
for this phenomenon, a process that is based the notion of
invariance over transformation. This model first assumes that
observers were able to recover 3D relief structure through
two-frame apparent motion, which a number of existing
structure-from-motion (SFM) models can achieve (e.g.,
Koenderink & van Doorn, 1991; Shapiro, Zisserman, &
Brady, 1995; Lind, 1996). The resulting depth structure is
scaled by an unknown factor compared to the actual depth.
To recover this scaling factor, one first identifies two points on
the object that are equidistant to the observer, an operation
allowed in the relief frame of reference. With the assumption
of small visual angle and, therefore, scaled orthographical
projection, the line formed between these two points is orthog-
onal to the line of sight. Consequently, a third point can be
identified on the object that is on a line parallel to the line of
sight. These three points form a right angle that can be tracked
across perspective change. Assuming rigidity, the angle
formed among these three points would remain as 90° on
the object but would be constantly changing in the relief space
as a result of the interaction between motion in depth and the
relief scaling factor. Subsequently, one can relate the new
angle to the original 90° angle to recover the scaling factor.
When the perspective change is small, the new angle typically

fails to deviate from the original angle by a sufficient amount
to discriminate such change due to motion measurement
noise. However, with sufficiently large perspective change,
variations in the target angle in relief space would be large
and, therefore, produce relatively more stable and accurate
estimation of the scaling factor. In addition, the unknown scal-
ing factor renders the amount of rotation as unknown, and
consequently observers cannot know when perspective
change is sufficiently large to “trust” the resulting scaling
factor estimate. Therefore, there has to be something to inform
them when this has occurred. Because angle bisection is
allowed in relief space, the bisection of the target angle by
the line of sight can be detected to inform observers that a
45° perspective change has occurred, and the recovered scal-
ing factor should be accurate and reliable.

The experimental results consistent with the bootstrap pro-
cess have been replicated in a number of different studies and
tasks, including reaches-to-grasp wooden elliptical cylinders
varying in depth-to-width aspect ratio (Lee & Bingham,
2010), recognition of complex computer-generated polyhe-
drons evaluated in terms of both errors and reaction times
(Lee, Lind, Bingham, & Bingham, 2012), judgments of 3D
depth-to-width aspect ratios of computer-generated 3D ellip-
tical cylinders and asymmetric polyhedrons (where judgments
were performed by adjusting the aspect ratio of an outline of
the shape) (Lind et al., 2014), and, finally, a number of 3D
slant judgment studies (Wang et al., 2018). Wang et al. (2018)
replicated predictions of the bootstrap model using a 3D slant
judgment task. Initially, they tested judgments of strictly pla-
nar surfaces, which failed to yield accurate judgments with
large continuous perspective change. The authors reasoned
that this was because SFM models require at least four non-
coplanar points to obtain the relief structure that is necessary
for the subsequent bootstrap process and planar surfaces lack
non-coplanar points by definition. So, they introduced addi-
tional 3D non-coplanar structure to the planar surface, and the
behavioral results were then just as the bootstrap process
would predict: participants did produce accurate slant judg-
ments with large continuous perspective changes approxi-
mately equal to or greater than 45°.

Again, what one needs to note is that the essence of the
bootstrap process is not the 45° of continuous perspective
change or bisecting an arbitrary right angle on the object;
instead, it is identifying and consequently tracking an invari-
ant over the SFM transformation. In the context of
bootstrapping metric depth via relief depth, the invariant cor-
responds to identifiable metric or rigid physical structure of
the object, while the transformation corresponds to the con-
stant changes in the perceived relief structure as a result of
relativemotion in depth due to continuous perspective change.
For the bootstrap process to work, one has to identify certain
depth structures that are equivalent in both the relief and met-
ric space at some instant of time. Such an equivalence offers a
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bridge that links relief space to metric space. In the solution
presented by Lind et al. (2014), the right angle acts as such a
bridge. Because depth is scaled in relief space by the same
scaling factor, albeit unknown, identifying two equidistant
points is allowed. Also, assuming a small visual angle and
therefore scaled orthographical projection, a third point can
also be found such that the three points form a right angle.
This angle is also of 90° in the physical space and therefore
should remain invariant as the object moves relative to the
observer. However, because relative motion creates depth
changes, this angle would no longer be 90° in relief space.
The observer, therefore, can use such transformation to deter-
mine the scaling factor that would yield the angle as 90° again.

One should also note that the principle behind the bootstrap
process does not limit the method through which it is imple-
mented. What is important is the process itself: tracking an
invariant and identifiable 3D structure in relief space through
relative motion and using the resulting depth variations in
relief space to extrapolate to the metric space. The key is,
therefore, to be able to obtain relief structure in the first place.
The slant perception study by Wang et al. (2018) demonstrat-
ed this. They initially used strictly planar surfaces, slanted
around the x-axis and rotated around the y-axis, to produce
perspective change. This failed to yield an effect of large con-
tinuous perspective change given a lack of non-coplanar
points with which to produce a relief depth map. Indeed, with
the addition of 3D structure to the top of the planar surface,
performance improved with large continuous perspective
change showing that the bootstrap process can be applied to
slant perception. Aside from successfully replicating previous
findings, their results were also at odds with the traditional
definition of slant.

