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Abstract
Individual differences in the ability to compare and evaluate nonsymbolic numerical magnitudes—approximate number system
(ANS) acuity—are emerging as an important predictor in many research areas. Unfortunately, recent empirical studies have
called into question whether a historically common ANS-acuity metric—the size of the numerical distance effect (NDE size)—is
an effective measure of ANS acuity. NDE size has been shown to frequently yield divergent results from other ANS-acuity
metrics. Given these concerns and the measure’s past popularity, it behooves us to question whether the use of NDE size as an
ANS-acuity metric is theoretically supported. This study seeks to address this gap in the literature by using modeling to test the
basic assumption underpinning use of NDE size as an ANS-acuity metric: that larger NDE size indicates poorer ANS acuity. This
assumption did not hold up under test. Results demonstrate that the theoretically ideal relationship between NDE size and ANS
acuity is not linear, but rather resembles an inverted J-shaped distribution, with the inflection points varying based on precise
NDE task methodology. Thus, depending on specific methodology and the distribution of ANS acuity in the tested population,
positive, negative, or null correlations between NDE size and ANS acuity could be predicted. Moreover, peak NDE sizes would
be found for near-average ANS acuities on common NDE tasks. This indicates that NDE size has limited and inconsistent utility
as an ANS-acuity metric. Past results should be interpreted on a case-by-case basis, considering both specifics of the NDE task
and expected ANS acuity of the sampled population.
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People can evaluate nonsymbolic numerical magnitudes (i.e.,
which pack has more wolves) without counting (Taves, 1941)
via what is known as the approximate number system (ANS).
The ANS allows us to perceive numerical magnitudes from
the world in an analog fashion, similarly to how we perceive
other magnitudes, like size (Kaufman, Lord, Reese, &
Volkmann, 1949). This skill, BANS acuity,^ varies: Some in-
dividuals can make faster and more accurate judgments than
others (Halberda & Feigenson, 2008). Better ANS acuity has
been linked to better math skills and better standardized test
performance (Gilmore, McCarthy, & Spelke, 2010; Halberda,

Mazzocco, & Feigenson, 2008) (also see Chen& Li, 2014, for
meta-analysis and review) and may even influence judgment
and decision-making in adults (Peters, Slovic, Västfjäll, &
Mertz, 2008; Schley & Peters, 2014). Unfortunately, recent
empirical studies call into question the effectiveness of a his-
torically common ANS-acuity metric: the size of the numeri-
cal distance effect (NDE size; Gilmore, Attridge, & Inglis,
2011; Holloway & Ansari, 2009; Inglis & Gilmore, 2014;
Maloney, Risko, Preston, Ansari, & Fugelsang, 2010; also
see Sasanguie, Defever, Van den Bussche, & Reynvoet,
2011). The goal of this study was to assess the theoretical
support for using NDE size as an ANS-acuity metric.

Individual differences, ANS acuity,
and the NDE

There is strong evidence that people invoke ANS-based analog
magnitudes when considering symbolic numbers (Dehaene,
1992; Dehaene, Bossini, & Pascal, 1993; Moyer & Landauer,
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1967). Moyer and Landauer’s (1967) seminal study demonstrat-
ed that people show distance effects whenmaking quantity judg-
ments about symbolic magnitudes. For example, people are
faster at determining that 6 is smaller than 9 than they are at
determining that 7 is smaller than 8. Such effects are a classic
pattern in analog magnitude comparisons (Moyer & Landauer,
1967).

Moyer and Landauer’s (1967) now classic approach of using
the presence of distance effects to demonstrate that the ANS is
invoked in symbolic magnitude comparisons appears to have
inspired the later use of NDE size as an ANS-acuity metric. In a
practice that seems to originate with Sekuler and Mierkiewicz
(1977), researchers will calculate NDE size by finding the sav-
ings in the speed and/or accuracy of numerical comparisons
(e.g., BWhich is larger?^) at larger (easier) versus smaller
(harder) distances. Larger NDE size is taken to indicate poorer
ANS acuity (Peters et al., 2008). Recently, several studies have
questioned this measure’s ability to distinguish individual dif-
ferences in ANS acuity (Gilmore et al., 2011; Holloway &
Ansari, 2009; Inglis & Gilmore, 2014; Maloney et al., 2010;
also see Sasanguie et al., 2011) (also see Price, Palmre, Battista,
& Ansari, 2012). Given these issues of empirical support, this
manuscript seeks to address whether the use of NDE size as an
ANS-acuity metric is theoretically supported.

