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Abstract
Our research has previously shown that scene categories can be predicted from observers’ eye movements when they view
photographs of real-world scenes. The time course of category predictions reveals the differential influences of bottom-up
and top-down information. Here we used these known differences to determine to what extent image features at different
representational levels contribute toward guiding gaze in a category-specific manner. Participants viewed grayscale pho-
tographs and line drawings of real-world scenes while their gaze was tracked. Scene categories could be predicted from
fixation density at all times over a 2-s time course in both photographs and line drawings. We replicated the shape of the
prediction curve found previously, with an initial steep decrease in prediction accuracy from 300 to 500 ms, representing
the contribution of bottom-up information, followed by a steady increase, representing top-down knowledge of category-
specific information. We then computed the low-level features (luminance contrasts and orientation statistics), mid-level
features (local symmetry and contour junctions), and Deep Gaze II output from the images, and used that information as a
reference in our category predictions in order to assess their respective contributions to category-specific guidance of gaze.
We observed that, as expected, low-level salience contributes mostly to the initial bottom-up peak of gaze guidance.
Conversely, the mid-level features that describe scene structure (i.e., local symmetry and junctions) split their contribu-
tions between bottom-up and top-down attentional guidance, with symmetry contributing to both bottom-up and top-down
guidance, while junctions play a more prominent role in the top-down guidance of gaze.
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Humans have the remarkable ability to form simple and co-
herent representations of the world despite being bombarded
with new information continuously. Selective attention plays a
prominent role in filtering and serializing the information for
further processing. Eye movements are an overt, easily ob-
servable form of deploying spatial attention, allowing for the
processing of only the important pieces of a complex environ-
ment at any given time (Henderson, 2003).

Human gaze patterns have been the topic of attention re-
search for decades (e.g., Greene, Liu, &Wolfe, 2012; Kowler,
Anderson, Dosher, & Blaser, 1995; Liversedge & Findlay,
2000; Rayner, 2009; Yarbus, 1967).Many factors are believed
to contribute to the control of human gaze, from the low-level
physical features of a stimulus (Borji & Itti, 2013; Bruce &
Tsotsos, 2009; Itti, Koch, & Niebur, 1998; Koch & Ullman,

1985; Tatler, Baddeley, & Gilchrist, 2005) to higher-level in-
fluences, such as task context or reward (Henderson, 2003;
Hollingworth & Henderson, 2000; Navalpakkam& Itti, 2005;
Torralba, Oliva, Castelhano, & Henderson, 2006; Wu, Wick,
& Pomplun, 2014). However, it is so far unclear what role
mid-level vision plays in guiding spatial attention and gaze.
Mid-level vision is thought to underlie the perceptual organi-
zation of low-level features for the subsequent processing by
higher-level recognition processes (Koffka, 1935; Wagemans
et al., 2012; Wertheimer, 1938). Thus, it should be expected
that mid-level vision also contributes to directing attention.
Here we measured the contributions of mid-level features to
content-specific gaze behavior using images of real-world set-
tings. Specifically, we measured the effects of contour junc-
tions and of local-part symmetry on fixation behavior, which
allow for the prediction of scene categories. Both of these
features are thought to underlie the detection of object parts
in complex three-dimensional arrangements of surfaces and
objects (Biederman, 1987; Wagemans, 1993).

Contrasts in low-level image properties, such as orienta-
tion, intensity, and color, contribute to the salience of images,
which drives attentional orientation from the bottom up (Itti
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et al., 1998; Parkhurst, Law, & Niebur, 2002). A model of
computing salience based on these low-level features, first
proposed by Koch and Ullman (1985), was implemented in
a computational algorithm by Itti et al. (1998). This model was
able to account, in part, for the gaze patterns made by humans
when viewing complex real-world scenes (Itti & Koch, 2000;
Peters, Iyer, Itti, & Koch, 2005). Fixated regions also tend to
have higher spatial frequencies (Tatler et al., 2005) and con-
trast (Reinagel & Zador, 1999) than do locations that are not
fixated. Thus, salience is certainly important for driving initial
eye movements, but it can be quickly overridden by task
goals, instructions, or the semantic scene context
(Castelhano, Mack, & Henderson, 2009; Wu et al., 2014).
Since the development of the initial salience map
implementations, many advances have been made on gaze-
predicting algorithms by incorporating task-related goals into
the predictions (Torralba et al., 2006), as well as semantic
knowledge about the object and scene content (Henderson &
Hayes, 2017). Both low- and high-level forms of information
are indicative of scene categories. In other words, feature dis-
tributions, such as the distribution of spatial frequency infor-
mation (Berman, Golomb, & Walther, 2017; Oliva &
Torralba, 2006) or objects (Greene, 2013; Oliva & Torralba,
2007), differ across categories and remain stable within a cat-
egory. It is therefore not surprising that such features guide
gaze in a category-specific manner. Indeed, our group has
recently shown that scene categories are predictable from hu-
man fixations when observers viewed color photographs
(O’Connell & Walther, 2015), indicating that the factors that
guide overt attention are category-specific.