Defining slant

Slant is studied in the context of the perception of surface
orientation. As shown in Fig. 1, surface orientation can be
decomposed into three components: slant (σ), tilt (τ), and roll
(ω). Traditionally, slant has been defined as the angle formed
between the line of sight, which corresponds to the z-axis, and
surface normal ( n! ). Tilt is the angle between the projection of
the surface normal on the image plane ( n!xy ) and the x-axis,
indicating the direction of slant (i.e., the direction of the max-
imum increase in distance relative to the line of sight)
(Stevens, 1983a, 1983b). Roll is simply the angle of rotation
of the surface around its normal. For a planar surface, roll is
rather hard to define due to a lack of reference direction and is
not as commonly studied as slant and tilt. Defining surface
orientation this way can be found in many different studies,
including those of 3D shape perception (e.g., Gibson, 1950;
Gibson & Cornsweet, 1952; Stevens, 1983b; Saunders &
Knill, 2001; Norman et al., 2006; Sawada & Pizlo, 2008). In

fact, many have argued that slant defined this way should be
considered as the basis for 3D shape perception (e.g., Koffka,
1935; Gibson, 1950; Beck & Gibson, 1955; Wallach &
Moore, 1962; Kaiser, 1967; Hoffman & Richards, 1984;
Todd, 2004; Sakata, Tsutsui, & Taira, 2005; Welchman,
Deubelius, Conrad, Bültoff, & Kourtzi, 2005). We will refer
to this definition of slant as local slant, since it is contingent
upon the observer’s line of sight. It has also been called optical
slant. In this definition, slant is egocentric.

The issue with adopting a local frame of reference in the
experimental paradigm that has been used to study the boot-
strap process is that the local slant itself would not remain
constant over the SFM rotation (or perspective changes).
The objects used in Wang et al. (2018) contained planar sur-
faces that were first slanted around the x-axis and rotated
around a vertical axis that was parallel to the y-axis and went
through the center of the object. Assuming the observer fixates
on the center of the surface, as the object rotates, the angle
formed between the line of sight and surface normal would be
constantly changing. Figure 2 shows the local slant of a sur-
face slanted 30° at 90° local tilt (i.e., the face of the surface is
facing the observer) as the surface rotates around a vertical
axis that passes through its center. Throughout the rotation, the
surface maintains a 30° angle to the ground plane. As can be
seen from this figure, there is a large variation in local slant
(≈10°) as the surface rotates 45° (i.e., 45° change in tilt).
Therefore, using a local frame of reference to describe slant
in the context of SFM is not effective and could be extremely
confusing simply because the slant, if defined locally, is not
constant.

The angle that remains constant as the object rotates is the
angle formed between the object and the ground plane (the xz-
plane). Mathematically, this angle can be found through com-
puting the angle between the object’s surface normal and the

Fig. 1 Illustration of variables that are used to define surface orientation.
Slant (σ) is defined as the angle formed between surface normal n! and
the line of sight. Tilt (τ) is defined as the angle between the projection of
the surface normal on the xy-plane n!xy and the x-axis. Roll (ω) is the
angle of rotation of the surface round its normal
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ground plane’s normal, which can be described using the unit
vector pointing in the y direction [0, 1, 0]. Correspondingly,
tilt in this frame of reference should be defined as the
projected surface normal on the xz-plane and the unit vector
pointing toward the z direction [0, 0, 1]. Figure 3 shows this.
We refer to these as geographical slant and tilt because slant
remains invariant as the line of sight changes and tilt describes
the direction of the gradient of slant relative to the ground
surface. Based on this description, a geographical slant of
90° would be an upright surface and a slant of 0° would be
horizontal (parallel to the ground). As the slanted surface ro-
tates around a vertical rotational axis, which coincides with
the y-axis, its geographical slant would remain constant while
its local slant would be constantly changing.

Issues with the right-angle solution lead to an
alternative formulation

Even with an alternative definition of slant, Wang et al. (2019)
noted that there was a problem inherent to the right-angle
solution when it was applied to slant perception, which would
render this solution relatively ineffective. Remember, the role
of large continuous perspective change in the bootstrap pro-
cess is to produce sufficiently large depth variations in the
relief space on the invariant depth structure, for example, the
right angle, that would subsequently allow perceivers to boot-
strap to metric. This means that there needs to be sufficiently
large depth variation in the right angle. This solution was
originally proposed to account for performance in depth-to-
width aspect ratio judgment experiments, where the objects
were 3D polyhedrons with a horizontal top and the viewing
angle, defined as the angle between the line of sight and the
normal of the top surface, was kept relatively large. In this set-
up, relative motion between the observer and the object, i.e.,
rotation around a vertical axis, could be translated to depth
variations in right angles on the top surface, making this so-
lution effective. However, as the surface becomes more up-
right, this solution actually becomes less effective (see Fig. 1
of Wang et al. (2019) for an illustration).

Wang et al. (2019) conducted several experiments to ex-
plore the potential issue related to the right-angle solution of
the bootstrap process. First, the original formulation of the
right-angle solution assumed the identification and use of
trackable texture elements to form right angles. However,
the authors tested if the process still worked when they elim-
inated trackable points by using dynamic random dot stereo-
grams (in which random texture was re-randomized in each
frame and thus untrackable) while providing observers with
trackable 3D structures that included inherent right angles. As
predicted by the bootstrap process, performance improved

Fig. 3 Illustration of geographical variables in the current context.
Geographical slant (σ) is defined as the angle formed between surface
normal n! and the positive y-axis. Geographical tilt (τ) is defined as the
angle between the projection of the surface normal on the xz-plane n!xz
and the z-axis

Fig. 2 Local slant variation as a surface that forms a 30° angle with the ground plane rotates around a vertical axis that passes through its center; 90° is
when the surface is facing the observer’s line of right
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with large continuous perspective change. Results from this
experiment showed that observers did not need trackable tex-
ture on the object to perform the bootstrap process, and in-
stead, this process was performed in 3D relief space. Next, the
task was tested after having eliminated the right angles inher-
ent to the object using a symmetrical hexagon both with and
without trackable texture elements. Participants still per-
formed the task well with large rotation. This confirmed our
suspicion that right angles were not the key to the bootstrap
process.

Based on these findings, the authors presented an alterna-
tive formulation of the bootstrap process that used only two
equidistant points on the object, originally being one leg of the
right angle. Specifically, at the instance when the equidistant
points are identified, the line formed between them, by defi-
nition, is on the image plane under scaled orthographical pro-
jection. Since observers are capable of perceiving distances on
the image plane, the length of the line is known.With perspec-
tive change, such a line would no longer be on the image
place, and its depth dimension would be subject to relief scal-
ing, making the 3D length of the line to be different from its
actual length, as originally identified. Following the same log-
ic as in the right-angle solution, one can extrapolate the correct
scaling factor using the 2D projected length of this line
through rotation.