ANS theory and NDE size

The exact nature of the ANS has yet to be completely deter-
mined, but it is well established that it obeys Weber’s law
(Cordes, Gelman, Gallistel, & Whalen, 2001; Dehaene, Izard,
Spelke, & Pica, 2008; Mechner, 1958; Meck & Church, 1983;
Whalen, Gallistel, &Gelman, 1999). As is typically the case for
magnitude perception (see Kingdom& Prins, 2010), numerical
magnitudes are not perceived exactly. Rather, percepts are nor-
mally or quasinormally distributed around a (possibly biased)
mean value. The ability to distinguish between two quantities is
dependent on the amount of overlap between their perceived
magnitude distributions. Importantly, this overlap—and thus
the ease with which two values can be distinguished—is de-
pendent upon their ratio. As a result, one can observe both
distance and size effects in magnitude discriminations. It is
easier to distinguish numerical quantities that are more distant
from each other (6 dots [:::] vs. 12 dots [::::::]) than those that
are closer together (8 dots [::::] vs. 10 dots [:::::]). Also, it is
easier to distinguish numerical quantities at the same distance
with smaller sizedmagnitudes (6 dots [:::] vs. 8 dots [::::]) than
with larger magnitudes (14 dots [:::::::] vs. 16 dots [::::::::]).
ANS magnitude comparisons yield standard psychophysical
functions: The likelihood that an individual will successfully
discriminate between two magnitudes will increase
curvilinearly from chance to asymptote at or near 100% accu-
racy, as the ratio of the larger to the smaller value increases.

Reaction Times (RTs) similarly decrease with the comparison
ratio (Whalen et al., 1999; see Kingdom & Prins, 2010, for a
discussion of psychophysical functions).

ANS acuity is defined by an individual’s Weber fraction
(Cordes et al., 2001; Dehaene, et al., 2008; Halberda et al.,
2008; Siegler & Opfer, 2003; Whalen et al., 1999). Weber’s
law implies that the standard deviation (SD) of the distribution
around an estimated magnitude is a constant proportion of that
magnitude’s mean (M). This constant proportion is, by defini-
tion, the Weber fraction (w) of the perceiver’s ANS. This
results in greater overlap between the magnitude distributions
perceived from stimuli at smaller ratios (::::/:::, 1.33) than at
larger ratios (::::::/:::, 2). After accounting for other biases, w
determines the variability in the representation of a particular
magnitude, which in turn determines the amount of overlap
between any two magnitudes, which finally determines how
likely it is that an individual will be able to tell two nonsym-
bolic magnitudes apart (ANS acuity). The smaller an individ-
ual’s w, the better the individual will be at discriminating be-
tween nonsymbolic numerical magnitudes because there is
less overlap in their numerical magnitude perceptions.

It follows that the ANS’s contribution to NDE size should
be a function of the specific magnitudes being compared and
ANS acuity (w). Thus, we can derive the relative size of the
ANS’s contribution to NDE size for any specific task and any
given w by considering the resulting distributions. As long as
judgments are based on ANS distributions, error rates and RTs
should be functionally related to the amount of overlap in
these distributions.

Method

The goal of this work is to assess the theoretical support for
using NDE size as an ANS acuity metric. Thus, the theoreti-
cally ideal NDE sizes calculated here are dependent only on
the magnitude ratios of the stimuli and w. Real-world data
would involve other sources of RTand error (attention to task,
nondecision time, etc.), adding noise that would make this
relationship less clear. However, as these factors are separate
from the ANS, they are excluded from this ideal model.