The past several decades in this field of research have re-
vealed many factors that influence human gaze in one way or
another. However, although the influences of low- and high-
level properties on overt attention are well-documented, where
does mid-level vision fit into the story? From their initial con-
ception, Gestalt grouping principles such as parallelism, sym-
metry, similarity, proximity, and good continuation have been
instrumental in informing our ideas about perceptual organiza-
tion (Koffka, 1935; Wertheimer, 1938; for an extensive review,
see Wagemans et al., 2012). Perceptual organization using
Gestalt grouping rules allows for the detection of likely object
locations and figure–ground segmentation. Both concepts de-
pend on the idea of nonaccidental properties, such as symmetry
(Wagemans, 1993) and contour junctions (Biederman, 1987),
which serve as cues for edges, depth, and surface boundaries,
giving rise to object and scene recognition.

Of particular relevance to the present study, both junc-
tions and local symmetry distributions are also indicative
of scene categories, such that distributions of junctions
and local symmetry differ across category boundaries
(Walther & Shen, 2014; Wilder, Rezanejad, Dickinson,
Jepson, et al., 2017b; Wilder et al., 2018, Local
symmetry facilitates scene processing, under review).

For example, all beach scenes contain a similar layout, and thus
a similar spatial distribution of junctions, which differs from the
junction distribution in, say, forest scenes. In fact, the decoding
of scene categories from brain activity in scene-selective cortex
is compromised severely when junctions are perturbed (Choo&
Walther, 2016). Similarly, when the most symmetric parts of a
scene image are removed, human categorization accuracy de-
creases substantially more than when the most asymmetric parts
are removed (Wilder et al., 2018, Local symmetry facilitates
scene processing, under review). It is unclear whether these
mid-level features also guide human gaze in a category-
specific manner, but given their importance for scene perception
and that they are the perceptual cues for objects and scenes, we
hypothesized that they do indeed play a role in category-specific
gaze guidance. We intended to discover that role by placing it
within the context of bottom-up and top-down influences on
human gaze exploration of natural scenes.

As we mentioned above, our group was able to predict
scene categories on the basis of human fixations when
viewing color photographs (O’Connell & Walther,
2015). O’Connell and Walther found that category-
specific gaze guidance involved both bottom-up and top-
down attention. They showed that the shape of the time
course of prediction accuracy over the course of a trial is
diagnostic for the differential contributions of bottom-up
and top-down factors. The initial, early contribution of
bottom-up attention to category prediction accuracy
quickly falls off within the first few hundred milliseconds.
This sharp decrease in prediction accuracy is followed by
a slow but steady increase, which is dominated by top-
down influences (O’Connell & Walther, 2015).

Using the same time-resolved method of measuring the
differential contributions to attentional guidance, we here
demonstrate the influence of low-level, mid-level, and high-
level components of visual information on gaze behavior.
Considering how quickly scene perception occurs, it is possi-
ble that category-specific mid-level features attract overt at-
tention rapidly and contribute more to the bottom-up influ-
ence. Conversely, other salient features, such as color and
contrast, are well-known to capture bottom-up attention (Itti
et al., 1998; Reinagel & Zador, 1999), and perhaps they mask
the role of mid-level features at early time points. To discrim-
inate these two possibilities, our paradigm makes use of both
photographs and line drawings from six different scene cate-
gories (i.e., beaches, forests, mountains, city streets,
highways, and offices; see Fig. 1). To establish a baseline
behavioral measure, we recorded the eye movements of
participants viewing the grayscale photographs of scenes.
Then, to minimize the influence of low-level features, we
asked observers to view line drawings of the scenes. Line
drawings are valuable because they allow us to retain the
mid-level features but eliminate the more salient low-level
features, while still being easily perceived and rapidly
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categorized (Walther & Shen, 2014) and eliciting the same
category-specific neural patterns as photographs (Walther,
Chai, Caddigan, Beck, & Fei-Fei, 2011).

We used two measures to determine the role of sym-
metry and junctions in category-specific attentional guid-
ance. First, the level of accuracy in predicting scene cat-
egories from gaze data serves as a measure of how diag-
nostic the respective features are for category knowledge.
We show that low-level features contribute the least to
category-specific gaze guidance, and that having full cat-
egory knowledge contributes the most. Mid-level features,
appropriately, rank between purely low-level and high-
level knowledge. Second, to evaluate a feature’s contribu-
tions to bottom-up versus top-down influences on atten-
tion, we measured its involvement in the initial sharp
decrease in prediction accuracy versus the slow recovery.
Note here that our use of the terms Bbottom-up^ and Btop-
down^ is distinct from our use of the terms Blow-level^
and Bhigh-level.^ The idea that bottom-up guidance refers
only to low-level, stimulus-driven attention is outdated
and does not stand up to scrutiny (Anderson, 2013;
Awh, Belopolsky, & Theeuwes, 2012). It has been shown
that high-level knowledge, such as memory of past re-
ward associations (Anderson, 2013; Awh et al., 2012;
Marchner & Preuschhof, 2018), also drives attention au-
tomatically in a Bbottom-up^ manner. Thus, here we use
the term Bbottom-up^ to refer to this feedforward auto-
matic mode of attentional guidance, and we use the term
Btop-down^ to refer to a more explicit mode of explora-
tion. We use the term Blow-level^ to refer to simple
image-based features, and Bhigh-level^ to refer to seman-
tic content, such as category.