Symmetry constrains the direction of slant

In addition to eliminating the inherent right angles in the ob-
jects, Wang et al. (2019) also explored the role of symmetry in
slant perception as mediated by large continuous perspective
change. They first used a series of asymmetric pentagonal
objects and found that observers could not produce accurate
slant judgments despite large continuous perspective change.
Based on this finding, the authors inferred that this final failure
might be because the direction of slant of an asymmetric ob-
ject is ambiguous as it rotates. In a local frame of reference, the
direction of slant is simply the direction at which there is a
maximum increase in depth on the surface (e.g., Stevens
1983a, 1983b). In a geographical frame of reference (i.e., for
geographical slant), this property can no longer be used to
identify the direction of slant. Numerous studies have shown
that observers readily detect the symmetry axes in a 2D shape
oriented in a 3D environment (e.g., Bingham & Muchisky,
1993a, 1993b; Palmer, 1985; Pizlo et al., 2010; Sawada &
Pizlo, 2008). In the experiments by Wang et al. (2019) using
rectangular and hexagonal surfaces, a symmetry axis was
aligned with the direction of slant. Therefore, in a subsequent
experiment, they changed the direction of this symmetry axis
in the hexagonal object by rolling the surface by 15°; judg-
ments of slant accurately reflected the surface orientation
along the symmetry axis rather than in the actual direction of
slant. Thus, the bootstrap process worked, but the correctly

recovered scaling factor was then used to derive a slant esti-
mate based on the symmetry axis.

We now present a detailed roadmap for implementation of
the bootstrap process in the context of slant perception,
starting with an SFM algorithm used to recover relief depth
structure followed by the bootstrap to the correct scaling factor
then used to produce slant estimation. Subsequently, we pro-
vide model simulation results using stimuli from Wang et al.
(2018) and Wang et al. (2019) so we can compare our simu-
lations with empirical results. This is the first study to formal-
ize the full stratified process and present simulations of the
collection of behavioral results that have been obtained. This
is a test of the model itself, an evaluation of whether it is
suitable for describing the achievement of accurate metric
slant estimates using a large continuous perspective change.
The model was developed based on the results of the initial
experiments and is now tested by applying it to replicate re-
sults from a number of subsequent experiments.

Stratified recovery process

In this section, we illustrate the steps through which one could
use the SFM algorithms and the bootstrap process to produce
slant estimation. We first present an implementation of an
existing structure-from-motion (SFM) algorithm, which was
adopted from Lind (1996). This implementation takes two
frames of 2D projected x-y coordinates of a 3D object moving
in depth as input and produces a relief depth map of the object
and other motion parameter estimates. In the second part, an
implementation of the bootstrap process that utilizes the
tracking of two equidistant points as initially revealed in
Wang et al. (2019) was illustrated. Finally, we present a way
through which the resulting scaling factor could be used to
produce slant estimation. Throughout this paper, we use lower
case letters, x, y, and z, to denote image coordinates or relief
depth (as with z), and capital letters, X, Y, and Z, to denote
physical coordinates.

Stage one: Recovery of relief depth map

There are many existing models that can recover relief depth
based on two-frame motion (e.g., Shapiro, Zisserman, &
Brady, 1995; Lind, 1996). Because SFM processes have been
described and discussed at length in previous studies, we now
briefly present a simplified version of the method proposed in
Lind (1996). We note that the process is designed as a means
for tracking invariant structure visible over perspective chang-
es. Specifics of the formalization are for computational con-
venience, as was also made clear in Lind (1996). Again, as
mentioned in the Introduction, the essence of the bootstrap
process is tracking invariant 3D relief structure through SFM
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transformations and using it to extrapolate 3D metric
properties.

In the case of orthographic projection for SFM analyses,
we decompose relative motion between an observer and an
object in terms of a rotation of the image plane and a rotation
around a unit axis that is in the image plane, as shown in Fig. 4
(Todd & Bressan, 1990; Shapiro et al., 1995). Lind (1996)
denoted the rotational speed of the image plane as q̇ and the
rotation around the axis in the plane as α̇. In addition, with
scaled orthographic (or weak perspective) projection, there is
a uniform shrinking or expansion of the 2D image, as a func-
tion of the speed in depth, ż. The unit axis that is in the image
plane has a direction of δ, relative to the positive x-axis.

Given such decomposition in a scaled orthographic SFM
analysis, one can produce estimates of the unknown parame-
ters q̇, ż, and δ with two 2D images based on the viewing of a
moving and rigid 3D object. However, the α̇ parameter cannot
be estimated due to the lack of degrees of freedom in the
system. Instead, the depth within an unknown scaling factor
(α̇Z ) is estimated for each image location where Z denotes the
distance to this 3D texture element and α̇ is the unknown
scaling factor. Thus, α̇ is the unknown scaling factor in the
bootstrap analysis and α̇Z is the relief depth map produced by
the SFM analysis.

By aligning the y-axis of a coordinate system in the image
plane with the direction δ, the following equations can be
obtained:

x˙ ≈−α˙ Z þ xz˙ −yq˙ ð1Þ

y˙ ≈yz˙ þ xq˙ ð2Þ

where x and y denote the position in the image plane of a
specific 3D texture element, and ẋ and ẏ are the velocity of
this texture element across a two-frame apparent motion.
Using , żest and q̇est can be obtained through a linear process,
which can then be combined with Eq. 1 to produce an α̇
scaled depth map:

α˙ Z≈−x˙ þ xz˙ est−yq˙ est ð3Þ

For a more detailed discussion of this process, see Lind
(1996).