Formula: The relationship of overlap and erfc with w

Calculations are based on the linear model of the ANS, which
claims that means of perceived numerical magnitude distribu-
tions increase linearly with the size of the stimuli, and the
distributions’ standard deviations are proportional to their
means (i.e., scalar variability; Cordes et al., 2001). (Note:
Magnitudes might alternatively be modeled as logarithmically
spaced with constant variability, yielding similar outcomes.)
Thus, the ratio of the standard deviation to the mean is con-
stant for a given individual on a given task. This constant is the
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w of the individual’s ANS: their ANS acuity. Here, magni-
tudes are treated as Gaussian distributions around unbiased
means equal to the stimulus value (M), where SD = w × M.
Thus, the derived overlap in ANS distributions is a function of
the stimulus ratio and the Weber fraction (w) of the ANS.
Overlap calculations are described in the Appendix.
Additionally, following the method used by Halberda et al.
(2008), the erfc (the complementary error function) was used
to determine the rate at which a given pair of magnitudes will
not be distinguished. Given no other sources of error, erfc
should be equal to twice the error rate of ANS-based magni-
tude judgments, as the observer would be presumed to choose
the correct answer by chance on half of such trials. The
MATLAB code used for these calculations is given in the
Appendix.

Overlaps and erfcs can be calculated for any stimulus ratio
and w. Thus, the theoretically maximum contribution of ANS
acuity to NDE size can be found for any w on any particular
NDE task. However, the ranges of greatest interest are those
that correspond to ws seen in humans. Consistent with prior
work (e.g., Cordes et al., 2001; Whalen et al., 1999), Chesney,
Bjälkebring, & Peters, (2015) found mean ws of .22 (SD =
.06). However, others have found mean ws of .11 in educated
adults (Dehaene et al., 2008). ANS acuity also varies with age.
Halberda et al. (2008) found that 14-year-olds had mean ws of
.28 (SD =.10). Studies with infants have found ws of 1.0 (Xu
& Spelke, 2000), while 1-year-olds show ws of less than .5
(Cantrell & Smith, 2013).

Task, NDE size, and ANS acuity

The ideal relationship between NDE size and w was modeled
for two different tasks and calculation methods.

Task 1 Task 1 is based on an NDE measure like that used by
Peters et al. (2008). Participants are given a central compari-
son value (e.g., 5) and asked to indicate whether stimulus
values are greater or less than that value. The stimuli follow
a 2 × 2 design: Half are less (e.g., 1, 4) and half are greater
(e.g., 6, 9) than the central value. Also, half are close (e.g., 4,
6) and half are far (e.g., 1, 9) from the central value. An
individual’s NDE size is operationalized as the difference in
accuracy and/or RT on close versus far trials.

Here, NDE size for a given w and pair of stimulus ratios
was calculated as the difference in the modeled overlaps and
erfcs:

Overlap difference : Overlap small ratioð Þ−Overlap large ratioð Þ
erfcdifference : erfc small ratioð Þ−erfc large ratioð Þ:

In this paradigm, although stimuli distances are sym-
metrical around the central comparison value, the ratios
are asymmetrical. For the stimuli greater than the central

value (high), the close and far ratios are 6/5 (1.2) and
9/5 (1.8), respectively. For the stimuli less than the cen-
tral value (low), the ratios are 5/4 (1.25) and 5/1 (5).
Analyses used in the literature (e.g., Peters et al., 2008)
classify stimuli as near and far, collapsing across these
ratio differences. This is modeled here by averaging
NDE sizes found for ratios above and below the central
value (average).

Task 2 An alternative method of gauging NDE size is to
find the slope of the linear regression of RTs or error rates
on ratio or distance, treating ratio/distance as continuous
rather than dichotomous (e.g., Sekuler & Mierkiewicz,
1977). Negative slopes indicate the presence of a distance
effect. Larger (i.e., more strongly negative) absolute
slopes are treated as indicating larger ws (i.e., poorer
ANS acuity). Theoretically, ideal NDE slopes were
modeled based on the comparison task developed by
Chesney et al. (2015), which used ratios between 1 and
2.6 and numerical magnitudes between 10 and 30. While
magnitude overlaps are dependent on ratio, NDE slope
calculations have used distance as the Independent variable
(e.g., Sekuler & Mierkiewicz, 1977). Therefore NDE slopes
were found by regressing overlap and erfc on both the ratio
and absolute distance between comparison pairs across the
human range of ws.