Ultimately, we replicated our previous results concerning
the differential contributions of bottom-up and top-down com-
ponents to gaze guidance (O’Connell & Walther, 2015).
Additionally, we showed that low-level features contribute
mostly to bottom-up attentional guidance, that high-level
knowledge contributes to both bottom-up and top-down guid-
ance, and that mid-level features contribute somewhat to
bottom-up but mostly to top-down guidance.

Method

Participants

A total of 77 undergraduate students from Ohio State
University participated in the experiment. All of the par-
ticipants had normal or corrected-to-normal vision, pro-
vided written informed consent to participate, and re-
ceived partial course credit as compensation. The experi-
ment was approved by the Institutional Review Board of
Ohio State University.

Stimuli and apparatus

In all, 432 grayscale photographs (800 × 600 pixels) and
their corresponding 432 line drawings were used. The im-
ages depicted six scene categories (beaches, forests, moun-
tains, city streets, highways, and offices; 72 images per
category) and were the best exemplars of their respective
categories out of a set of almost 4,000 images downloaded
from the Internet (Torralbo et al., 2013). The line drawings
were generated by having artists trace the most salient con-
tours in the photographs (Walther et al., 2011). See Fig. 1
for example images. Each participant viewed a total of 432
different images, which were randomly assigned to be
viewed as grayscale photograph (GS) or line drawing
(LD), with the constraint that there were an equal numbers
of images from each of the six categories in each group.
Thus, each participant viewed all available images, but half
of these were grayscale photographs and half were line
drawings (216 GS and 216 LD).

The stimuli were presented using SR Research’s
Experiment Builder software, on a CRT monitor with a reso-
lution of 800 × 600 pixels. Participants were seated 50 cm
from the monitor, so that the images subtended 44 × 33 de-
grees of visual angle. Eye movements were recorded from the
participants’ dominant eye using an EyeLink 1000 eyetracker
with a tower-mounted setup, with participants’ heads being
stabilized on chin-and-forehead rests.

Fig. 1 Example scene stimuli of beaches, forests, mountains, city streets, highways, and offices (from left to right). The top row shows grayscale
photographs, and the bottom row shows line drawings of the same scenes
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Procedure

The study consisted of eight blocks (four with grayscale photo-
graphs and four with line drawings). Each block consisted of 48
study trials, followed by 12 Bnew–old^ recognition test trials
using six images that had been seen in the study phase and six
new images that had not yet been studied. The recognitionmem-
ory task was used to ensure that the participants had explored the
images during the study phase. The eyetracker was calibrated
before each block. Each study trial began with drift correction,
followed by an image of a scene presented for 3 s (see Fig. 2).
Each test trial also began with drift correction. Then the image
was displayed for 3 s, followed by a response screen, on which
participants were asked to indicate whether the image was new
or old by fixating the word BNew^ or BOld^ (see Fig. 2) and
pressing a button on a game controller to confirm their selection.
The position of the response words on the screen (left vs. right of
the initial fixation point) was randomized for each trial. Only
data from the study phase were analyzed in this study. Test phase
data were analyzed separately and published elsewhere
(Damiano & Walther, 2018, Distinct roles of eye movements
during memory encoding and retrieval, under review).

Analysis

To predict an image’s scene category, we used a classification
technique that computed category predictions by comparing
each participant’s fixation density on a trial-by-trial basis to
the average of the fixation density for each scene category of
all other participants (O’Connell & Walther, 2015). This pro-
cedure was repeated for each participant in a leave-one-
subject-out (LOSO) cross-validation.

Fixation density maps To train the classifier, one participant’s
gaze data were held out while fixation density maps (FDMs)
were calculated from all other participants’ fixation data. The
first fixation of each trial was removed from the data before

calculating the FDMs, since its location and duration simply
reflect carryover effects from the pretrial drift correction.
FDMs are the sums of the remaining fixations as a function
of their location (x- and y-coordinates), weighted by their du-
ration in milliseconds. No outlier duration cutoffs were ap-
plied to the data. Category-specific FDMs were created for
each of the six scene categories by averaging over all trials
of a given category for all participants in the training set (i.e.,
all participants except the one held out).

The maps were then smoothed with a two-dimensional
Gaussian kernel (σ = 15 pixels, equivalent to 0.8 degrees
of visual angle, reflecting the eyetracker accuracy) and z-
scored so that positive scores reflected locations that were
fixated more often than average across all images from a
given category, and negative scores reflected locations
fixated less often than average across all images from that
category. Marginal FDMs were created by subtracting the
grand mean of all FDMs from each category-specific
FDM (see Fig. 3, columns 1–2).

Deep Gaze mapsWe inputted each of our scene images into
the leading model of gaze prediction, Deep Gaze II
(Kümmerer, Wallis, & Bethge, 2016), and obtained a matrix
for each image indicating the predicted fixation locations
(see Fig. 4a). We used the Deep Gaze II model without cen-
ter bias, since we had removed center bias from our FDMs
and other feature maps, as well. These matrices were then
averaged over all images of a given category. The Deep
Gaze output maps were already smoothed; thus, the average
maps were simply normalized in order to obtain Deep Gaze
density maps (DGDMs), wherein positive scores reflected
locations that were predicted to be fixated more often than
average across all images from a given category, and nega-
tive scores reflected locations predicted to be fixated less
often than average across all images from that category.
The DGDMs were derived separately for photographs and
line drawings (see Fig. 3, columns 5–6).