Stage two: The bootstrap process

At this stage, we use the relief depth map, α̇Z, and information
provided by the two-frame motion to produce an estimate of α̇
that would subsequently be used to produce an estimate of
slant. The formulation proposed by Wang et al. (2019) starts
with the identification of two points at t0, P1t0 , x1t0 ; y1t0 ; z1t0

� �
,

and P2t0 , x2t0 ; y2t0 ; z2t0
� �

that are equidistant to the observer.

By definition, the length of the line formed between P1 and P2

is simply the distance between two points in the image plane
(Fig. 5):

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1t0−x2t0ð Þ2 þ y1t0−y2t0

� �2
q

ð4Þ

With relative motion between the observer and the
object, for example, motion from rotation around an
axis in the xy-plane, P1 and P2 will no longer be equi-
distant to the observer or be in the same frontoparallel
plane. In addition, the 3D length of the line formed
between these two points will be subject to relief scal-
ing because this line is now lying in depth relative to
the observer. Let l(t) be the line’s orthographically

Fig. 4 A schematic demonstration of the motion decomposition in Lind
(1996). q̇ is the angular velocity of the image plane, ż is the speed of
translation in depth yielding a uniform shrinking or expansion of the
image plane, δ is the direction of the unit axis in the image plane relative
to the positive x-axis, and α̇ corresponds to the angular velocity of the
rotation around the unit axis. The latter is the essential SFM
transformation

Fig. 5 The equidistant points at time t0. P1t0 and P2t0 are equidistant from
the observer
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projected 2D length in the image plane at any given
time t:

l tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1t−x2tð Þ2 þ y1t−y2tð Þ2

q
ð5Þ

Assuming rigidity, we can establish a mapping between the
2D projected distance between the two points with the
Euclidean 3D distance:

l ¼ Lcosα ð6Þ

Taking the derivative of Eq. 6, we have:

l˙ ¼ L −sinαð Þα˙ ð7Þ

Combining Eq. 6 and Eq. 7, the angular velocity of rotation
at any given time can be expressed as:

α˙ tð Þ ¼ l˙
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2−l tð Þ2

q ð8Þ

One can subsequently substitute x and y coordinates of the
two equidistant points to numerically derive an α̇ estimate.
When noise is added to the system, measuring the projected
length of the line could be variable. However, with an increas-
ing amount of perspective change, the projected length would
become increasingly smaller, and therefore is less affected by
the addition of noise. Therefore, with a larger amount of rota-
tion, α̇ estimations should also become more accurate.2

Because of the unknown scaling factor, it is difficult for the
observer to discern whether there has been a sufficiently large
continuous perspective change (just as we had discussed in the
case of the right-angle solution). For the right-angle solution,
Lind et al. (2014) argued that the observers would be informed
when the line of sight bisects the right angle as symmetry and
angle bisection are available in relief space. Naturally, bisec-
tion of a right angle corresponds to 45° of continuous perspec-
tive change. For the equidistant point solution, observers can
evaluate the amount of rotation by comparing the change in
length of the 3D relief distance between the two initially equi-
distant points. Norman, Todd, Perotti, and Tittle (1996) found
that the threshold for comparing 3D lengths that had different
orientation in space relative to the frontoparallel plane was
between approximately 19% and 26%. A 20% difference in
the 3D line length would correspond to 35.90° of rotation (i.e.,
change in tilt), whereas a 25% difference would correspond to
42.27° of rotation. This range of continuous perspective
change is more flexible than the previous 45° criterion. In fact,
depending on the experiments, veridical performance has

been found empirically at either 35° or 45° of continuous
perspective change (e.g., for the rectangle with cuboids stimuli
in Experiment 2 of Wang et al. (2018) and Experiment 1 of
Wang et al. (2019)).

Computationally, such change can be captured using the
angle formed by the line between the two initially equidistant
points at time t and the projection of that line in a
frontoparallel plane. Because the length of the line should
remain the same over rotation, using the projected 2D length
of the line at time t and its original length we can calculate the
cosine of the angle, θ, formed between the two lines (Fig. 6):

cosθ ¼ l tð Þ
L

ð9Þ

In this case, θ directly measures the amount of rotation that
has occurred from the first frame. To provide a measure of
quality that reflects the usefulness of rotation, we can use the
following3:

quality ¼ 4 cosθ−cos2θ
� � ð10Þ

This measure of quality was computed so that it monoton-
ically increased for θ ranging between 0° and 60°. Based on
the criterion angles established earlier, we can compute the
corresponding quality measure to evaluate the amount of ro-
tation that has occurred.

2 The current implementation does not take into consideration motion in
depth, i.e. is presumed. When there is motion-in-depth, the length variables
can simply be scaled by that recovered from the SFM algorithm accordingly.

Fig. 6 The equidistant point setup at time t1

3 Perceptually, evaluating whether there has been a sufficiently large amount
of perspective change relies on the change in length of the line formed between
two equidistant points. Computationally, evaluating whether sufficiently large
rotation has occurred relies on the value of θ. We formulated and used this
particular measure of quality simply because it increases monotonically rather
than oscillating around 1 as does, for instance, cos θ. Other measures of quality
that are based on θ would be equally suitable.
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Stage three: Slant estimation

Given the relief depth map from Stage 1 and the recovered
scaling factor from Stage 2, the final step is to recover the
perceived slant. Based on discussions in the previous section,
we adopted a geographical frame of reference, where slant is
defined as the angle between the surface normal and the nor-
mal of the ground surface, i.e. unit vector [0, 1, 0], and tilt is
defined as angle between the projection of the surface normal
on the ground plane (xz-plane) and the direction of line of
sight, i.e. unit vector [0, 0, 1] (Fig. 3). For a planar relief
surface centered at the origin, its surface equation can be
expressed as the following:

z ¼ α˙ Z ¼ axþ by ð11Þ
where z is the relief depth, which is equivalent to its actual
depth, Z, scaled by the scaling factor α̇. Since we have already
obtained z and α̇ in the first two stages, we can again use linear
processes to acquire coefficients a and b. Subsequently, the
plane equation can be expressed as:

axþ by−α˙ Z ¼ 0 ð12Þ

The surface normal is therefore a; b;−α̇ð Þ. We can then
find the angle between the surface normal and unit vector [0,
1, 0] using cross and dot products:

sin σð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α̇2 þ a2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ α̇2

p ð13Þ

cos σð Þ ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ α̇2

p ð14Þ

Dividing Eq. 13 by Eq. 14 yields a simpler expression of σ:

tan σð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α̇2 þ a2

p

b
ð15Þ

Because α̇ is known from the bootstrap model, slant can be
estimated.