Results

Modeled overlaps and erfcs

Figure 1 illustrates the modeled ideal ANS magnitude over-
laps and erfcs forws from .04 to .48 (w ranges seen in typically
developing adults and older children) and ratios from 1 to 5
(greater/lesser), covering the range of difficulty from
impossible to easy across these ws. Smaller ratios have greater
overlaps and erfcs than larger ratios. As ratio increases, there
is a steep initial drop for both overlaps and erfcs, which then
Bturns the corner^ to asymptote to zero. All ws yield this same
pattern, but the initial drop is steeper and the Bcorner^ reached
faster for smaller ws.

The relationship of overlap and erfc to w predicts a
nonlinear relationship between NDE size and w. This is
shown in Fig. 2. People with ws of .12 would have a lot
of savings discriminating 9 versus 12 compared with 9
versus 10, as they would find 9 versus 12 easy, but 9
versus 10 would be at the upper range of their skill.
However, people with ws of .32 would have less savings,
as they would find both 9 versus 12 and 9 versus 10 to be
difficult. People with ws of .04 would have even less
savings because they would find both 9 versus 12 and 9
versus 10 to be very easy.
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Relationship between NDE size and w is J shaped—

Task 1 Modeled NDE sizes for the expected human range of
ws (i.e., from skilled adults’ near 0, to infants’ 1) on Task 1 are
presented in Fig. 3. As can be seen, the ideal relationship
between w and NDE size is not linear, but follows an inverted
J-shaped curve. A strong positive linear relationship between
w and NDE size only exists for ws ranging between ~.05 and
~.20, quickly rising from near zero savings to a 40% overlap
savings, and 45% erfc savings at ws of .20. Both overlap and

erfc savings then are near flat between ws of ~.20 and ~.60,
with overlap savings peaking at 49% for ws of .39 and erfc
savings peaking at 54% for ws of .34. Past these peaks, sav-
ings decline slowly as w increases.

Clearly, the general presumption that larger NDE sizes cor-
relate with larger ws does not always hold. One could expect
NDE size and w to have a positive linear relationship only if
the population’s ws were located between .05 and .20. Indeed,
depending on the population’s w distribution, one could pre-
dict a positive, negative, or nonexistent correlation between

Fig. 1 Derived ANSmagnitude overlaps (left) and erfcs (right) for ws ranging from .04 (excellent acuity) to .48 (poorer acuity), at high/low comparison
value ratios ranging from 1 (equal values) to 5 (e.g., 50 vs. 10)

Fig. 2 a–cMagnitude distributions of 9, 10, and 12 atws .12, .04, and .32. d Erfcs for a range of ratios including 10/9 (1.11) and 12/9 (1.33) for thesews.
Vertical segments illustrate the size of the erfc differences between these ratios for the ws
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NDE size and w. Moreover, one could not necessarily recover
ws from NDE size because, again owing to the J-shaped rela-
tion, more than one w maps to the same NDE size. For exam-
ple, average erfc savings of .48 map tows of both .22 (average
adult) and .55 (very poor).

Task 2 The J-shaped relationship is not task dependent. Ratio
regressions for Task 2 yielded a stronger relationship between
NDE slope and w than absolute distance, but both yielded a J-
shaped curve (see Fig. 4). A strong linear relationship between
w and NDE slope only held forws up to ~.2, with an inflection
point at ws of .32. These curves are very similar to those
calculated for a task comparing all possible unequal parings
of the values 1–9.

Discussion

Even though numerical distance effects can indicate the in-
volvement of the ANS in a task, NDE tasks have limited
utility for measuring individual differences in ANS acuity.
This model provides a novel theoretical exploration of why
this is the case: one cannot a priori expect NDE size and ANS
acuity to be linearly related. The J-shaped relationship be-
tween w and NDE size persists across tasks and analytical
methods, although the inflection points are task specific.
Small NDE sizes are expected both for individuals with

particularly small and particularly large ws. As a result, even
the direction of the correlation would be dependent both on
the specifics of the task and on the w distribution in the
sample.

For typical NDE tasks, like those above, peak NDE size is
approached at ws of ~.2–.3. The location of this peak is a real
concern, as several studies have found adults’ ws typically
center around ~.22 (e.g., Cordes et al., 2001; Whalen et al.,
1999). But the range of human ws is wide. Other studies have
found mean ws of .11 in adults (Dehaene et al., 2008) and ws
of 1.0 in infants (Xu & Spelke, 2000). Thus, one cannot pre-
sume the w range in a novel population will coincide with the
w range in which the relationship of w and NDE size is
quasilinear. This is problematic to the literature as a whole,
and particularly for research attempting to draw conclusions
about the nature of ANS acuity’s involvement in other cogni-
tive tasks.