Fig. 2 Design of the experiment. Participants studied grayscale
photographs (GS) and line drawings (LD) of scenes from six categories
(beaches, city streets, forests, highways, mountains, and offices,

presented randomly), followed by a recognition memory test. Each block
contained either GSs or LDs, but not both
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Salience maps The features used by Deep Gaze are a mix-
ture of low-level, mid-level, and high-level features. To
investigate low-level features in isolation, we generated
simpler salience maps (SMs) using the Saliency Toolbox
(Walther & Koch, 2006). SMs were generated for each
image on the basis of luminance and orientation proper-
ties and averaged across all images belonging to the same

scene category. The SMs for each category were derived
separately for the grayscale photographs and line draw-
ings, since these image types have differences in low-
level image properties (see Fig. 3, column 3–4).

Symmetry density maps The use of line drawings allowed us
to compute the local symmetry of pairs of contours within an

Fig. 3 Columns 1–2:Averagemarginal fixation density maps (FDMs) for
each category based on participants’ fixations when viewing grayscale
photographs (GS FDMs) and line drawings (LD FDMs). Marginal FDMs
are created by subtracting the grand mean of all FDMs from each
category-specific FDM. Columns 3–4: Average marginal salience maps

(SMs) for grayscale photographs (GS SMs) and line drawings (LD SMs).
Columns 5–6: Average marginal Deep Gaze density maps (DGDMs) for
grayscale photographs (GS DGDMs) and line drawings (LD DGDMs).
Column 7: Average marginal symmetry density maps. Column 8:
Average marginal junction density maps

Fig. 4 (a) Deep Gaze II input and output; white reflects predicted gaze
locations. (b) Line drawing with the junctions highlighted in blue for
illustration; participants did not see the junctions highlighted. (c) Line

drawings with the most symmetric contours in red and the least symmet-
ric contours in blue; participants did not see the color range during the
experiment
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image. Symmetry scores are obtained along the medial axis of
each pair of contours within an image by calculating the de-
gree of local parallelism between the contours on each side of
this medial point. Each pixel on a contour therefore has two
possible symmetry scores associated with it, and receives the
higher of the two (please see Wilder, Rezanejad, Dickinson,
Siddiqi, et al., 2017a, andWilder et al., 2018, Local symmetry
facilitates scene processing, under review, for more details on
symmetry score calculations; see Fig. 4c for an example
drawing with symmetry scores on each contour pixel)

Each symmetry density map (SymDM) was a sum of all
symmetry scores as a function of their location and value.
Again, the maps were smoothed and normalized so that pos-
itive scores reflected locations that contained more local sym-
metry than average across all images from a given category,
and negative scores reflected locations that contained less
symmetry than average across all images from that category
(see Fig. 3, column 7).

Junction density maps Finally, the line drawings also
allowed us to compute the junction locations within each
image. Junction locations occurred wherever at least two
line segments from separate contours intersected within
certain angle parameters, and junctions that occurred with-
in a distance of three pixels were combined into one single
junction (for more details on junction computations, see
Walther & Shen, 2014; see Fig. 4b for an example
drawing with junctions highlighted).

Category junction density maps (JDMs) were computed
similarly to the FDMs and other feature maps; each JDM
was a sum of all junctions as a function of their location (x-
and y-coordinates) and value (1 if the pixel contained a junc-
tion, otherwise 0), averaged over all images from a given
category. The maps were then smoothed and normalized, as
above, so that positive scores reflected locations that
contained more junctions than average across all images from
a given category, and negative scores reflected locations that
contained fewer junctions than average across all images from
that category (see Fig. 3, column 8).

Category predictions To predict the scene category, the FDMs
from individual trials were compared to the category FDMs in
order to generate a goodness-of-fit score for each category. The
goodness-of-fit score was calculated separately for each catego-
ry by summing the category’s chosen map values over the fix-
ated locations on that trial, weighted by fixation duration. This
prediction was done with data from the entire trial, as well as
with data from only a particular time interval within the trial.
Each category prediction was determined by whichever map
gave the best goodness-of-fit score. If the prediction matched
the trial’s true category label, the prediction was correct. This
procedure was repeated for each participant. The prediction ac-
curacy was computed as the fraction of trials with correct

category predictions, and tested for significance using one-
sided t tests comparing the prediction accuracy to chance
(1/6). When multiple time intervals were tested, the significance
levels were Bonferroni-corrected for multiple comparisons.

This process was also performed on each set of feature
maps (i.e., DGDMs, JDMs, SymDMs, or SMs). When the
prediction analysis was done using FDMs, each participant’s
fixations on a trial-by-trial basis were compared to the FDMs
derived from all other participants’ data. When the category
predictions were made using the feature maps, each partici-
pants’ fixations on a trial-by-trial basis were compared to the
reference feature maps (see Fig. 3, columns 3–8).