Additionally, Wang et al. (2019) found that when the direc-
tion of slant is not aligned with the direction of the symmetry
axis of an object, perception of slant tended to reflect that
along the symmetry axis. To address the issue of slant direc-
tion, we will use a second method to derive slant estimates.
First, for symmetrical objects, we assume that the observers
can correctly identify the symmetry axis of an object. There
are many studies that model the perception of symmetry and
skewed symmetry axes (see, e.g., Li, Sawada, Shi, Kwon, &
Pizlo, 2011).With the symmetry axis on the object, along with
the object’s normal, we can find a plane that passes through
both vectors. We computed slant to be the angle between the
normal of that surface and the unit vector [0, 1, 0]. For asym-
metrical objects, namely the pentagon surface with

tetrahedrons used in Experiment 3 of Wang et al. (2019), a
random point would be chosen along the edge of the surface in
our simulation and be connected to the pentagon’s top vertex
as the direction of slant to reflect the uncertainty of the direc-
tion of slant. Therefore, this could be a test of whether in fact
observers exhibited random slant directions in their judgments
when the surface lacks symmetry.

Model simulation

We now look at how model predictions compared to actual
human performance.We performed simulations of four exper-
iments with three different types of objects that we have used
in slant perception studies (Wang, Lind, & Bingham, 2018,
2019). The first type of object was a rectangular surface with
nine cuboids on top in a grid, as used in Experiment 2 ofWang
et al. (2018). This is to test if the proposed stratified process
could predict human performance, i.e., whether sufficiently
large continuous perspective change would allow accurate
slant estimation. This object contained the most structure
(right angles and symmetry) compared to the others to be
used, so it provided a baseline test of the effectiveness of the
algorithms. The second type of object was hexagonal with
tetrahedrons on top at random locations, as in Experiment 2
of Wang et al. (2019). Additionally, we used this object with
changes in the orientation of the symmetry axis, which was
then used to derive alternative slant estimates, as in
Experiment 4 of Wang et al. (2019). These two simulations
tested the claim in Wang et al. (2019) that observers used the
direction of the symmetry axis to determine the slant direction.
Finally, we used an asymmetric pentagonal surface with ran-
domly placed tetrahedrons to simulate the results in
Experiment 3 of the same study. In this simulation, slant was
computed using a random reference line on the object as the
direction of slant. This simulation tested the claim in Wang
et al. (2019) that with a lack of symmetry axis, observers
randomly chose the direction of slant.

We did not simulate performance with strictly planar sur-
faces because the lack of non-coplanar points would prevent
the SFM process from recovering the unknown motion pa-
rameters in the beginning of the stratified process.
Specifically, the planar surface would produce one less line-
arly independent equation than the number of unknown mo-
tion parameters for the system to solve. Recall from Stage 1 of
the stratified process that this means that either żest or q̇est was
still remain unknown after the SFM process. However, the
current experimental setup lacks ż and q̇ motion components,
allowing the recovered relief depth map to be usable. This
does not apply to the human visual system and the resulting
depth map cannot be confidently used for the subsequent
bootstrap process. To explore the effects of the lack of non-
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coplanar points on the bootstrap process, we incorporated mo-
tion-in-depth, i.e., ż, in a simulation, comparing the effective-
ness of the bootstrap process in recovering the unknown scal-
ing factor with a rectangular planar surface and the same sur-
face with additional cuboids. We simulated a continuous rota-
tion of 90°, combined with a translation along the z-axis of
4 cm during the rotation. We identified 50 pairs of equidistant
points and computed the estimated scaling factor for each pair
across rotation. The final result at each tilt was the mean of
those pairs. Figure 7 shows the simulation results. The boot-
strap process could successfully recover the unknown scaling
factor for the surface with additional 3D structure in the pres-
ence of motion-in-depth, but not for the strictly planar surface.

Experimental stimuli and setup

The three different types of objects used both in human exper-
iments and in simulations are illustrated in Fig. 8, including
the rectangular surface with nine cuboids located in a 3-by-3
grid, the hexagonal surface with nine tetrahedrons at random
locations, and the asymmetrical pentagonal surface with nine
tetrahedrons at random locations, together with the manipula-
tion of the orientation of the symmetry axis of the hexagonal
surface. In addition, as shown, we rotated the hexagonal sur-
face around its surface normal by 15° to manipulate the ori-
entation of its symmetry axis. All surfaces had the samewidth,
10 cm, and heights, 8 cm, 10cm, or 12 cm. The cuboids and
tetrahedrons had heights of 0.55 cm and base lengths of 1 cm.