Nevertheless, if the w range within a to-be-tested popula-
tion is known, one might construct a task for which the as-
sumption of a near-linear relationship between NDE size and
ANS acuity is theoretically supported. One could expect w
ranges of .10 to .34 in American university students
(Chesney et al., 2015; but see Dehaene et al., 2008). Over this
range, NDE size found using the ratios 5 versus 1.25 would
yield a strong linear relationship between ideal NDE size and
w (this is illustrated by the Blow^ line on Fig. 3). Stimuli
should be carefully chosen to avoid confounds. For example,

Fig. 3 Derived NDE sizes for overlaps (left) and erfcs (right) on Task 1

Fig. 4 Derived NDE slopes for overlaps (left) and erfcs (right) on Task 2
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nonsymbolic stimuli (e.g., dot sets) should be used: Symbolic
number knowledge could interfere with task performance,
and, indeed, there is some debate as to whether distance ef-
fects seen with symbolic number are necessarily the result of
ANS involvement (Krajcsi, Lengyel, & Kojouharova, 2016).
Nonnumeric properties of the stimuli (e.g., area) should be
carefully controlled, as these are known to influence ANS
assessments (Hurewitz, Gelman, & Schnitzer, 2006).
Further, ratios should be instantiated using quantities suffi-
ciently large to avoid interference from subitizing (a process
that allows individuals to assess small quantities—typically
less than 7—accurately without counting; see Chesney &
Haladjian, 2011; Feigenson, Dehaene, & Spelke, 2004).
However, such tasks should still be tested empirically. Other
factors, such as individual differences in nondecision time and
error tolerance, might mask the theoretical quasilinear relation
in practice. A better course might be to assess ANS acuity
using tested tasks that findw by fitting numerosity comparison
performance to sigmoidal or psychophysical curves (e.g.,
Chesney et al., 2015; Halberda et al., 2008).

Conclusions

It is important that ANS-acuity metrics are both empiri-
cally and theoretically supported. As shown here, the as-
sumed linear relationship between NDE size and ANS
acuity is only theoretically supported in some conditions,
and researchers may not be able to discern whether these
conditions have been met. Considered in combination
with the questionable empirical support of NDE size as
an ANS-acuity metric (Gilmore et al., 2011; Holloway &
Ansari, 2009; Inglis & Gilmore, 2014; Maloney et al.,
2010; also see Sasanguie et al., 2011), it is recommended
that use of this metric should be avoided. Interpretation of
existing NDE-size data should take into account the ex-
pected relationship between NDE size and ANS acuity for
that specific methodology and typical w ranges found for
age-matched and education-matched populations.

Appendix

Overlap calculations are based on finding the value at which it
is equally likely that a magnitude from the lower distribution
would be greater than that value, and that a magnitude from
the higher distribution would be less than that value. This
value becomes a cut point separating the Bbody^ and Btails^
of these magnitude distributions. The overlap is defined as the
proportion of distributions in these equal tails divided by the
remainder of the distributions.

MATLAB code used to calculate the proportion of overlap
in the ANS distributions of any two values, given w:

invCdf ¼ 1−normcdf High−Lowð Þ= w� Highþ Lowð Þð Þ; 0; 1ð Þ
overlap ¼ 2� invCdfð Þ= 2− 2� invCdfð Þð Þ:

The erfc calculation followed the process given in
Halberda et al. (2008). MATLAB code used to find the value
of the complimentary error function (erfc: the rate at which the
ANS values will not be distinguished, double the ideal error
rate):

erfc abs High−Lowð Þ= sqrt Higĥ 2
� �þ Low^2

� �� �� sqrt 2ð Þ � w
� �� �

Variables Bhigh^ and Blow^ referred to the higher and low-
er value in a comparison pair, respectively (e.g., 6 & 5).
Variable Bw^ referred to the Weber fraction (i.e., ANS acuity).

The overlap calculation found the point at which the lower
tail of the higher value’s distribution was equal to the higher
tail of the lower value’s distribution, and then calculated the
sum of the tails divided by the sum of the bodies.
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