Results

First, to confirm that scene categories were predictable from
gazewhen viewing scene images (both photographs and line
drawings), we performed a 77-fold LOSO cross-validation,
training and testing on participants’ fixations when they
viewed grayscale photographs and line drawings, separate-
ly. Prediction accuracy was compared to chance (1/6), using
a one-tailed t test to determine whether the spatial distribu-
tion of fixations was specific to distinct scene categories.We
were able to successfully predict the scene categories from
gaze data when using all fixations within the entire trial (3 s),
with an accuracy of 33.6% for grayscale photographs and
31.1% for line drawings, significantly above the chance lev-
el of 16.7% (1/6), with p < .0001 for both image types
(Cohen’s d for grayscale photographs = 3.84; Cohen’s d
for line drawings = 3.44). The overall prediction accuracy
in these FDM conditions reflect how similarly people be-
have when viewing different images from the same catego-
ry. That is, we were able to predict category from gaze to the
extent that (1) exemplar images are similar enough within a
category and differ from the exemplars from other catego-
ries, and (2) viewing behavior is similar across individuals.
Thus, our prediction accuracy acts as a ceiling score for the
category predictability of fixations.

To examine the time course of category predictability from
gaze, we performed a cumulative time bin analysis, with a
start time of 0 ms and end times beginning at 300 ms and
increasing in increments of 100 ms. Classification was signif-
icant at all time bins for both grayscale photographs and line
drawings (see Fig. 5a and c). The prediction accuracies begin
high and then quickly dip until 400 to 500 ms, followed by an
accuracy increase until 2,000 ms, replicating O’Connell and
Walther’s (2015) previous findings that fixations while view-
ing images of real-world scenes reflect initial bottom-up atten-
tion capture, followed by top-down knowledge control. From
2,000 to 3,000 ms, the prediction accuracy did not increase or
decrease, so we have limited the time window to 2,000 ms for
the remainder of the analyses.
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We used the above-mentioned results from the grayscale
photographs to establish a baseline of bottom-up and top-
down influence on category-specific gaze guidance. Note that
the shape of the prediction curve is of great importance for the
interpretation of the results that follow. Namely, the initial
drop in accuracy reflects the shift from the greatest degree of
bottom-up influence to a decreased degree of that influence
for the guidance of gaze. Thus, we calculated the absolute
difference between the initial prediction accuracy and the min-
imum prediction accuracy in order to obtain a contribution
score of bottom-up guidance. Conversely, the slow rise that
follows reflects the influence of top-down gaze guidance.
Again, we calculated the difference between the prediction
accuracy at 2 s and the minimum accuracy in order to reveal
the level of top-down guidance. In other words, we used these
absolute differences to describe the influences of bottom-up
and top-down attention on category-specific gaze guidance

(see Fig. 5a for an example of the calculation on the FDM
curve; see the FDM column on the right of Fig. 5b for the
corresponding difference values). Comparing the levels of in-
fluence from these two sources of information using a paired-
sample t test, we found that, in grayscale photographs, eye
movements are influenced equally by bottom-up (BU) and
top-down (TD) guidance (BU = .081 vs. TD = .077, t(76) =
0.31, p = .76, Cohen’s d = 0.06). To confirm that the use of line
drawings served to decrease the influence of bottom-up atten-
tion, we calculated the same absolute differences as above and
found that, whereas the top-down influence remained the
same as in grayscale photographs (LD top-down = .082, GS
top-down = .077), t(76) = 0.83, p = .41, Cohen’s d = 0.14, the
bottom-up influence is much lower (LD bottom-up = .044, GS
bottom-up = .081), t(76) = 3.95, p < .0005, Cohen’s d = 0.54;
see Fig. 5b and d, FDM columns. After establishing these
baselines, we ran the same analyses using the various

Fig. 5 a Cumulative time bin category prediction analysis on grayscale
photographs. Shaded regions represent the 99% confidence interval. b
Individual feature contributions to bottom-up and top-down guidance
on grayscale photographs. Error bars represent the standard errors of the

means. c Cumulative time bin category prediction analysis on line draw-
ings. Shaded regions represent the 99% confidence interval. d Individual
feature contributions to bottom-up and top-down guidance on line draw-
ings. Error bars represent the standard errors of the means
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generated feature maps (see the Method section) as references
for category predictions. Thus, for each feature we obtained an
overall contribution of that feature to gaze guidance (reflected
in the prediction accuracy; Fig. 5a and c), as well as its relative
contributions to bottom-up versus top-down attentional guid-
ance (Fig. 5b and d).

To test which low-level and mid-level features were guid-
ing gaze in a category-specific manner, we performed the
LOSO cross-validation procedure four more times for each
image type using our previously generated features maps
(i.e., Deep Gaze, salience, symmetry, and junctions) as refer-
ences. We were able to predict scene categories from fixations
for all features at all times throughout the trial, meaning that
each feature contributed some category-specific information
(i.e., information that varied across categories but remained
constant within a category). Please see Fig. 5a and c for the
prediction accuracies across all time points, but here we note
specific properties of the time course analysis results.