To test the effects of large continuous perspective change,
there were five different rotation amounts, from 25° to 65°
with a 10° increment. Objects were presented using half rota-
tion. For instance, with a 25° rotation, the object, started fac-
ing the observer, at a tilt of 0°, first rotated through 12.5° to
one side, rotated back to the starting orientation, and then
rotated through 12.5° to the other side. Within each rotation

amount, there was a total of 24 different slant angles, from 27°
to 73° with a 2° increment. Finally, for three consecutive slant
angles, the height of the surface pseudo-randomly varied
among 8 cm, 10 cm, and 12 cm. Therefore, for each shape
condition, there was a total of 120 trials (five different rotation
amounts times 24 different slant angles). Tomatch sample size
of different experiments, we simulated 12 participants’ data
using the rectangular strictly planar surface experiment, 10
using the rectangular surface with cuboids experiment, 11
using the hexagonal surface with tetrahedrons experiment,
and 10 using the asymmetric pentagonal surface with tetrahe-
drons experiment. Stimuli were presented using the monocu-
lar SFM information in the actual experiment. The objects
consisted of random dots, located 9 cm behind and screen.
They were back projected onto the screen from a projection
point 76.2 cm in front of the screen, yielding a viewing dis-
tance of 85.2 cm.

Simulation methods

Each simulated object consisted of the same random texture
points as used in the corresponding human experiment, with a
texture density of 26.67 points per cm2. We first constructed
the objects using these points, rotated the objects, and
projected points on the object to the screen, generating x and
y coordinates for each point. Coordinates were then scaled by
the viewing distance, which was 85.5 cm. Gaussian noise with
a standard deviation of 0.002 was introduced to the coordi-
nates to reflect random error associated with motion measure-
ment. Each frame had different noise seeds.

We generated inputs to the model for each trial. Within
each trial, a set of 50 samples each consisting of two equidis-
tant points found on the surface were identified. The model
then tracked these samples across the entire range of rotation,

producing a quality measure, α̇, and the surface plane

Fig. 7 Recovered scaling factors through the bootstrap process for a strictly rectangular planar surface and the same surface with nine cuboids plotted as a
function of change in tilt. The correct scaling factor is 1
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coefficients. The model first checked among the samples
whether the respective quality measures satisfied a criterion.
The quality criterion was set based on a 19% 3D distance
discrimination threshold (Norman et al., 1996). We first iden-
tify samples that had a quality measure that exceeded the
criterion. If such samples exist, we used the median α̇ esti-
mates at the tilt where the quality measure was above criterion
for those samples, and the final α̇ estimate was the mean of the
medians. Alternatively, if no sample satisfied the quality cri-
terion, we simply used the mean of the medians of all samples
across all tilts as the final α̇ estimation.

Furthermore, as numerous studies have suggested, human
observers tended to perceive more upright slants to be closer
to the frontoparallel plane (and thus, as more slanted) (Todd,
Thaler, & Dijkstra, 2005; Norman et al., 2009; Durgin, Li, &
Hajnal, 2010; Saunders & Chen, 2015). In addition, Cherry
and Bingham (2018) reported a similar bias towards shallower
slants, where observers tended to perceive smaller slants to be
closer to the horizontal ground surface. According to the au-
thors, such a bilateral bias could be attributed to the presence
of vertical (e.g., walls) and horizontal (e.g., table) references in
the experiment. Similarly, Saunders and Chen (2015) argued
that for computer-generated displays, presence of the vertical
computer screen could generate a frontal bias. To represent
these biases, we introduced additional noise to the final α̇
estimate in themodel that was proportional to the derived slant
when no sample had a quality measure that satisfied the crite-
rion. Such noise would make large slants more frontoparallel
and small slants more horizontal.

Finally, based on findings of Wang et al. (2019), the direc-
tion of slant could also vary depending on the presence or
absence of mirror symmetry in the object. To capture this,
for the pentagonal objects, we used the symmetry axis as its
slant direction. For the pentagonal objects, we picked a

random point along the bottom edge of the object and con-
nected it with its top vertex and used this as its slant direction.
We varied the slant direction for pentagonal objects for every
trial.

Data analysis

To analyze and compare model prediction and actual human
performance, we used the same analysis protocol as in Wang,
Lind, and Bingham (2018, 2019). Specifically, we used linear
regression, regressing predicted slant onto actual slant, and
regression slopes and intercepts for each rotation amount and
each participant as measures of performance. Averidical judg-
ment of slant within a rotation condition entails a regression
slope of 1 and a regression intercept of 0. To compare model
prediction with human performance, we used mixed-design
analysis of variance (ANOVA) on regression slopes, inter-
cepts, and r2 with one within-subject factor of rotation amount
(five levels) and one between-subject factor of type of results
(two levels, human performance or model prediction).

Simulation results

For the rectangular surface with cuboids, regression slopes
and intercepts for human performance and model simulation
are shown in Fig. 9. Mauchly’s test of sphericity showed that
the sphericity assumption was violated (χ2(9) = 27.55, p =
0.001). With Greenhouse-Geisser correction, ANOVA on re-
gression slopes showed that there was a significant main effect
of rotation amount (F(2.50,55.00) = 7.00, p = 0.001, η2p =

0.24). There was no significant effect of the type of results
(p > 0.9, η2p = 0.00) or a significant interaction effect between

the two (p > 0.7, η2p = 0.015). For regression intercepts, the

Fig. 8 Schematic illustration of surfaces used in experimental displays
and model simulations: rectangular surface with nine cuboids in a three-
by-three grid (top left), asymmetrical pentagonal surface with nine ran-
domly located tetrahedrons (top right), hexagonal surface with randomly
located tetrahedrons (bottom left), and the same hexagonal surface with

the symmetry axis rotated around the surface normal by 15° (bottom
right). For the hexagonal objects, dashed lines represent the direction of
symmetry axis. All objects presented have a slant of 45° and a tilt of -
32.5°
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sphericity assumption was also violated (χ2(9) = 35.65, p <
0.001). ANOVA on regression intercepts showed that there
was a significant main effect of rotation (F(2.40, 52.72) =
7.44, p = 0.001, η2p = 0.25) after Greenhouse-Geisser correc-

tion. There was neither a significant main effect of source of
data (p > 0.2, η2p = 0.05) nor a significant interaction between

the two factors (p > 0.1, η2p = 0.07). As Fig. 9 shows, human

performance and model prediction are identical for regression
slopes. Although regression intercepts were a little higher for
human performance than for model prediction, this difference
was not statistically significant.