First, we performed a two-way analysis of variance
(ANOVA) comparing the overall prediction accuracies (all
fixations up to 2 s) for each feature (i.e., DGDMs, SMs,
SymDMs, and JDMs) and across image types (i.e., GS and
LD), to determine the features’ contributions to category-
specific gaze guidance. We found a main effect of image type
[F(1, 608) = 6.14, p < .05, η2 = .007], such that the features
contributed more to category-specific gaze guidance in LD
(accuracy = 23.1%) than in GS (accuracy = 22.4%). There
was also a main effect of feature [F(3, 608) = 89.55, p <
.0001, η2 = .29]. Post-hoc tests showed that the accuracy
was higher with DGDMs (26.4%) than with SymDMs
(22.1%), JDMs (21.8%), and SMs (20.6%; all ps < .0001).
SM accuracy was lower than the accuracies for SymDM (p <
.001) and JDM (p < .01). JDM and SymDM accuracy did not
differ significantly (p = .89).

The interaction between image type and feature was also
significant [F(3, 608) = 12.91, p < .0001, η2 = .04]. This was
due to the accuracy with DGDMs being higher for GSs (27.5%)
than for LDs (25.3%), and the feature accuracy being higher in
LDs (SMs = 21.5%; SymDMs = 22.9%; JDMs = 22.6%) than in
GSs (SMs = 19.7%; SymDMs = 21.3%; JDMs = 21.0%).

Next, we performed a paired-sample t test between the
FDM and Deep Gaze prediction accuracies at the first time
point to determine whether they captured similar levels of
bottom-up contribution, since Deep Gaze II is the current
leading model of salience. We saw that the initial prediction
accuracy was close to the baseline (FDM) prediction (Deep
Gaze initial accuracy = 32.4%, FDM initial accuracy =
33.9%), t(76) = 1.74, p = .09, Cohen’s d = 0.18, confirming
that the output from Deep Gaze II is extremely similar to the
human data at the earliest time point, at least for photographs.
Notice that Deep Gaze does not fare as well as humans for
LDs (Deep Gaze initial accuracy = 24.6%, LD FDM initial
accuracy = 27.3%), t(76) = 3.24, p < .005, Cohen’s d = 0.42.

Inspecting the overall shapes of the prediction curves, we
find that the salience, symmetry, and junctions curves differ
slightly from each other but are similar across LDs and pho-
tographs. Specifically, the salience curve has a steep decline
followed by a relatively flat incline, reflecting that these fea-
tures (i.e., luminance and orientation) contribute relatively
strongly to bottom-up gaze guidance, but little to top-down
guidance. The symmetry curve contains both a decline and an
incline. Finally, the junctions curve has a relatively flat initial
decline, followed by a steadily increasing incline (see Fig. 5a
and c). To formally test whether these observable differences
in the shapes of the curves were indeed numerically signifi-
cant, we performed two separate two-way ANOVAs on the
absolute accuracy differences (i.e., bottom-up and top-down
contributions) with image type (GS and LD) and image fea-
ture (salience, symmetry, and junctions) as factors.

For the bottom-up influence, we found a main effect of
image type, such that the features contributed more to
bottom-up information in GSs (M = .049) than in LDs (M =
.038) [F(1, 456) = 6.34, p < .05, η2 = .01]. We also found a
main effect of feature [F(2, 456) = 9.59, p < .0001, η2 = .04].
The interaction was not significant [F(2, 456) = 0.36, p = .70,
η2 = .002]. Post-hoc tests on the feature factor reveal that the
bottom-up influence of salience (M = .054) was similar to that
of symmetry (M = .046, p = .28). However, both salience and
symmetry contributed to bottom-up gaze guidance more than
did junctions (M = .031, ps < .0001 and .05, respectively).

Regarding top-down influence, we also found a main effect
of image type, such that the features contributed more to top-
down information in LDs (M = .051) than in GSs (M = .044)
[F(1, 456) = 6.60, p < .05, η2 = .01]. A main effect of feature
was also found [F(2, 456) = 9.62, p < .0001, η2 = .04]. The
interaction was not significant [F(2, 456) = 0.70, p = .50, η2 =
.003]. Tests on feature revealed that salience (M = .040) has
less of a top-down influence than did junctions (M = .055, p <
.0001). Symmetry (M = .047) did not differ from either sa-
lience or junctions (ps = .083 and .063, respectively).

Discussion

Wewere able to successfully predict scene categories from the
location and duration of fixations obtained from human ob-
servers viewing grayscale photographs and line drawings of
real-world scenes over a 2-s time period. Using the shapes of
the prediction curves, we were able to isolate the degrees of
bottom-up and top-down influence of low- and mid-level fea-
tures on category-specific gaze guidance. Using the FDM re-
sults as an anchor, we found that observers are typically influ-
enced by bottom-up and top-down attentional guidance in
equal amounts when the relevant stimulus-driven information
is available. In contrast, when low-level information is re-
moved from the image (i.e., in line drawings), observers
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presumably rely more heavily on their higher-level category
knowledge than on low-level information to explore the scene
appropriately. The low-level features, as expected, contribute
more strongly to bottom-up guidance than do mid-level
features in general. Of the mid-level features we tested
(symmetry and junctions), symmetry contributes more
strongly to bottom-up guidance than does junctions. The
trend reverses for top-down guidance, whereby the low-
level features have less top-down influence on gaze than
do mid-level features. Junctions now have more influence
on top-down guidance than symmetry.

It is important to note that we were not predicting where
people would fixate within the image, as other studies have
done (Henderson & Hayes, 2017; Itti & Koch, 2000; Torralba
et al., 2006). Instead, we were predicting a particular aspect of
scene content (in this case, to which scene category the image
belonged) from fixations over time. Thus, our prediction ac-
curacy was constrained by two factors: (i) how consistent gaze
behavior was across individuals, and (ii) how similar the ex-
emplars of the same scene category were to each other and
how different they were from exemplars of a distinct category.
For example, if all instances of beach images looked exactly
the same, yet completely distinct from all other categories, and
all people visually explored in the exact same way, then pre-
diction accuracy would be 100%. However, not all beaches do
look the same, some of themmay resemble highways or cities,
and not all observers explore the same images in the same
way. Our prediction accuracy score on FDMs reflected these
intrinsic sources of noise. We used this method as a research
tool to specifically isolate the feature contributions to overall
category-specific gaze guidance. This is distinct from the in-
formation we can glean from the shape of the curve, which
instead reflects the relative contributions of a particular feature
to bottom-up versus top-down forms of attentional guidance.
With our method, we first interpret the prediction accuracy
from FDMs as a ceiling, and all other prediction accuracies
become a measure of how much a feature contributes to over-
all category-specific gaze guidance. We found that the mid-
level features guided category-specific gaze more than did
contrast and orientation, but less than having some higher-
level category knowledge, such as is the case in the predic-
tions using density maps obtained from the human data.

The features used by Deep Gaze matched the human gazes
especially well and explained much of the bottom-up influ-
ence. Similar to human performance, the bottom-up contribu-
tion of the Deep Gaze II model is smaller for line drawings
than for photographs. This is to be expected, because of the
decrease of low-level information actually available in the
image, and because Deep Gaze was trained on color photo-
graphs. Deep Gaze’s high similarity to human gaze perfor-
mance is likely due to its use of the pretrained convolutional
neural network (CNN), which is capable of object categoriza-
tion, followed by the retraining of its final four layers using

scene images. Deep Gaze samples from various levels of the
CNN to make its fixation predictions; thus, it does not use
purely low-level features to inform its algorithm. This is
useful for obtaining high prediction accuracy scores sim-
ilar to human performance, but unfortunately not as useful
for determining which specific features contribute more to
bottom-up than to top-down attentional guidance. For that
reason, we explicitly computed the low-level and mid-
level features directly from the images. Thus, we were
able to determine the distinct bottom-up and top-down
contributions of a known set of features.

Low-level features are known to act as cues for the most
salient information within a particular scene (Itti et al., 1998),
which captures overt attention rapidly in a bottom-up fashion
(Parkhurst et al., 2002). Higher-level influences, such as the
semantically informative regions of a scene, are also known
to guide attention early on (Henderson & Hayes, 2017). Top-
down guidance, on the other hand, makes use of higher-level
categorical knowledge to inform its decisions in amore planned
andmethodical manner. Categorical knowledge reflects learned
regularities of scene structure, which differ across categories but
stay relatively stable within a given category, such as the distri-
butions of contour junctions (Walther & Shen, 2014) or local
symmetry (Wilder et al., 2018, Local symmetry facilitates scene
processing, under review), and even whole objects (Greene,
2013; Oliva& Torralba, 2007). Our findings are consistent with
this framework, in which the mid-level features that are useful
for perceptual organization contribute to top-down category-
specific gaze guidance, although symmetry also contributes to
bottom-up guidance. This pattern is observed with both gray-
scale photographs and line drawings.

As Wilder et al., 2018, Local symmetry facilitates scene
processing (under review) suggested, symmetry serves to sig-
nal the visual system to begin grouping visual information
into meaningful units. This leads to the rapid emergence of
an object advantage (i.e., groups of contours beingmore easily
perceived as a coherent object rather than separate elements)
for symmetrical and parallel contours than for asymmetrical
ones (Feldman, 2007). Similarly, whole objects are perceived
more quickly when the objects’ parts contain easily identifi-
able symmetry cues. Object perception is slower when the
object parts must be detected by identifying the location and
shape of the curvature and junction points (Panis &
Wagemans, 2009). Presumably, this is because junctions cue
occlusion boundaries and depth, and thus object separation
and scene layout, which take a slightly longer time for the
brain to process than lower-level features (Cichy, Khosla,
Pantazis, & Oliva, 2017). Ultimately, this contribution of
mid-level features to both bottom-up and top-down gaze guid-
ance confirms the idea that human gaze is guided by
interactions of features within a scene rather than by local
features alone (Peters et al., 2005), allowing for contour inte-
gration and higher-level scene understanding.
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It is useful to interpret our results within the context of the
reverse hierarchy theory (Hochstein & Ahissar, 2002). In their
theory, Hochstein and Ahissar described two forms of vision,
Bvision at a glance^ and Bvision with scrutiny.^ BVision at a
glance^ happens in an implicit bottom-up manner. The brain
combines information, starting from low-level image features
to more complex combinations of features, to create a detailed
high-level percept, such as an object or scene. The low- and
mid-level features are thus integrated within the full percept of
the scene, though not as readily available to conscious percep-
tion. In our paradigm, this results in the mid-level features
achieving a lower overall prediction accuracy than when ob-
servers have a more complete knowledge of the category
(e.g., FDMs). Note also that the influence of bottom-up
contributions decreases in line drawings as compared to
photographs: In line drawings, there are fewer features for
the brain to combine. Therefore, the final percept will be
relatively impoverished, leading to a decreased amount of
Bvision at a glance^ (i.e., bottom-up influence). The sec-
ond form of vision, Bvision with scrutiny,^ functions in a
top-down (explicit) manner, allowing for a more detailed
analysis of the scene. This form of attention is deliberate,
acts on the information obtained through Bvision at a
glance,^ and serves to gather additional information to
maximize behavioral relevance.