Based on comparisons of human and simulation results for
the cuboids display, one can see that the equidistant points
bootstrap process works well. In particular, slant estimation
was inaccurate at 25° of rotation. With 35° rotation, model
performance improved a little but did not reach the veridical
level. Finally, at 45° and beyond, slant estimations became
accurate. Results from this simulation had two implications.

First, the stratified process of deriving slant estimates using
the equidistant points implementation is suitable for describ-
ing performance in 3D slant perception. As the results sug-
gested, model performance did improve with an increasing
amount of rotation and remained at a steady level once rota-
tion reached and went beyond 45°. Secondly, the additional
noise introduced to the final estimates of the scaling factor
when the quality measure did not exceed threshold accurately
reflected the tendency of human perception of 3D slant, name-
ly that people tended to overestimate large slant (more upright
slants were perceived to be even more upright).

Next, using the same method, we generated model simula-
tions of the hexagonal surface with tetrahedrons at random
locations. Figure 10 shows the mean regression slopes and
intercepts for human and model performance. Again, we
saw identical performance in model and data. For regression
slopes, the sphericity assumption was violated (χ2(9) = 30.68,
p < 0.001). With Greenhouse-Geisser correction, ANOVA
showed that there was a significant main effect of rotation

Fig. 9 Mean regression slopes (top) and intercepts (bottom) for human
performance and model simulation using the rectangular surface with
cuboids. Error bars represent 95% confidence intervals around the mean,

calculated for repeated-measures designs (Cousineau, 2005; with
correction by Morey, 2008)
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amount (F(2.35,47.04) = 31.59, p < 0.001, η2p = 0.61).

However, there was neither a main effect of the type of results
(p > 0.5, η2p = 0.02) nor a significant interaction effect between

the two factors (p > 0.2, η2p = 0.064). For regression intercepts,

the sphericity assumption was violated (χ2(9) = 19.73, p <
0.05). With Greenhouse-Geisser correction, ANOVA showed
that there was a significant main effect of rotation amount
(F(2.79,55.80) = 42.01, p < 0.001, η2p = 0.68). There was

neither a main effect of type of results (p > 0.8, η2p = 0.002)

nor a significant interaction effect between the two factors (p >
0.3, η2p = 0.05). As can be seen from Fig. 10, the model pre-

dicted the pattern of performance for the hexagonal objects
very well. The model successfully predicted veridical perfor-
mance at 45° of rotation and beyond.

Next, we performed simulations for hexagonal displays with
a 15° roll. In our simulation, to explore the role of symmetry, we
computed slants based on the direction of the symmetry axis
instead of using the surface normal. Figure 11 shows the mean

regression slopes and intercepts for human performance and
model simulation. Mauchly’s test of sphericity showed a viola-
tion of the sphericity assumption for regression slopes (χ2(9) =
21.87, p = 0.01).With Greenhouse-Geisser correction, there was
a significant main effect of rotation amount (F(2.63,47.39) =
25.03, p < 0.001, η2p = 0.62). There was no significant main

effect of the source of data (p > 0.7, η2p = 0.007) or a significant

interaction effect between the two factors (p > 0.5, η2p = 0.041).

For regression intercepts, there was also a significant main effect
of rotation amount (F(4,72) = 28.88, p < 0.001, η2p = 0.62).

Again, there was neither a not a significant main effect of source
of data (p > 0.8, η2p = 0.005) nor a significant interaction effect (p

> 0.2, η2p = 0.076).

As shown in Fig. 11, model simulation produced the same
pattern as human performance both in terms of regression
slopes and intercepts. Wang et al. (2019) suggested that ob-
servers judged slant using the symmetry axis to determine the
direction of slant. They subsequently regressed slant

Fig. 10 Mean regression slopes (top) and intercepts (bottom) for human
performance and model simulation using the hexagonal surface with ran-
dom tetrahedrons. Error bars represent 95% confidence intervals around

the mean, calculated for repeated-measures designs (Cousineau, 2005;
with correction by Morey, 2008)
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judgments onto slants that were computed along the direction
of the object’s symmetry axis. With this, the dependent mea-
sures reached veridical level (i.e., slope of 1 and intercept of
0). In our simulation, after using the recovered relief scaling
factor to adjust recovered depth values, we computed slant
along the direction of the symmetry axis and regressed slant
estimates from the model onto actual (correct) slants. This
produced results that are equivalent to human performance
when it is compared to actual (correct) slants. This provided
additional support for the claim that human observers did in
fact used the object’s symmetry axis as the direction of slant
and that they could still recover the correct scaling factor even
though symmetry was perturbed.

Finally, we simulated results from the pentagonal surface
with tetrahedrons. Wang et al. (2019) suggested that poor per-
formance in this case was due to the lack of specification of the
direction of slant. To simulate such an effect, for each trial, we
randomly chose a point along the bottom edge of the pentago-
nal surface and formed an axis connecting that point to the top
vertex of the surface. This yielded poorly constrained and

variable estimates of the slant direction. Figure 12 shows the
mean regression slopes and intercepts. Again, sphericity as-
sumption was violated for regression slops (χ2(9) = 19.33, p
< 0.05).With Greenhouse-Geisser correction, ANOVA showed
that there was a significant main effect of rotation
(F(2.68,48.20) = 10.65, p < 0.001, η2p = 0.37). However, there

was neither a significant main effect of source of data (p > 0.4,
η2p = 0.033) nor a significant interaction effect between the two

tested factors (p > 0.05, η2p = 0.12). For regression intercepts,

the sphericity assumption was violated (χ2(9) = 21.69, p <
0.05). With Greenhouse-Geisser correction, there was a signif-
icant main effect of rotation (F(2.60,46.81) = 8.77, p < 0.001, η2p
= 0.33). There was no effect of source of data (p > 0.1, η2p =

0.08) but there was a significant interaction effect between the
two factors (F(2.60,46.81) = 3.50, p < 0.05, η2p = 0.16).