In our study, we were able to determine to what extent mid-
level features contributed to the implicit bottom-up versus
explicit top-down guidance of attention. The mid-level fea-
tures contribute especially to top-down attentional guidance,
because they correspond to object parts and scene layout,
which need to be scrutinized in order to obtain more detailed
knowledge of the scene.

Altogether, these findings allow us to further converge on a
timeline of scene perception and exploration. Humans are able
to perceive the gist of a scene, such as its category or level of
navigability, extremely quickly (Greene & Oliva, 2009).
Within the constraints of the rapid category knowledge we
acquire from the environment through Bvision at a glance^
(Hochstein & Ahissar, 2002), we are cued to the most relevant
objects. Of the relevant objects, the most salient objects, based
on their low-level features and local symmetry, are likely ex-
plored first. After the most salient objects have been explored,
the rest of the scene can then be explored in a logical fashion
to attain one’s behavioral goal. In terms of the present study,
the behavioral goal was to remember the scene for a later
memory test; thus, a logical pattern of fixations after picking
out the most salient content would be to follow the layout of
the scene to try to extract any other content that might be
diagnostic of that particular image. Another task setting with
high ecological relevance would be navigation in the real
world. To this end, the cues to object parts and structural scene
layout provided by mid-level features are imperative (Bonner
& Epstein, 2018). Our research has not only been able to

quantify these mid-level features, but we have also shown that
these features do indeed guide human gaze in a content-
specific manner.

Limitations

We acknowledge certain limitations that could have an impact
on the interpretation of the results. First, it is clear that an
extremely salient feature (i.e., color) is missing from our stim-
ulus set. The lack of color potentially affected participants’
fixation behavior on photographs. However, the overall accu-
racy and shape of the category prediction curve were similar to
those found when observers had viewed the same images in
color (O’Connell &Walther, 2015), suggesting that the lack of
color in our image set was not profoundly impacting how
participants viewed those images. Additionally, the exclusion
of color had no effect on interpretation of the results from the
line drawing data.

However, the lack of color in both photographs and line
drawings might have a larger impact on Deep Gaze II. Since
Deep Gaze’s network is trained on color photographs, it is
unclear how its relevant feature space would decipher
impoverished stimuli such as line drawings. Deep Gaze’s net-
work certainly includes low-level and mid-level features that
are available in line drawings, but it is difficult to examine the
various layers of the network to determine how those features
are being interpreted and propagated to later layers. To ac-
count for this uncertainty, we also computed simple low-
level features using the Saliency Toolbox and mid-level fea-
tures directly from the stimuli. Though not as accurate as Deep
Gaze in matching human behavior, these controls allowed us
to have full knowledge of the low- and mid-level features we
were using and provided clearly interpretable results for both
photographs and line drawings.

Finally, since our paradigm relies on the use of distinct
categories in order to obtain successful category predictions,
it is difficult to extend our findings on the role of mid-level
features in attentional guidance to other categories. Whether
mid-level features contribute mostly to top-down gaze guid-
ance for any and all categories cannot be concluded by our
method, because it requires a small set of distinct categories in
order to achieve accurate category predictions. The accurate
predictions are imperative, because we derive the relative con-
tributions of mid-level features to bottom-up and top-down
guidance of gaze from the time course of the category predic-
tions. To derive this information for a wider and less distinct
range of stimuli, the analyses would have to be adapted.

Conclusion

In summary, we have shown that mid-level features
(junctions and symmetry) contribute to the category-
specific guidance of gaze—more so than purely low-
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level features, but less so than having full knowledge of
the scene. There was a shift over time, from the initial
use of low-level and simple mid-level (i.e., local symme-
try) information to inform bottom-up attentional guid-
ance, to the more prominent use of both simple
(symmetry) and more complex mid-level information
(i.e., contour junctions) to inform top-down guidance,
allowing for the scrutiny of scene structure and layout.
Mid-level vision is an important transition point in visual
perception that is not yet well-understood. Our findings
that mid-level features contribute to the guidance of eye
movements underscores the need for a better mechanistic
understanding of the Gestalt principles of perceptual or-
ganization and their relations and interactions with other
functions of the visual system.
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