As seen from Fig. 12, regression slopes from model simu-
lations again replicated those from human performance. There
was a trend toward veridical performance over increasing
amounts of rotation despite the random estimates of the

Fig. 11 Mean regression slopes (top) and intercepts (bottom) for human
performance and model simulation using the hexagonal surface with ran-
dom tetrahedrons with a 15° rotation of the surface around its normal.

Error bars represent 95% confidence intervals around the mean, calculat-
ed for repeated-measures designs (Cousineau, 2005; with correction by
Morey, 2008)
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direction of slant. This was true of both regression slopes and
intercepts. However, there was a discrepancy between model
simulation and human performance in intercepts at 55° of
rotation, which contributed to a significant interaction effect.
As seen from Fig. 12, the model yielded smaller intercepts
than human results. Overall, the significance of this simulation
is that it provided evidence for arguments made in Wang et al.
(2019) that for the pentagonal surfaces, due to the lack of
symmetry, observers chose the direction of slant randomly
for each trial. Because the model was able to produce accurate
estimates of the unknown scaling factor, this suggested that
observers in the pentagonal experiment were able to recover
the correct scaling factor as well.

General discussion

We presented a thorough illustration of how the bootstrap
process was implemented in addition to providing an alterna-
tive solution to the process itself that was more suitable for 3D

slant perception. We simulated experiments fromWang, Lind,
and Bingham (2018, 2019), including rectangular surfaces
with cuboids, hexagonal surfaces with randomly distributed
tetrahedrons, both with symmetry axis aligned with and not
aligned with the direction of slant, as well as pentagon sur-
faces with tetrahedrons. Based on simulation results, we can
see that the model has an extremely high predictive power,
resulting in identical regression slopes and intercepts for var-
ious rotations across different slants.

Due to the high predictive power of the model, several
crucial findings could be confirmed. First and foremost, the
bootstrap process does not require right angles. The original
solution presented in Lind et al. (2014) utilized the tracking of
right angles across rotation. However, the essence of the boot-
strap process is to track invariance over transformation. The
right angles identified in the previous solution are equivalent
in relief and physical space at the time when they are identi-
fied, enabling one to track its transformation across perspec-
tive change as a result of the unknown scaling in the relief
space and to extrapolate such scaling factor. The alternative

Fig. 12 Mean regression slopes (top) and intercepts (bottom) for human
performance and model simulation using the pentagonal surface with
random tetrahedrons. Error bars represent 95% confidence intervals

around the mean, calculated for repeated-measures designs (Cousineau,
2005; with correction by Morey, 2008)
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solution as presented in the current study uses portion of the
right angle, namely the line formed between two equidistant
points, and track it instead. This solution is simpler and more
elegant, avoiding the challenges that arise when one started to
introduce slant to the picture. As simulations showed, this
method is equally powerful of obtaining the correct scaling
factor with large continuous perspective change. Interestingly,
the fundamental ideas behind the bootstrap process (invari-
ance over transformation) is congruent with the idea of con-
gruence under motion developed by Lappin and colleagues
(Lappin & Fuqua, 1983; Lappin & Love, 1992; Lappin &
Ahlström, 1994).

Secondly, results from the hexagonal objects with a 15° roll
as well as the pentagonal objects validated the claim from
Wang et al. (2019) that symmetry of the objects aided the
recovery of slant, not necessarily the recovery of the correct
scaling factor. For the hexagonal objects, slant estimations
were derived based on the direction of the symmetry axis
and it replicated human performance. This indicated that ob-
servers did indeed utilize the direction specified by hexagons’
symmetry axis to produce slant judgment. Similarly, slant es-
timations for the pentagonal objects were based on a random
slant direction and it also replicated human performance.
Because the bootstrap process could recover the correct scal-
ing factor at 45° of rotation, poor model performance was
primarily due to the randomness in the direction of slant.
Human performance in this experiment did exhibit the same
pattern of results, suggesting that human observers were likely
to utilize the same strategy.

Third, the post hoc noise added to the scaling factor as a
function of the initially derived slant when the quality measure
failed to pass usable threshold helped the simulation results to
exactly replicated human results confirmed that there was in-
deed a binary bias towards slant perception. According to
Durgin, Li, and Hajnal (2010), there was a tendency for hu-
man observers to view slants to be more frontoparallel. Such a
noise added to the scaling factor reflected such a tendency
when the bootstrap’s quality measure did not reach to a satis-
fiable level. This, to some extent, confirmed the bias as sug-
gested by Durgin et al. In addition, based on both human
performance and model simulation, we can see that such a
bias can indeed be eliminated when there was a sufficiently
large continuous perspective change.

Finally, the effectiveness of the entire stratified process of
recovering slant also suggested that slant perception, at least
3D slant perception, may not be the basis for 3D shape per-
ception. The modeling effort itself started from the recovery of
relief structures based on four non-coplanar points across a
two-frame apparent motion. This process itself was used to
recover 3D shapes, not slant. In fact, the SFM algorithm can-
not even operate with only coplanar points, which are what
slants in a traditional sense is all about. If perceiving slant is
the basis for perceiving 3D shapes, then the process should

start with somehow recovering the slant – meaning that the
process should work with even the simplest planar surfaces.
This is not the case. An overall shape of the object has to be
recovered before one is able to recover slant. This suggests,
but not completely substantiates, the fact that slant may just be
a certain property of a 3D object, which is consistent with
findings from other studies (i.e., Lappin, Norman, &
Phillips, 2011). The surface of an object could have a certain
orientation relative to the ground surface. Such orientation
could be specified through the symmetry axis if the surface
is symmetrical. Alternatively, if the orientation of the surface
was underspecified, then observers would just randomly pick
a direction that works out for them.

Open Practice Statement Data and materials for all experi-
ments are available upon request to the corresponding author,
and none of the experiments was preregistered.
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